
The complexity of disjunction in intuitionistic
logic

R. Ramanujam1, Vaishnavi Sundararajan2, and S. P. Suresh2

1 The Institute of Mathematical Sciences, Chennai, India.
jam@imsc.res.in

2 Chennai Mathematical Institute, Chennai, India.
{vaishnavi,spsuresh}@cmi.ac.in

Abstract. In the formal study of security protocols and access control
systems, fragments of intuitionistic logic play a vital role. These are re-
quired to be efficient, and are typically disjunction-free. In this paper,
we study the complexity of adding disjunction to these subsystems. Our
lower bound results show that very little needs to be added to disjunction
to get co-NP-hardness, while our upper bound results show that even a
system with conjunction, disjunction, and restricted forms of negation
and implication is in co-NP. Our upper bound proofs also suggest pa-
rameters which we can bound to obtain PTIME algorithms.

Keywords: Intuitionistic logic, proof theory, disjunction, complexity

1 Introduction

Intuitionistic logic is a subject with a rich history, with connections to fundamen-
tal aspects of mathematics, philosophy and computer science. What is perhaps
surprising is that it also finds application in such concrete areas of computer
science as system security and communication security in distributed protocols.
Consider the question: given a finite set of formulas X, a formula α in a pos-
itive fragment of some propositional logic, and an intuitionistic proof system
`, does X ` α? This sounds arcane, but is of practical importance when X is
a security policy that specifies permissions and α is the assertion of someone
being permitted some action [1, 10]. Or it might be the case that X is a set
of terms picked by an eavesdropper watching a channel and α is a term to be
kept secret [8]. Inference in such situations is typically intuitionistic. Consider a
formula A has t for an agent A participating in a cryptographic protocol and a
term t. A different agent B might not be able to assert (A has t) ∨ ¬(A has t),
since it might be that B does not have all the components that go into build-
ing the term t and the system does not allow B to assert anything about t in
such a case. To consider another example, B cannot assert A has t by assuming
¬(A has t) and then deriving a contradiction. To consider a third example, con-
sider a formula A can read f , where A is a user and f is a file. An access control
policy may be silent on whether A can read the file or not. Thus the formula
(A can read f)∨¬(A can read f) is not a validity in this system. This allows the

possibility that even though A cannot read file f according to the current policy,
it may be allowed that access in an extension of the policy.

In the applications mentioned above, the complexity of derivability is of prime
importance, since a derivability check is often a fundamental component of more
detailed security structures [6]. These systems are usually disjunction-free, with
a PTIME derivability procedure [2, 7, 11]. But reasoning about disjunction is
also important for security applications, even though it typically increases the
complexity of the derivability problem (see [15], for example). In this paper,
we explore the effect of disjunction on the complexity of various subsystems of
intuitionistic logic.

The PTIME systems referred to above do not include full implication either.
This is obvious, since it is well-known that the derivability problem for intu-
itionistic logic (and even its implication-only fragment) is PSPACE-complete.3

In this context, [11] considers a restriction of full implication, the so-called primal
implication which is defined by the following rule.

X ` β
→

X ` α→ β

In this rule, we have the same set of antecedents (set of formulas to the left `)
both in the premise and conclusion, and this contributes to an efficient solution
to the derivability problem.

We show that when we add disjunction to such efficient systems, derivability
is in co-NP. The results are similar to those in [4], but while the results there are
obtained via a translation to classical logic, we provide an explicit algorithm.
Our focus is on the algorithm itself, which is a general procedure to lift a PTIME
decision procedure for a logic to a co-NP procedure for the same logic with
disjunction. We also provide a modification of the above procedure that runs in
PTIME when we restrict the formulas on which disjunction elimination is applied
in a proof.

We also show that we cannot do better than co-NP for the above logics.
Subsystems involving disjunction are co-NP-hard with such minimal additions
as the elimination rule for implication, or the introduction rule for conjunction.
We also show that we get co-NP-hardness when we consider a system with rules
for disjunction and the elimination rule for negation.

Related work As we mentioned earlier, application areas like security typically
work with an intuitionistic system, and the complexity of derivability is impor-
tant in such applications. In the study of cryptographic protocols, the crypto-
graphic primitives are represented as rules in a proof system, following Dolev
and Yao [8]. These logics are typically positive and conjunctive. The derivability
problem for the basic Dolev-Yao system is in PTIME [16]. Other interesting non-
classical conjunctions like blind pairing can make the problem hard when they
interact distributively with the standard pairing operator [3].

3 From now on, whenever we refer to the complexity of a logic, we implicitly mean the
complexity of the derivability problem for it.

