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Abstract

We propose a notion of information based abstraction for the logical study of security

protocols and study how protocol actions update agents' information. We show that

interesting security properties of Needham-Schroeder like protocols can be veri�ed

automatically.

1 Background

The design of cryptographic protocols involves complicated exchanges of mes-

sages between agents to try and achieve secrecy of information and authen-

ticity of communication. Despite considerable ingenuity on the part of the

designers of these protocols, many possible attacks are often discovered later.

Interestingly, most of these attacks are independent of the encryption schemes

used, but rely on logical design aws, and use intruders' abilities to replay old

messages, forge addresses etc. Therefore, in recent years, a number of re-

searchers have proposed formal veri�cation of such protocols.

The BAN logic [BAN89] is widely held to be the initiator of logical studies

of security protocols. It proposed a transformation of security protocols to a

special form and then used special rules to analyze them. The logic proposed

was a modal logic of belief, based on notions of trust between principals. While

it was criticized extensively for its inability to express certain events ([BM93],

[Nes90]), it provided a basis on which re�nements like ([Bie90], [Mo99b]) could

be built.

Approaches based on theorem proving ([Bol97], [Pau98]), as well as model

checking ([Mea92], [Low96], [KW96], [MCJ97]), have been used for security

protocol veri�cation. Invariably, while the advantage of using formal logics for

this purpose is that it provides a good framework for detailed analysis of the
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structure of such protocols, the diÆculty is that logics are useful only when

the semantics is precise, and most of the problems seem to relate to precise

and detailed modelling of notions like authentication, trust etc.

A host of approaches based on process calculi ([AG97]), term rewriting sys-

tems ([GK99], [JRV00]), tree automata ([Mo99a], [Gou00]), multiset rewriting

([DLMS99], [CDLMS99], [DM99]) etc address the question of modelling pro-

tocols. These di�er on what set of messages an intruder can construct at

any step of the protocol, assumptions about the environment, the capabilities

available to intruders, etc. The approach of [DMTY97] studies the roles played

by principals in leaking information to intruders and uses them to generate

inference rules then used in automatic veri�cation.

In this paper, we attempt to combine the simple and precise features used

in these recent models of security protocols with the older style of BAN-like

logics [GNY90], [SvO94]. We do not use epistemic notions like belief, trust etc,

but present an information based abstraction for modelling the reasoning that

is typical of security protocols. Though we do present a veri�cation result,

our emphasis is not so much on �nding aws in speci�c protocols, but rather

on setting up a logical framework with very simple primitives which is easy to

reason in. We believe that the approach contains the rudiments for reasoning

about both authentication protocols as well as access control models [Mc94] in

one framework; however, in this account, we focus only on message exchanges

meant to ensure secrecy and authentication.

To ilustrate the essential features of this abstraction, consider the following

(very) simple protocol between two principals A and B.

A! B : fxgB

B ! A : fxgA

This is read as follows: A sends to B her secret x encrypted with B's public

key. It is assumed that A has `generated' a `fresh' instance of x and hence can

assume that no agent in the system has access to x. After the �rst message,

A cannot be sure that B receives the message; a hacker H may well block the

message. However, there is something that A can be sure of: under the perfect

encryption assumption, only someone who has access to the inverse key of B's

public key can decipher the ciphertext and get x. Thus if B's inverse has not

been leaked, A can be sure that only B can �rst decode the message.

Coming to the second message, it stands for B sending a message to A

with content x encrypted with A's public key. However, A has no way of

determining that the message does come from B, since a hacker could be

pretending to be B. Nevertheless, from the fact that the message content is

x, A can be sure that B has indeed got the information x.