The results reported in this paper are very close to work done in the realm
of authorization logics, specifically primal infon logic and its extensions. It was
shown that primal infon logic is in PTIME [2, 11] but adding disjunction makes
the problem co-NP-complete [4]. Specifically, it was shown that a system with
primal implication, conjunction, disjunction and ⊥ is co-NP-hard, using a trans-
lation from classical logic. Our lower bound results can be seen as a refinement
of the result in [4], as we show that disjunction with any one of these other con-
nectives is already co-NP-hard. The upper bound results are also very similar
to those in [4], but we provide an explicit algorithm while the results there are
obtained via a translation to classical logic. Our procedures can be seen as a
way of lifting PTIME decision procedures for local theories [7, 14] to co-NP pro-
cedures for the same logics with disjunction. More recently, the complexity of
primal logic with disjunction was studied in further detail in [13], but the proofs
are via semantic methods.

Another important area of study is the disjunction property and its effect
on complexity. A system is said to have the disjunction property if it satisfies the
following condition: whenever X ` α ∨ β and X satisfies some extra conditions
(for example, ∨ does not occur in any formula of X), then X ` α or X ` β. The
disjunction property and its effect on decidability and complexity have been the
subject of study for many years. For example, it has been proved that as long as
any (propositional) logic that extends intuitionistic logic satisfies the disjunction
property, derivability is PSPACE-hard, and otherwise it is in co-NP (see Chap-
ter 18 of [5]). Various other papers also investigate extensions of intuitionistic
logic with the disjunction property [9, 12, 17]. In contrast to these results, our
paper considers subsystems of intuitionistic logic obtained by restricting impli-
cation. Further, in our paper, the focus is more on the left disjunction property :
namely that X,α ∨ β ` δ iff X,α ` δ and X,β ` δ.

2 Preliminaries

Assume a countably infinite set of atomic propositions P. The set of formulas
Φ is given by

α, β ::= p | ¬α | α ∧ β | α ∨ β | α→ β

For a set of operators O, we denote by ΦO the set of all formulas consisting
only of the operators in O. For example, Φ{∨} is the set of all formulas built
only using the ∨ operator, Φ{∨,∧} is the set of all formulas built only using the
∨ and ∧ operators, etc. For ease of notation, we ignore the braces and instead
use Φ∨, Φ∨,∧, etc.

The set of subformulas of a formula α, denoted sf(α), is defined to be the
smallest set S such that: α ∈ S; if ¬β ∈ S, β ∈ S; and if β ∧ γ ∈ S or β ∨ γ ∈ S
or β → γ ∈ S, {β, γ} ⊆ S. For a set X of formulas, sf(X) =

⋃
α∈X

sf(α).

The logic is defined by the derivation system in Figure 1. By X `IL α, we
mean that there is a derivation in IL of X ` α. (For ease of notation, we drop
the suffix and use X ` α to mean X `IL α, when there is no confusion.)

ax
X,α ` α

X,α ` β X,α ` ¬β
¬i

X ` ¬α

X ` β X ` ¬β
¬e

X ` α

X ` α X ` β
∧i

X ` α ∧ β

X ` α0 ∧ α1

∧e
X ` αj

X ` αj

∨i
X ` α0 ∨ α1

X ` α ∨ β X,α ` δ X, β ` δ
∨e

X ` δ

X, α ` β
→ i

X ` α→ β

X ` α→ β X ` α
→e

X ` β

Fig. 1. The system IL

Definition 1 (Derivability problem). Given X and α, is it the case that
X `IL α?

Among the rules, ax, ∧e and → e are the pure elimination rules, ¬e, ¬i
and ∨e are the hybrid rules and the rest are the pure introduction rules. A
normal derivation is one where the major premise of every pure elimination
rule and hybrid rule is the conclusion of a pure elimination rule. The following
fundamental properties hold, and the proofs are standard in the proof theory
literature.

Proposition 2. 1. (Monotonicity) If X ` α and X ⊆ X ′, then X ′ ` α.
2. (Admissibility of Cut) If X ` α and X,α ` β, then X ` β.
3. (Left Disjunction Property) X,α ∨ β ` δ iff X,α ` δ and X,β ` δ.
4. (Left Conjunction Property) X,α ∧ β ` δ iff X,α, β ` δ.

Theorem 3 (Weak normalization). If there is a derivation π of X ` α then
there is a normal derivation $ of X ` α. Further, if a formula α ∨ β occurs as
the major premise of an instance of ∨e in $, it also occurs as the major premise
of an instance of ∨e in π.

Theorem 4 (Subformula property). Let π be a normal derivation with con-
clusion X ` α and last rule r. Let X ′ ` β occur in π. Then X ′ ⊆ sf(X∪{α}) and
β ∈ sf(X ∪ {α}). Furthermore, if r is a pure elimination rule, then X ′ ⊆ sf(X)
and β ∈ sf(X).

3 The impact of disjunction: lower bounds

To gauge the effect of disjunction, we first consider disjunction in isolation, and
show that the derivability problem is in PTIME. This indicates that the lower
bound results that appear later in this section are a result of interaction between
the various logical rules, rather than due to disjunction alone.