Thus if A gets the second message at all (since a hacker could block it),

then A gets the information that B has seen x. On the other hand, B does

not have the information that A has x, since a hacker could be posing as A.
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Consider the following attack:

A! B(C) : fxgB

C ! B : fxgB

B ! C : fxgC

(C)B ! A : fxgA

The hacker C �rst blocks A's message. Though C cannot decrypt the

message, he can pass it on to B as his own. Given such a possibility, B cannot

tell whether the message came from A or C and hence does not have the

information that A has x. Now B follows the protocol and responds with the

secret to C. At this point, C has learnt the secret and can further mislead A

by pretending to be B and `con�rming' to A as required by the protocol.

Note the role of the secret x; when sent by A encrypted with B's key, it

serves to inform A that any later receipt of x from anyone adds the information

that B has seen x. Indeed, roughly speaking, in cryptographic protocols, this

is the typical way one agent gains access to information about another agent's

state.

The model we propose in this paper concentrates on this aspect of commu-

nications. We de�ne possible information states of systems over a vocabulary

of secrets and de�ne rules for how such information can be updated. Any

security protocol can then be seen as generating runs of such an information

transition system. However, along with the intended run, there can be many

unintended variants due to hacks, leaks etc. We would like to ensure that all

these variants do satisfy a given security speci�cation. We propose a proposi-

tional modal logic with information modalities in which such speci�cations can

be expressed. The semantics of the logic mirrors the structure of information

transition systems closely enough so that verifying that a protocol satis�es its

logical speci�cation is easy.

The paper is structured as follows. In the next section, we present the main

semantic structure of information transition systems and explain the design

choices that underlie the de�nitions. We then show how security protocols

can be `compiled' into the low-level transition systems. Later, we present our

logic with information modalities, show examples of reasoning in the logic

and present the main result that the veri�cation problem is decidable. We

conclude the paper with a discussion of issues left unstudied here.

2 Information systems

We �x a �nite set Ag of agents in the system. Ag is intended to include the

principals of protocols as well as the intruders. (As we will see later, much of

the reasoning can be carried out with the assumption of one intruder, but we

will keep the generality of this framework for convenience.) We use A;B; : : :

etc to denote agents in Ag. (Without prejudice, we will refer to an agent's

information as \its" information from now on.)
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We further �x P , an at most countable set of basic information terms.

These can be thought of as basic secrets. We will treat them as atomic propo-

sitions that can be true or false. However, in the context of most protocols,

these will stand for nonces; we may think of the proposition asserting that

such a nonce has been generated `afresh'. A locality map � : P ! Ag

will be used to specify which secret is local to which agent. Thus, sys-

tems will be parametrized by the tuple (Ag; P; �). Let PA denote the set

fp 2 P j �(p) = Ag.

From P , the set of basic information terms, we can build a set of complex

terms by the following syntax. I, the set of all information terms (items), is

given by:

� 2 I ::= p 2 P j (�)A j f�1; : : : �kgA (k > 0) j A : �

where A 2 Ag. (�)A stands for the information � received from an agent who

is possibly A. The term A : � attests to the information that A has � (in its

database). f�1; : : : �kgA refers to a set of information terms together encrypted

with A's public key. This serves two purposes: not only will this enable only

A to `see' the contents of this item, but will also provide the guarantee that

once A sees one of them, it will see them all. We refer only to public keys

here, but the framework can be easily extended to include shared keys as well.

For an information item � and A 2 Ag, we de�ne STA(�), the set of

subterms visible to A, in an inductive manner as follows:

� STA(p) =

8<
:
fp;A : pg if �(p) = A

; otherwise

� STA((�)
B) = f(�)Bg [ f(�0)B j �0 2 STA(�)g

� STA(�) =

8<
:
f�g [ STA(�1) [ : : : ;[STA(�k) if A = B

f�g otherwise

where � = f�1; : : : ; �kgB.

� STA(B : �) =

8<
:
fB : �g [ f�0; B : �0 j �0 2 STB(�)g if A = B

fB : �g [ fB : �0 j �0 2 STB(�)g otherwise

For � � I, de�ne STA(�)
def
= f�0 j �0 2 STA(�) for some � 2 �g.

De�nition 2.1 � � I is de�ned to be an information state if STA(�) � �,

for every A 2 Ag.