3.1 The disjunction-only fragment

Let IL[∨] denote the fragment of IL consisting of the ax, ∨i and ∨e rules, and
involving formulas of Φ∨.

Theorem 5. The derivability problem for IL[∨] is in PTIME.

Suppose X = {α1
i ∨ α2

i ∨ · · · ∨ αki | 1 ≤ i ≤ n} is a set of formulas from

Φ∨, with each αji ∈ P. Let β = β1 ∨ β2 ∨ · · · ∨ βk ∈ Φ∨, with each βj ∈ P.
(Note that any input to the derivability problem of IL∨ can be converted to the
above form by choosing appropriate k, flattening the disjunctions, and repeating
disjuncts). We now have the following claim.

Claim. X ` β iff there exists an i ≤ n such that α1
i ∨ α2

i ∨ · · · ∨ αki ` β.

Proof. It is obvious that if α1
i ∨α2

i ∨ · · · ∨αki ` β then X ` β (by Monotonicity).
For proving the other direction, suppose (towards a contradiction) X ` β,

but there is no i such that α1
i ∨ α2

i ∨ · · · ∨ αki ` β. In particular, from the

Left Disjunction Property, for every i, some αjii 0 β. Without loss of generality,
assume that ji = 1 for every i. Thus we have α1

1 0 β, α1
2 0 β, . . . , α1

n 0 β.
Now, since X ` β and α1

i ` α1
i ∨ · · · ∨ αki for each i ≤ n, it follows by

Admissibility of Cut that α1
1, . . . , α

1
n ` β (and there is a normal proof π with

that conclusion). Since all the α1
i s are atomic propositions, the only rules that

can appear in π are ax and ∨i. Therefore, at some point, one of the α1
i s must have

contributed to a βj via an ax rule. However, this gives us α1
i ` β (by deriving

βj and then applying ∨i), which is a contradiction. Thus we have the required
claim. ut

Given this claim, we know that it is enough to see if a particular formula
on the left (say αi) derives β. In particular, from the Left Disjunction Property,
we get that every disjunct in αi needs to derive β. Therefore, the derivability
problem is equivalent to checking if there is a formula in X all of whose disjuncts
occur in β, and thus we obtain the required PTIME procedure.

3.2 Disjunction and conjunction

We have now confirmed that the ∨-only fragment is in PTIME. It is also known
that some other fragments (for example the fragment consisting of primal impli-
cation, conjunction, and a restricted negation) give rise to PTIME logics. How-
ever, we obtain the following result for the logic with conjunction and disjunction.

Let IL[∨,∧] denote the fragment of IL consisting of the ax, ∨i, ∨e, ∧i and ∧e
rules, and involving formulas of Φ∨,∧.

Theorem 6. The derivability problem for IL[∨,∧] is co-NP-hard.

The hardness result is obtained by reducing the validity problem for boolean
formulas to the derivability problem for IL[∨,∧]. In fact, it suffices to consider
the validity problem for boolean formulas in disjunctive normal form. We show
how to define for each DNF formula ϕ a set of IL[∨,∧]-formulas Sϕ and an
IL[∨,∧]-formula ϕ such that Sϕ ` ϕ iff ϕ is a tautology.

Let {x1, x2, . . .} be the set of all boolean variables. For each boolean variable
xi, fix two distinct atomic propositions pi, qi ∈ P. We define ϕ as follows, by
induction.

– xi = pi
– ¬xi = qi
– ϕ ∨ ψ = ϕ ∨ ψ
– ϕ ∧ ψ = ϕ ∧ ψ

Let Voc(ϕ), the set of all boolean variables occurring in ϕ, be {x1, . . . , xn}.
Then Sϕ = {p1 ∨ q1, . . . , pn ∨ qn}.

Lemma 7. Sϕ ` ϕ iff ϕ is a tautology.

Proof. Recall that a propositional valuation v over a set of variables V is just a
subset of V – those variables that are set to true by v.

For a valuation v ⊆ {x1, . . . , xn}, define Sv = {pi | xi ∈ v} ∪ {qi | xi /∈ v}.
By repeated appeal to the Left Disjunction Property, it is easy to see that

Sϕ ` ϕ iff for all valuations v over {x1, . . . , xn}, Sv ` ϕ. We now show that
Sv ` ϕ iff v |= ϕ. The statement of the lemma follows immediately from this.

– We first show by induction on ψ ∈ sf(ϕ) that whenever v |= ψ, it is the case
that Sv ` ψ.
• If ψ = xi or ψ = ¬xi, then Sv ` ψ follows from the ax rule.
• If ψ = ψ1∧ψ2, then it is the case that v |= ψ1 and v |= ψ2. By induction

hypothesis, Sv ` ψ1 and Sv ` ψ2. Hence, by using ∧i, it follows that
Sv ` ψ1 ∧ ψ2.

• If ψ = ψ1 ∨ ψ2, then it is the case that either v |= ψ1 or v |= ψ2. By
induction hypothesis, Sv ` ψ1 or Sv ` ψ2. In either case, by using ∨i, it
follows that Sv ` ψ1 ∨ ψ2.

– We now show that if Sv ` ϕ, then v |= ϕ. Suppose π is a normal proof of
Sv ` ϕ, and that there is an occurrence of the ∧e rule or ∨e rule in π with
major premise S′ ` γ. We denote by $ this subproof with conclusion S′ ` γ.
Note that $ ends in a pure elimination rule, since π is normal and every
pure elimination rule and hybrid rule has as its major premise the conclusion
of a pure elimination rule. By Theorem 4, we see that S′ ⊆ sf(Sv) = Sv, and
γ ∈ sf(S′). But γ is of the form α ∨ β or α ∧ β, and this contradicts the fact
that Sv ⊆P. Thus π consists of only the ax, ∧i and ∨i rules. We now show
by induction that for all subproofs π′ of π with conclusion Sv ` ψ, v |= ψ.
• Suppose the last rule of π′ is ax. Then ψ ∈ Sv, and for some i ≤ n,
ψ = xi or ψ = ¬xi. It can be easily seen that v |= ψ (by the definition
of Sv).

• Suppose the last rule of π′ is ∧i. Then ψ = ψ1 ∧ ψ2, and Sv ` ψ1 and
Sv ` ψ2. Thus, by induction hypothesis, v |= ψ1 and v |= ψ2. Therefore
v |= ψ.

• Suppose the last rule of π′ is ∨i. Then ψ = ψ1 ∨ ψ2, and either Sv ` ψ1

or Sv ` ψ2. Thus, by induction hypothesis, either v |= ψ1 or v |= ψ2.
Therefore v |= ψ. ut

3.3 Disjunction and implication elimination

We now consider another minimal system, IL[∨,→e], consisting of the rules ax,
∨i, ∨e and→e and involving formulas from Φ∨,→, and prove the following result.

Theorem 8. The derivability problem for IL[∨,→e] is co-NP-hard.

The proof is by reduction from the validity problem for 3-DNF, as detailed
below.

Let ϕ be a 3-DNF formula with each clause having exactly three literals. Let
Voc(ϕ) = {x1, . . . , xn}. We define indx(ϕ) to be the set {1, . . . , n}∪ {1′, . . . , n′},
where (i′)′ = i for any i ∈ indx(ϕ). For i ≤ n, we define `(i) = xi and `(i′) = ¬xi.

We define the following sets.

Sϕ := {pa ∨ pa′ | a ∈ indx(ϕ)} .

Tϕ := {pa → pb → pc → pabc | a, b, c ∈ indx(ϕ)} .

We define ϕ as follows:

ϕ :=
∨
{pabc | `(a) ∧ `(b) ∧ `(c) is a disjunct of ϕ} .

For each valuation v ⊆ {x1, . . . , xn}, define Sv to be

{pi | xi ∈ v} ∪ {pi′ | xi /∈ v}.

Lemma 9. Sϕ, Tϕ ` ϕ iff ϕ is a tautology.

Proof. By repeated appeal to the Left Disjunction Property, it is easy to see
that Sϕ, Tϕ ` ϕ iff Sv, Tϕ ` ϕ for all valuations v over {x1, . . . , xn}. We now
show that for all such valuations, v |= ϕ iff Sv, Tϕ ` ϕ.

Let π be a normal proof of Sv, Tϕ ` ϕ. The last rule of π has to be ∨i, since
if π ends in an elimination rule, from the Subformula Property it follows that
a disjunction is a subformula of Sv ∪ Tϕ, which is not the case. Repeating this
argument, we see that there is a subproof of π with conclusion Sv, Tϕ ` pabc
for some disjunct `(a) ∧ `(b) ∧ `(c) of ϕ. We now show that for any valuation v,
Sv, Tϕ ` pabc iff v |= `(a) ∧ `(b) ∧ `(c).

If v |= `(a) ∧ `(b) ∧ `(c), then we have pa, pb, pc ∈ Sv (from the definition of
Sv), and therefore by applying the → e rule to pa → pb → pc → pabc in Tϕ, we
have Sv, Tϕ ` pabc. In the other direction, suppose we have a normal proof π of
Sv, Tϕ ` pabc. By examining Sv and Tϕ, we see that only pa → pb → pc → pabc

mentions pabc. So it is clear that pc must be derivable from Sv, Tϕ, and the last
rule of π must be →e, applied to pc → pabc. Now in order for this formula to be
derivable, pb must be derivable, and similarly pa must be derivable. Since pa, pb
and pc can only be obtained by ax, it must be that pa, pb, pc ∈ Sv and therefore
v |= `(a) ∧ `(b) ∧ `(c).