Information states can be seen as a complete description of all the infor-

mation available to agents in the system. Note that if A : � 2 � then � 2 �.

This reects our intention that agents have only de�nite information in any

state. Let � denote the set of all information states. We will often refer to

information states simply as states.

De�nition 2.2 Let � 2 �. The database of A in �, denoted A : � is de�ned
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by: A : �
def
= f�; A : � j A : � 2 �g. The information purportedly from A in �,

denoted �A is de�ned by: �A
def
= f� j (�)A 2 �g. The information meant for A

in �, denoted f�gA, is de�ned to be the least state containing f� j f�gA 2 �g.

Proposition 2.1 For all states �, A : � and �A are also states.

The set of legal message items for A in state � is the least subset X of I

such that:

� A : � � X and

� if �1 2 X; : : : ; �k 2 X for k > 0, then for all B 6= A, f�1; : : : ; �kgB 2 X.

These are the messages that A could `legitimately' send in that state.

On the other hand, if A were an intruder, it could send any message

constructed from the information it has in its database. The set of general

message items for A in state � is the least subset X of I such that:

� A : � � X,

� if � 2 X, then for any B, B : � and (�)B are also in X, and

� if �1; : : : �k 2 X for k > 0, then for any B, f�1; : : : ; �kgB 2 X.

Note that an intruder cannot construct the basic secrets of other principals,

unless it has already acquired them by explicit communication.

We now de�ne information updates. For this, we �rst consider a set of

extended names. Let Ho;Ha � Ag be given such that Ho 6= ;; Ha 6= ;

and Ho\Ha = ;. Ho stands for the `honest' principals and Ha for `hackers'.

The set of extended names Ex is given by: Ex = Ho [ Ha [ f(C)A j

A 2 Ho;C 2 Hag[ fA(C) j A 2 Ho;C 2 Hag. Here, (C)A stands for the

intruder C forging A's address and sending a message in A's name. A(C)

stands for the intruder C intercepting a message meant for A and blocking A

from getting it.

The update alphabet (also referred to as action alphabet) is the set U =

P [Snd[Rec, where Snd, the `send' alphabet, and Rec, the `receive' alphabet

are de�ned as follows.

Snd = f(A!B; �); ((C)A!B; �) j A 2 Ho;B 2 (Ho [Ha); C 2 Hag.

Rec = f(A?B; �); (A?B(C); �) j B 2 Ho;A 2 (Ho [Ha); C 2 Hag.

We read (X!B; �) as a message sent by X, intended for B, with content �.

Similarly, (A?X; �) is a message received by X, with A in the \from" address

and content �. p 2 P can be thought of as notation for new(p), meaning that

the agent �(p) has `generated' a fresh instance of secret p.

We now have some de�nitions that relate to the process by which an agent

A sends information out to another agent B and obtains con�rmation that

B has indeed got it. Crucially, when A sends fp; qgB and later sees (p)C , it

con�rms not only that B has got p but also that B has got q. This gets tricky

when we consider terms like ffp; qgB; fp; rgCgD.

We �rst impose a graph structure on information terms. For this, de�ne

93



Ramanujam, Suresh

�1
A
)�2 i� �2 2 STA(�1). Let )

def
= (

[
A2Ag

A
))�. The )-maximal elements

of I are of the form p or (� � � ((p)A1) � � �)Ak for some p 2 P , k > 0, and

A1; : : : ; Ak 2 Ag.

While the chains given by maximal elements as above indicate possible

sequences of communications, they are not of much use in the process of

con�rmation. For instance, if A sends fpgB and later receives (((p)C)D)E

from someone, this con�rms the fact that B has got p, but not that B has

(p)A, or even that B has p in its database. This is because B cannot be sure

that p was indeed sent by A, and must consider the possibility of (p)D for

any agent D. Hence A can only infer that B got p from `someone' and would

assert it in its database. Suppose B : p� stands for the information that B

received p from some agent (possibly by a sequence of communications); then

A : B : p� could be asserted on con�rmation. In e�ect, we get A : B : (p)D for

any D, since none of this is de�nite. Rather than clutter up states with such

items. we prefer to add a new syntactic construct (�)�, with the remark that

it can be eliminated.

Let (�)� be an item whenever � is an item; extend the de�nition of STA
by: STA((�)

�) = f(�)�g [ f(�0)� j �0 2 STA(�)g. In addition, �� 2 STA((�)
B),

for any A;B. Note that Proposition 2.1 is still true under this extension.

For � 2 I and X � I de�ne " (�;X)
def
= f�00 = f�1; : : : ; �kgA j � ) �00 )

�0, where �0 2 X, A 2 Ag; �1; : : : ; �k 2 Ig.

De�nition 2.3 � We say that p is fresh for A in an information state � i�:

p 2 PA, A : p 2 � and for all � 2 � such that � ) p, the only agent

mentioned in � is A.

� p marks � for A in � i�:

� A 2 Ho and p 2 PA,

� � ) p and p occurs only encrypted in �,

� for all A : �0 2 �, �0 6) (p)�,

� A : � 2 �, and for all A : �00 2 � such that �00 ) p, � ) �00.

� A con�rms X in � i� for all � = f�1; : : : ; �kgC 2 X, A : C : (�)� 2 �.

De�nition 2.4 An update relation Ru is a subset of (� � U � �) which

satis�es the following conditions:

� If (�; (X!Y; �); �0) 2 Ru or (�; (X?Y; �); �0) 2 Ru, then for all A 2 Ag,

(A : �0) � (A : �) [ STA(�).

� If (�; p; �0) 2 Ru (where �(p) = A), then p is fresh for A in �0 and for all �

such that � 6) p, � 2 � i� � 2 �0.

� If (�; (A!B; �); �0) 2 Ru, then

� for all D 2 Ho such that D 6= A, D : �0 = D : �,

� � is a legal message term for A in �,

� A : �0 = A : � [ STA(�), and

� for every C 2 Ha, � 2 C : �0.
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� If (�; (A?B; �); �0) 2 Ru, then

� for all D 2 Ho such that D 6= B, D : �0 = D : �,

� B : �0 = B : � [ STB((�)
A), and

� for all p such that ((�)A
B
)(p)� and p marks �0 in �), B con�rms " (�0; X)

in �0, for some X � Y , where Y is the set of minimal encrypted subterms

of �0 containing p.

� If (�; ((C)A!B; �); �0) 2 Ru, then � is a general message term for C in �

and for every D 2 Ho, D : � = D : �0.

� If (�; (A?B(C); �); �0) 2 Ru, then for every D 2 Ho, D : � = D : �0.

De�nition 2.5 An information system S over U is given by a pair (�; R)

where � � � is the set of states of S and R is any update relation on �.

A sequence � 2 U� is admissible for S if it de�nes a run on S. Let Adm(S) be

the set of all sequences admissible for S.

3 Protocol descriptions

Security protocols are typically speci�ed as sequences of communications of the

form A �! B :M , whereM is a message which is typically a nonce or a set of

nonces, possibly encrypted with B's public key. This is an abstract description

that hides details like whether messages are delivered instantaneously or su�er

delays, whether they are delivered in order or out of order etc. More crucially,

exception handling details like what an agent should do when it expects a

message of a kind and gets another one, are left implicit. Of course, this has

a bearing on the veri�cation of such protocols. Nevertheless, crucial design

problems can be captured even at this level of abstraction.

While retaining this model of a protocol, we focus our attention on how

agents' information gets updated during the course of protocol execution, in-

cluding hacked variants of admissible sessions. For this purpose, we generalize

the message alphabet to contain all information terms. Therefore it is possible

for the protocol to include communications like: A �! B : f(C : p)DgB.