Thus we have that Sv, Tϕ ` pabc iff v |= `(a) ∧ `(b) ∧ `(c), and the required
claim follows. ut

4 Upper bounds

We now show that a system with conjunction, disjunction, primal implication,
and a restricted version of negation (allowing only negation elimination, but
not negation introduction) is in co-NP. We first give a PTIME procedure for the
logic without disjunction elimination and then lift it to a co-NP procedure which
accounts for disjunction elimination.4

Fix a set of formulas X0 and a formula α0 for the rest of the section. Let
sf = sf(X0 ∪ {α0}). Let N = |sf|.

Definition 10. For any X ⊆ sf:

– derive(X) = {α ∈ sf | X ` α}.
– derive′(X) = {α ∈ sf | there is a proof of X ` α not using the ∨ e rule}.

The following properties of derive and derive′ are immediate.

– X ⊆ derive′(X) ⊆ derive(X).
– derive(X) = derive′(derive(X)) = derive(derive(X)) (by Admissibility of

Cut).
– derive′(X) = derive′(derive′(X)) (by Admissibility of Cut).
– If X is of the form derive′(Y), then derive′(X) = X. If X is of the form

derive(Y), then derive(X) = X.

4.1 A PTIME procedure for derive′

In the absence of ∨e, there is no branching during proof search. Hence we can
compute derive′(Y) bottom-up in PTIME, as detailed below in Algorithm 1.

For Y ⊆ sf, we define onestep(Y) ⊆ sf to be the set

{α ∈ sf | α is the conclusion of a rule r (other than ∨e) with premises Z ⊆ Y }.

Two important observations about onestep(Y).

– Y ⊆ onestep(Y), because of the rule ax.

4 It is important to note that we consider only the negation elimination rule. The
algorithms in this section do not work in the presence of the ¬i rule. Nor do we
know of a straightforward modification to handle the ¬i rule. It is not easy to say
without further study whether the complexity stays the same or increases, either.

– onestep(Y) is computable in time O(N2), where N = |sf|. This is because in
all the rules other than ∨e, the antecedents (formulas occurring to the left of
`) in the premises are the same as the antecedents in the conclusion. Thus
we need to consider only consequents (the formulas to the right of `) in a
proof. This means that we only need to consider all pairs of formulas in Y
to compute onestep(Y).

Algorithm 1 Algorithm to compute derive′(X), for X ⊆ sf

1: Y ← ∅;
2: Y ′ ← X;
3: while (Y 6= Y ′) do
4: Y ← Y ′;
5: Y ′ ← onestep(Y);
6: end while
7: return Y .

Since |sf| = N and Y increases monotonically, the while loop runs only for
N iterations. Thus derive′(X) is computable in time O(N3).

4.2 A co-NP procedure for derive

Algorithm 2 checks if X0 0 α0. It uses the notion of a down-closed set. A set X
of formulas is down-closed if it satisfies the following two conditions:

– derive′(X) ⊆ X.
– whenever α ∨ β ∈ X, then either α ∈ X or β ∈ X.

Y is said to be a down-closure of X if Y is down-closed and X ⊆ Y .

Algorithm 2 Algorithm to check if X0 0 α0

1: Y ← derive′(X0);
2: while (Y is not down-closed) do
3: guess a formula β0 ∨ β1 ∈ Y such that β0 6∈ Y and β1 6∈ Y ;
4: guess i ∈ {0, 1};
5: Y ← derive′(Y ∪ {βi});
6: end while
7: Return “Yes” if α0 6∈ Y , and “No” otherwise.

In Algorithm 2, it is an invariant that Y = derive′(Z) for some Z and hence
derive′(Y) ⊆ Y . Thus when Y is not down-closed, there exists β0 ∨ β1 ∈ Y such
that neither β0 nor β1 is in Y .

The algorithm guesses a down-closure Y of X0 such that α0 6∈ Y . The fol-
lowing theorem guarantees that one can successfully guess such a Y iff X0 0 α0.
This ensures the correctness of the algorithm.

Theorem 11. For any X and α (with X∪{α} ⊆ sf), X ` α iff α ∈ Y for every
down-closure Y of X.

This theorem is a consequence of the following three lemmas. But first we
need a general claim related to the Left Disjunction Property.

Claim. Suppose ϕ0 ∨ ϕ1 ∈ Z and i ∈ {0, 1}. Then Z \ {ϕ0 ∨ ϕ1}, ϕi ` θ iff
Z,ϕi ` θ.

Lemma 12. For any X and α (with X ∪ {α} ⊆ sf), X ` α iff Y ` α for every
down-closure Y of X.

Proof. Suppose X ` α and Y is a down-closure of X. Then X ⊆ Y and hence it
is immediate that Y ` α.

Suppose on the other hand that X 0 α. We show that there is a sequence
Y0 (Y1 (· · · (Yn ⊆ sf of sets such that

– X ⊆ Y0,
– Yn is down-closed,
– for all i ≤ n, derive′(Yi) ⊆ Yi, and
– for all i ≤ n, Yi 0 α.