These correspond to terms like D said that C has p [BAN89]. While most ex-

tant protocols do not demand such a sophisticated message mechanism, many

do incorporate names inside messages, which constitute information terms. As

we will see, the full generality of information terms gives rise to more mutual

information properties being realised by protocols.

We will make a crucial assumption that the designated principals always

follow the protocol. Thus system behaviours will be constructed in such a

way that `honest' principals take actions according to protocol and update

their information according to set rules, whereas intruders are (obviously)

unconstrained thus.

Formally, a protocol alphabet � resembles the set of extended names. It is

parametrized by a pair (Ho;Ha) (for convenience, assume: Ho [Ha = Ag),
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and is given by the set �
def
= fX �! Y : � j � 2 I; X 2 fA; (C)Ag; Y 2

fB;B(C)g; A;B 2 (Ho [Ha); C 2 Hag. A communication � = X �! Y : �

is said to be principal if X;Y 2 Ho.

Since we wish to consider hacked variants of messages, we need to specify

how an intruder can modify the content of messages. Given an information

element �, which is a legal message term for some principal and C 2 Ha ,we

de�ne VC(�) to be a set of `C-variant' terms de�ned inductively as follows:

VC(p) = fpg [ PC ; VC((�
0)B) = f(�00)D j �00 2 VC(�

0); D 2 Agg; VC(fXgB) =

ffXgBg; VC(B : �0) = fD : �00 j �00 2 VC(�
0); D 2 Agg. Now, for X � I,

gC : X ! I is said to be a message variant map for C if for all � 2 X; gC(�)

is in VC(�).

A protocol is speci�ed by a principal session which is a �nite non-null

sequence of principal communications Æ = �1 : : : �k, k > 0. Let X be the

set of all information elements used as messages in the communications in Æ.

Let H be the set of all agents who either send or receive messages in Æ and

let T1; T2 � H such that T1 [ T2 � H and T1 \ T2 = ;. For C 2 Ha, �x

a message variant map g : X ! I; a (T1; T2; C; g)-variant of Æ is de�ned as

follows: If �j = A �! B : �, a communication �0 = X �! Y : g(�) in

the protocol alphabet � is said to be a (T1; T2; C; g)-variant of �j if (A 2 T1
impliesX = (C)A), (B 2 T1 implies Y = B(C)), (A 2 T2 impliesX = C), and

(B 2 T2 implies Y = C). This is easily extended to sequences. A (T1; T2; C; g)

variant of Æ is a session where C plays the role of agents in T2 in its own name,

and plays the role of each agent A 2 T1 assuming A's name.

Let MÆ denote the set of all (T1; T2; C; g)-variants of session Æ, for all

(T1; T2; C; g). The variants in MÆ are referred to as mono-sessions de�ned

by Æ. A general session of Æ is an interleaving of a �nite set of mono-sessions

M of Æ. Let PÆ denote the set of all general sessions of Æ.

Thus, given a security protocol Æ 2 ��, we have, associated with it, a lan-

guage PÆ � ��. However, since we have de�ned updates separately for sends

and receives, we need to split communications: X �! Y : � is translated to

(X!Y; �)(X?Y; �). In addition, we pre�x each general session with a sequence

of new(p) updates for all secrets p used in that session. This is extended

pointwise so that PÆ de�nes a subset of P
0

Æ of U
�. The language generated by

Æ with respect to an information system S = (�; R), denoted Lang(S; Æ), is

de�ned to be P 0

Æ \ Adm(S).

The following lemma is easily shown:

Lemma 3.1 Given a protocol Æ 2 ��
and an information system S, there

exists a nondeterministic �nite state automaton N over alphabet U such that

L(N) = Lang(S; Æ).

The construction of such a protocol automaton associated with Æ is simple.

We �rst synthesize the set of information states that the automaton needs. For

this we �rst need to add information elements speci�ed by Æ; (for instance, if Æ

has a communication A �! B : f�gB, then we must add A : f�gB, A : B : (�)�
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etc.) Then we close the space under subterms, and under all C-variants, for

C 2 Ha. But this makes the space in�nite. We observe that the structure

of Æ allows us to equate behaviours in such a way that it suÆces to consider,

for any C 2 Ha, C-variants from some �nite subset of PC . This allows one

to work with quotiented information states, the size of which is bounded by a

function of the size of Æ. This gives us a �nite set of automaton states, which

also additionally possess control information to code up which part of the

protocol is completed and what is left. Further, the structure of Æ (alongwith

its hacked variants) speci�es the set of transitions for the automaton. Final

states are identi�ed by the completion of communications speci�ed by Æ. The

details are somewhat tedious but straightforward.

As it happens, when we consider the veri�cation problem, the security

speci�cation will also give us a �nite subset of PC for any hacker C, such that

we need to consider only C-variants built from this �nite set, thereby making

the state space of the constructed automaton �nite. Hence, we will not need

the quotient construction outlined above, but a simpler one will suÆce.

The automaton mentioned in the lemma is only intended to give a ma-

chine representation of general sessions, and is distinct from the kind of tree

automata used by others ([Mo99a], [Gou00], for example). There, the tree

automata are used to provide a succinct, automatically updatable represen-

tation of intruders' knowledge at each state. The automata studied here can

be enriched so that every state contains a tree automaton to obtain such a

detailed representation.

4 Logic

We now introduce the logical language in which security properties can be

speci�ed. We have a propositional modal logic, the modalities of which reect

the information structures that we have seen so far.

The logic is parameterized by (P;Ag) where P is the set of basic informa-

tion terms (secrets) and Ag is the set of agents. The logic is presented in two

layers: we have two syntactic categories of formulas in the logic, that of state

formulas and that of session formulas.

The syntax of state formulas is given by:

� 2 	 ::= p 2 P j :� j � _ � j fromA � j forA � j A : �

where A 2 Ag. Note that these formulas correspond to information elements:

fromA � asserts the existence of information � that has come from an agent

who is possibly A; forA � refers to an item whose content is available only

for A; the formula A : � attests to the de�nite information � being available

in A's database.

The semantics formalizes the intention described above. We de�ne the

notion � j=i � inductively below, where � is a state and � is a state formula:

� � j=i p i� p 2 �.
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� � j=i :� i� � 6j=i �.

� � j=i � _ � i� � j=i � or � j=i �.

� � j=i fromA � i� (�)A j=i �.

� � j=i forA � i� f�gA j=i �.

� � j=i A : � i� A : � j=i �.

The syntax of session formulas is given by:

� 2 � ::= � 2 	 j :� j �1 _ �2 j � j 3�

Let � 2 �� and let m = j� j, m > 0. For 1 � k � m, let �(k) denote the

kth element of the sequence � . The notion �; k j=s � is de�ned inductively as

follows:

� �; k j=s � i� �(k) j=i �.

� �; k j=s :� i� �; k 6j=s �.

� �; k j=s �1 _ �2 i� �; k j=s �1 or �; k j=s �2.

� �; k j=s � i� k < m and �; k + 1 j=s �.

� �; k j=s 3� i� there exists ` � k such that �; ` j=s �.

The dual modalities are de�ned as usual:
K

�
def
= ::�, is weak, and

asserts that if there is a successor state, then that state satis�es �. 2�
def
= :3:�

asserts that � is an invariant for the rest of the session.

For � 2 ��, we say that � j=s � if �; 1 j=s �. Let Mod(�)
def
= f� 2 �� j

� j=s �g.

Given an information system S = (�; R), de�ne Lang(S; �)
def
= f� =

u1 � � � uk 2 U
� j there exists � = �0 � � � �k 2 Mod(�) such that for all j : 1 �

j � k; (�j�1; uj ; �j) 2 Rg.

The main theorem of the paper follows.

Theorem 4.1 Given an information system S, a protocol Pr over alphabet

� and a formula �, with jPrj = k, j�j = m and j�j = n, checking whether it

is the case that Pr j= � can be done in time 2O(k+m+n)
.