The sequence is constructed by induction. Y0 is defined to be derive′(X). Since
X 0 α, it follows that Y0 0 α. Suppose Yk has been defined for some k ≥ 0 such
that Yk 0 α. If Yk is down-closed, we are done. Otherwise, since derive′(Yk) ⊆ Yk,
there is a β0 ∨ β1 ∈ Yk such that β0 6∈ Yk and β1 6∈ Yk. Since Yk 0 α, it follows
by the Left Disjunction property that Yk \ {β0∨, β1}, βi 0 α for some i ∈ {0, 1}.
By Claim 4.2 it follows that Yk, βi 0 α for some i ∈ {0, 1}.

Yk+1 =

{
derive′(Yk ∪ {β0}) if Yk, β0 0 α
derive′(Yk ∪ {β1}) otherwise

Clearly Yk (Yk+1 and derive′(Yk+1) = Yk+1. Assume without loss of generality
that Yk+1 = derive′(Yk ∪ {β0}). By construction, Yk ∪ {β0} 0 α. Now suppose
Yk+1 ` α. Then, since Yk ∪ {β0} ` ϕ for every ϕ ∈ Yk+1, it would follow by
Admissibilty of Cut that Yk∪{β0} ` α, which is a contradiction. Thus Yk+1 0 α.
Thus we can always extend the sequence as desired.

Further, the Yi’s are strictly increasing, and are all subsets of sf. Thus n ≤ |sf|
and the above construction terminates. Yn is a down-closure of X that does not
derive α. ut

Lemma 13. Let π be a proof of X ` α with at least one occurrence of the ∨e
rule. Then there is an occurrence of ∨e in π with major premise X ` ϕ∨ψ such
that ϕ ∨ ψ ∈ derive′(X).

Proof. In any proof of the form

π1···
X1 ` α1

π2···
X2 ` α2

π3···
X3 ` α3

r
Y ` δ

we say that any rule in π1 is to the left of r, r is to the left of any rule in π2, and
any rule in π2 is to the left of any rule in π3.

Now consider the leftmost occurrence of ∨e in π. It is the last rule of a
subproof π′ of π which looks as follows.

π′
1···

X ′ ` ϕ ∨ ψ

π′
2···

X ′, ϕ ` θ

π′
3···

X ′, ψ ` θ
∨e

X ′ ` θ

Since this is the leftmost occurrence of ∨e, there is no occurrence of ∨e in π′
1.

Further, if X ′ 6= X, it means that π′ is part of the proof of a minor premise of
some other ∨e rule in π. But that contradicts the fact that π′ ends in the leftmost
∨e in π. Thus X ′ = X, and π′

1 witnesses the fact that ϕ ∨ ψ ∈ derive′(X). ut

Lemma 14. For a down-closed Y , Y ` α iff α ∈ Y .

Proof. If α ∈ Y , then it is obvious that Y ` α.

In the other direction, suppose Y ` α via a proof π with k instances of ∨e.
We prove the required claim by induction on k.

In the base case, k = 0, and α ∈ derive′(Y). Since Y is down-closed,
derive′(Y) ⊆ Y and we have α ∈ Y .

In the induction step, suppose there is an instance of ∨e in the proof of
Y ` α. By Lemma 13, we know that there is at least one occurrence of ∨e (say
Y ` δ) with major premise Y ` ϕ ∨ ψ such that ϕ ∨ ψ ∈ derive′(Y) ⊆ Y , which
looks as follows.

π1···
Y ` ϕ ∨ ψ

π2···
Y, ϕ ` δ

π3···
Y, ψ ` δ

∨e
Y ` δ

Thus we have ϕ∨ψ ∈ Y . Since Y is down-closed either ϕ ∈ Y or ψ ∈ Y . Suppose,
without loss of generality, that ϕ ∈ Y . Now consider π2. Since ϕ ∈ Y , we know
that Y ∪ {ϕ} = Y , and we can replace the big proof of Y ` δ by π2, thereby
reducing the number of instances of ∨e in the proof of Y ` α. By induction
hypothesis, α ∈ Y , and the lemma follows. ut

Running time We now analyze the running time of Algorithm 2. Since Y strictly
increases with each iteration of the loop, there are at most N = |sf| iterations
of the loop. In each iteration, we test whether Y is down-closed, which amounts
to checking whether there is some β0 ∨ β1 ∈ Y such that neither β0 nor β1 is in
Y . This check takes O(N) time. We also compute derive′(Y) in each iteration,
which takes time O(N3). Thus the overall running time is O(N4). This can be
improved to O(N2) by using a linear-time algorithm for derive′ like the one given
in [11].