The proof proceeds by associating with each formula � an automaton that

accepts not Lang(�), but Lang(�)dY , for some appropriate �nite set Y � I

such that Lang(Æ) � Lang(�)dY i� Lang(Æ) � Lang(�).

The subformula closure CL of the given formula � is de�ned in the usual

manner, and the set X of all information terms which play a role in deter-

mining the truth of � is inferred from CL. X determines the set �dX of

information states that we need to consider when evaluating �. An atom is

then de�ned to be a pair (A; �) such that � 2 �dX, A is a `locally' consistent

subset of CL and for all state formulas � in A, � j=i �. These atoms are the

states of the constructed automaton. Transitions between atoms are de�ned

in a straightforward manner. Having information states as part of the atoms

simpli�es the construction considerably.
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Note that this theorem is not at variance with results on undecidability

of cryptographic protocol veri�cation in [DLMS99] and [CDLMS99]. This

is because this logic does not have enough expressive power to talk about

an unbounded number of new nonces, which is basically what contributes to

undecidability results in the papers mentioned above.

5 Examples of reasoning

To illustrate the kind of reasoning that goes on in the logic, we return to the

example mentoned in Section 1. This situation is similar to that which obtains

in the famous Needham Schroeder protocol, and the attack by Lowe [Low96]

on it.

Rephrasing the protocol in the syntax presented in Section 3, we have:

newA(x)

A! B : fxgB

B ! A : fxAgA

where Ho = fA;Bg and Ha = fCg. Note that the message B sends in line

3 is di�erent from the one in the earlier version. This is because B being an

honest principal, the messages it sends are legal, and hence originate from its

database. After the �rst message, B could only possibly have (fxgB)
A in its

database, which after decrypting, yields xA.

What is the speci�cation of this protocol ? The intention is that on ter-

mination, A and B `mutually' have the information that x holds. This may

be speci�ed as �1
def
= A : B : x ^ B : A : x. But, as we will see, the pro-

tocol above does not satisfy �1. It does achieve the much weaker formula:

�2
def
= B : fromAx.

If this requirement is seen as `liveness', we also would like an additional

`safety' requirement, that no honest principal unintentionally leaks x to an in-

truder. We thus have the speci�cation � = 2(
^

H2Ho;D2Ha

:leak(H;D; x)) ^

3(B : fromAx)).

The notion of H 2 Ho unintentionally leaking x to D 2 Ha may be

speci�ed by:

leak(H;D; x)
def
= (:D : x ^D : fromHx) ^ (H : fromD(x _

_
A

xA))

The �rst conjunct speci�es that at some point of time during the session,

H sends x to D when D does not have x. The second says that H is replying

to an earlier message from D with content x or with information about having

heard x from A.

Now consider any completed session of the protocol, say Æ = �1 : : : �m.

Then it contains communications say �i; �j when some variant of line 2 and

line 3 are completed, respectively. These variants are of the form A0 ! B0 :
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fxgB and B00 ! A00 : fxAgA, where A
0 is A or (C)A, B0 is B or B(C), A00 is

A or A(C) and B00 is B or (C)B.

After newA(x), we have A : (x ^ :B : x ^ :C : x). Moreover, 2((:B :

x^:C : x) �

K
((B : x � B : fromAx)^(C : x � C : fromAx)). Therefore,

we can argue that A0 must be A.

After communication i, the formula (C : fromA forBx) _ (B : fromAx)

holds, and hence (C : forBx) _ (B : fromAx) holds.

Now, B00 is either B or (C)B. If it is the former, then B being an honest

principal, B : fromAx holds, and the goal is satis�ed. Otherwise, B
00 is (C)B.

But at i, we also have: 2(C : fromAx � C : fromB fromAx). But C can

use the fact that B sends x only if B has x in its database. Therefore, at i,

2(C : fromB fromAx � B : fromAx). But at j, either B : fromAx or

C : fromAx holds, and thus in either case B : fromAx holds, satisfying the

goal.