4.3 Bounding resources

As is evident from the lower bound proofs, disjunction elimination contributes
heavily to the complexity of the derivation problem. Thus the use of the ∨e rule
is an important resource. It makes sense to bound the use of this resource and
explore its effect on complexity. In particular, we show that if we bound the
set of formulas on which to perform disjunction elimination, we get a procedure
whose running time is polynomial in the input size, though exponential in the
number of disjunction eliminations allowed. The following definition makes this
notion precise.

Definition 15. Let A be a set of disjunctive formulas. We define a proof of α
from X using A (denoted X `A α) as a proof where any ∨e rules are applied
only to formulas which appear in A.

Recall that we have fixed a set sf of size N , and that we consider the
derivability of X ` α where sf(X ∪ {α}) ⊆ sf. We define deriveA(X) to be
{β ∈ sf | X `A β}. Note that derive∅(X) is derive′(X). The check for X `A α
is done by using Algorithm 3 to compute deriveA(X) and then testing whether
α ∈ deriveA(X). (For the purposes of the algorithm, we assume that the set A is
equipped with a linear order, so we can refer to the least formula in any subset
of A.)

Algorithm 3 Algorithm to compute deriveA(X)

1: function f(A,X)
2: Y ← derive′(X);
3: if A ∩ Y = ∅ then
4: return Y ;
5: else
6: A′ ← A \ {α ∨ β}, where α ∨ β is the least formula in A ∩ Y ;
7: return f(A′, Y ∪ {α}) ∩ f(A′, Y ∪ {β});
8: end if
9: end function

In order to prove the correctness of the above algorithm, we require the
following claim.

Claim. Suppose A is a set of disjunctions and α ∨ β ∈ A. Let A′ = A \ {α ∨ β}.
Then the following hold:

– If X `A γ then X,α `A′ γ and X,β `A′ γ.
– If X `A α ∨ β, X,α `A′ γ and X,β `A′ γ, then X `A γ.

Proof. – Suppose X `A γ. Then by monotonicity, we obtain a proof π of
X,α ` γ, such that the major premise of every instance of the ∨e rule in
π is in A. Note that for every sequent X ′ ` δ in π, α ∈ X ′. Consider any

subproof π′ of π whose conclusion is X ′ ` δ and last rule is ∨e with major
premise α ∨ β (if there is no such subproof, then π witnesses the fact that
X,α `A′ γ). π′ has the following form.

π′
1···

X ′ ` α ∨ β

π′
2···

X ′, α ` δ

π′
3···

X ′, β ` δ
∨e

X ′ ` δ

But observe that since α ∈ X ′, X ′ ∪ {α} = X ′. Thus π′
2 is itself a proof of

X ′ ` δ. We can replace π′ by π′
2, thereby removing at least one instance of

the ∨e rule involving α ∨ β in π. Repeating this, we obtain that X,α `A′ γ.
A similar reasoning gives us the result for X,β `A′ γ.

– Performing an or-elimination on α ∨ β using the given proofs of X,α `A′ γ
and X,β `A′ γ and X `A α ∨ β for premises gives us the required result of
X `A γ. ut

Lemma 16 (Correctness of Algorithm 3). For all X and A,

deriveA(X) = f(A,X).

Proof. The proof is by induction on the size of A. The base case is when A = ∅,
when clearly the procedure f returns derive′(X).

For the induction case, suppose X `A δ, and let Y = derive′(X). Consider
a normal proof π witnessing X `A δ and assume without loss of generality that
there is at least one instance of ∨e in π. From Lemma 13, we see that there is an
instance of ∨e in π with major premise X ` ϕ∨ψ, where ϕ∨ψ ∈ derive′(X). Thus
A∩ Y 6= ∅. Let α∨ β be the least formula in A∩ Y . Now since X ⊆ Y , Y `A δ.
Furthermore, α ∨ β ∈ Y . Hence, by Claim 4.3, Y, α `A′ δ and Y, β `A′ δ, where
A′ = A\{α∨β}. Since A′ is of smaller size than A, by the induction hypothesis,
deriveA′(Z) = f(A′, Z) for any Z. Thus δ ∈ f(A′, Y ∪ {α}) ∩ f(A′, Y ∪ {β}). It
follows from the definition of f that δ ∈ f(A,X). Thus deriveA(X) ⊆ f(A,X).

On the other hand suppose δ ∈ f(A,X), and assume without loss of general-
ity that A∩Y 6= ∅, where Y = derive′(X). Letting α∨β be the least formula in
A∩ Y and A′ = A \ {α∨ β}, it is clear that δ ∈ f(A′, Y ∪ {α})∩ f(A′, Y ∪ {β})
from the definition of f . Since A′ is of smaller size than A, it follows from the
induction hypothesis that Y, α `A′ δ and Y, β `A′ δ. Since Y = derive′(X), it is
the case that X `′ γ for every γ ∈ Y . Thus we can appeal to the admissibility of
cut to conclude that X,α `A′ δ and X,β `A′ δ. It follows from Claim 4.3 that
X `A δ. Thus f(A,X) ⊆ deriveA(X). ut

Theorem 17. If |A| = k, then deriveA(X) is computable in time O(2k ·N).