On the other hand, it is easy to see that the protocol does not satisfy the

safety condition. The attack mentioned in Section 1 can be formalized to show

this.

We can change the protocol in the following manner and show that the

invariant holds.

newA(x)

A! B : fA : xgB

B ! A : f(A : x)AgA

The other goal, namely A : B : x or even a weaker form A : B : fromAx,

cannot be satis�ed, since the last message meant for A can always be blocked

by C. To achieve such a goal, we need another acknowledgement.

newA(x)

newB(x)

A! B : fA : xgB

B ! A : f(A : x)A; B : ygA

A! B : f(B : y)BgB

Since the last message is not possible unless A has received the previous

one, in any completed session, A has the information that B has seen x.

These examples show the diÆculty of obtaining even two `levels' of infor-

mation, of the kind: A : B : �. However, weaker `levels' like A : fromB�

etc are easier to achieve. This is because the protocols we study are typically

those where the content of messages are typically nonces and names. When

messages contain complex information elements, higher levels become feasi-

ble; for instance, A : (C : pD)B will hold after B sends a message about what

information it has about C.

This remark raises another issue of interest: given a protocol, under what

assumptions is a speci�c `level' of information achieved ? Such a logical anal-
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ysis may help in deciding patterns of communication to be followed in the

design of security protocols.

When messages are sets of several terms encrypted together, this adds to

an agent's inference capability. We saw in Section 2 how this complicates the

update rules. For instance suppose that p is local to A in � and A sends a

message ffx; pgC; fy; pgDgB. When A later sees pE, for some E, A gets the

con�rmation that B has seen fx; pgC and fy; pgD, but is unsure whether C

has seen x or D has seen y. In such a state, it can be checked that the formula

A : ( fromE p � (C : fromA x _D : fromA y)) holds.

6 Discussion

We have presented a model of agent's information states and a logic in which

updates on them can be reasoned about. The operators fromA, forA and A :

refer to de�nite information that an agent has; this seems to us an essential

requirement in the context of information security. While we have atempted

to illustrate this in the context of authentication of messages, the reasoning

primitives are similar in access control models as well. In future work, we

hope to present a uni�ed framework for both types of security properties.

We have not presented any axiomatization of validities. Of particular

interest are inference rules that let us derive protocol validities: from Pr j= �

infer Pr j=  . Obtaining a complete set of such rules seems to be quite non-

trivial. For instance, see that Pr j= � may hold without Pr j= A : � being

true for some A.

The modality A : � is closely related to, but not the same as, knowledge

modalities of the kind discussed in [FHMV95]. These epistemic modalities

refer to implicit knowledge attributed to the agent by the protocol designer,

whereas A : � represents knowledge of a more explicit kind [Ram99]. For

instance, as mentioned above, when Pr j= � holds, so would Pr j= KA�,

whereas it may be the case that Pr 6j= A : �. Formally relating these infor-

mation based modalities to epistemic ones like knowledge or belief seems an

interesting issue.

We would also like to note that the reasoning in the logic is global. An

assertion like B : fromA� � A : � may well hold at a state, without A being

`aware' of it, in the sense that A : B : fromA�^:A : B : A : � may hold. An

interesting question is how much of this reasoning can be carried out locally,

and this is of importance in compositional design of security protocols.

On the modelling side, it is important to generalize the framework from

mono-sessions and interleaved sessions with hacked variants to multi-sessions,

where many agents are running many instances of the protocol simultaneously.

The ideas of [DMTY97], [Gou00] seem very relevant here. Moreover, in the

context of repeated sessions, an intruder can use past information as well,

and an extension of the logic using past modalities may be indicated for this.

Another important limitation of this approach is that principals are individual,

101



Ramanujam, Suresh

whereas in the context of information security, it is important to model group

principals. A related question is to logically characterize situations where it

suÆces to study single hacker attacks and where collusions between hackers

is crucial.
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