Proof. There are at most 2k recursive calls to f , and in each invocation we make
one call to derive′, which takes O(N) time. Thus the overall running time is
O(2k ·N). ut

5 Discussion

To summarize our results, we have proved that IL[∨] is in PTIME, while even
minimal extensions like [∨,∧], [∨,→e] and [∨,⊥] are co-NP-hard. On the other
hand, even the system with conjunction, disjunction, primal implication and
negation elimination is in co-NP.

Of the two rules for negation, ¬e does not modify the assumptions in the
sequents, whereas ¬i discharges the assumption α while concluding ¬α. There
does not appear to be a straightforward adaptation of either Algorithm 1 or
Algorithm 2 to handle ¬i. As we mentioned earlier, it is not clear whether the
complexity of the logic changes either. Note that [4] considers a fragment with
rules for primal implication, disjunction, and a ⊥ operator. While full implication
and ⊥ can express full negation, primal implication and ⊥ can only capture the
effect of the ¬e rule, not the ¬i rule. So the complexity of the fragment involving
primal implication, conjunction, disjunction and “full” negation is still open. We
leave this for future study.

We can also consider adding �-like modalities to the [∧,∨] fragment of our
logic. This system is in co-NP, and the algorithm proceeds along similar lines
to the one in [15]. On the other hand, if we add modalities to a logic with
implication (even primal implication), the system is PSPACE-complete [4].

There are several interesting ways in which to take this work forward. It
is worthwhile to look for logics with restricted forms of disjunction that are
efficiently solvable. We also need to identify scenarios in which it suffices to
consider a bounded number of disjunction eliminations, wherein our PTIME
algorithm in Section 4.3 is applicable.

References

1. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A Calculus for Access Control
in Distributed Systems. ACM TOPLAS, 15(4), 706–734 (1993)

2. Baskar, A., Naldurg, P., Raghavendra, K.R., Suresh S.P.: Primal Infon Logic:
Derivability in Polynomial Time. In: FSTTCS 2013, pp. 163–174. Volume 24 of
LIPIcs (2013)

3. Baskar, A., Ramanujam, R., Suresh, S.P.: A DEXPTIME-complete Dolev-Yao The-
ory with Distributive Encryption. In: Hlineny, P., Kucera, A. (eds.) MFCS 2010,
LNCS, vol. 6281, pp. 102–113. Springer, Heidelberg (2010)

4. Beklemishev, L.D., Gurevich, Y.: Propositional Primal Logic with Disjunction.
J. Log. Comp. 24(1), 257–282 (2014)

5. Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)

6. Comon-Lundh, H., Shmatikov, V.: Intruder Deductions, Constraint Solving and
Insecurity Decisions in Presence of Exclusive or. In: LICS 2003, pp. 271–280 (2003)

7. Comon-Lundh, H., Treinen, R.: Easy Intruder Deductions. In: Dershowitz, N. (ed.)
Verification: Theory and Practice. LNCS, vol. 2772, pp. 225–242. Springer, Heidel-
berg (2003)

8. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions
on Information Theory. (29), 198–208 (1983)

9. Gabbay, D.M., de Jongh, D.H.J.: A Sequence of Decidable Finitely Axiomatiz-
able Intermediate Logics with the Disjunction Property. J. Sym. Log. 39(1), 67–78
(1974)

10. Gurevich, Y., Neeman, I.: DKAL: Distributed-Knowledge Authorization Language.
In: 21st IEEE CSF Symposium, pp. 149–162. IEEE Press, New York (2008)

11. Gurevich, Y., Neeman, I.: Logic of Infons: The Propositional Case. ACM Trans.
Comp. Log. 12(2), 9:1–9:28 (2011)

12. Kurokawa, H.: Hypersequent Calculi for Intuitionistic Logic with Classical Atoms.
In: APAL. 161(3), 427–446 (2009)

13. Magirius, M., Mundhenk, M., Palenta, R.: The Complexity of Primal Logic with
Disjunction. In: IPL. 115(5), 536–542 (2015)

14. McAllester, D.A.: Automatic Recognition of Tractability in Inference Relations.
In: JACM. 40(2), 284–303 (1993)

15. Ramanujam, R., Sundararajan, V., Suresh, S.P.: Extending Dolev-Yao with Asser-
tions. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014, LNCS, vol. 8880, pp.
50–68, Springer, Heidelberg (2014)

16. Rusinowitch, M., Turuani, M.: Protocol Insecurity with Finite Number of Sessions
and Composed Keys is NP-complete. In: TCS. 299, 451–475 (2003)

17. Sakharov, A.: Median logic. Technical report, St. Petersberg Mathematical Society.
http://www.mathsoc.spb.ru/preprint/2004/index.html (2004)

