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Abstract

We study procedures for the derivability problem of fragments of intuitionistic logic. Intuitionis-
tic logic is known to be PSPACE-complete, with implication being one of the main contributors to this
complexity. In fact, with just implication alone, we still have a PSPACE-complete logic. We study frag-
ments of intuitionistic logic with restricted implication, and develop algorithms for these fragments
which are based on the proof rules. We identify a core fragment whose derivability is solvable in lin-
ear time. Adding disjunction elimination to this core gives a logic which is solvable in co-NP. These
sub-procedures are applicable to a wide variety of logics with rules of a similar flavour. We also show
that we cannot do better than co-NP whenever disjunction elimination interacts with other rules.

1 Introduction

Intuitionistic logic is well-known to be a PSPACE-complete logic [Sta79]. One of the main contributors to
this complexity is implication, particularly the implication introduction rule. The very form of the rule,
displayed below, provides a hint as to the difficulties involved.
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Suppose we try to determine if a set of formulas X derives a. If « were derivable only using rules
for conjunction, say, then we could compute the ‘closure” of X by repeatedly adding to it all formulas
derivable in one step, and see if we ever reach « this way. The point to note here is that the ‘context’, X, is
fixed. But the moment the proof involves the — i rule, we cannot work with a fixed context anymore. To
verify whether X derives « — f, we have to change context, and verify if X U {a} derives p. This ‘context
switch” is at the heart of the complexity of intuitionistic logic.
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Another rule which forces this kind of context switch in intuitionistic logic is disjunction elimina-

tion, displayed below.
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To verify if X derives y when we already know that it derives « v , we might have to check if y is derived
both from X U {«¢} and X U {#}.

An interesting question to consider is whether these two rules have similar contributions to the com-
plexity of derivability. Since implication by itself is PSPACE-complete [Sta79], we need to study disjunc-
tion in the presence of restricted forms of implication to address this question. We are able to show that
disjunction by itself is solvable in PTIME, and in the presence of conjunction and restricted forms of nega-
tion and implication, it is solvable in co-NP. We also show that we can do no better than co-NP, even for
minimal fragments involving disjunction.

The decision procedure is interesting in its own right. We identify a core fragment that does not
involve context switches of the kind alluded to above. We solve this fragment in PTIME (linear time, in
fact) in Section 3, and show how to extend this to a co-NP procedure when we add disjunction elimination
(in Section 4). This offers a source of parametrization, and we obtain a PTIME decision procedure when
we bound the set of formulas on which we apply disjunction elimination (in Section 4.2).

We have already mentioned that we study disjunction in the presence of restricted forms of implica-
tion and negation. What sort of restrictions are natural to impose? We have seen that the problematic
aspect of implication is that the — i rule forces a context switch. So we could restrict intuitionistic logic
by only considering the elimination rule for implication’, while leaving out the introduction rule. We
can do a little better, by considering a variant known as primal implication [GN11] (also referred to as semi-
implication [Avrio]). This is defined by the following introduction rule.
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Primal implication defines a strict sublogic of intuitionistic logic. For instance, intuitionistic validities
like p — p are not provable using the above rule. But more importantly, the rule is so designed that no
context switch is forced while trying to check if X derives «. In fact, this feature is crucial to the PTIME
solvability of primal infon logic [GN11], which is a logic with primal implication, conjunction, and some
modalities.

It is worth noting that we consider the complexity of the derivability problem, and not the validity prob-
lem as is usually done. While these two problems are equivalent in the presence of the — i rule, for the
restricted fragments that we consider, derivability is more general.

For precisely the same reason (that we consider fragments without — i), we cannot define - asa — L.
We need to have explicit rules for negation. Of these, the elimination rule for negation does not force a
context switch, but the introduction rule does, just as in the case of implication. The precise effect of
negation introduction in the absence of — i on complexity is unclear, so we only consider restrictions
where we drop negation introduction altogether.

"It is clear that modus ponens does not force context switches of the kind we are discussing.



Applications Intuitionistic logic is a subject with a rich history, with connections to fundamental as-
pects of mathematics, philosophy and computer science, but it also finds application in such concrete
areas of computer science as system security and communication security in distributed protocols. Con-
sider the derivability question: given a finite set of formulas X, a formula «, does X derive a? This question
is of practical importance when X is a security policy that specifies permissions and « is the assertion of
someone being permitted some action [ABLPg3, GNo8]. Or it might be the case that X is a set of terms
picked by an eavesdropper watching a channel and « is a term to be kept secret [DY83]. Inference in such
situations is typically intuitionistic. This is essentially due to the fact that terms are constructed in cryp-
tographic protocols using encryption keys etc, and when a term t is not constructible by an agent A, then
A cannot even assert “(m occurs in t) V =(m occurs in t).” For examples of such reasoning, see [RSS14].

In the applications mentioned above, the complexity of derivability is of prime importance, since a
derivability check is often a vital component of more detailed security structures [CSo3]. These systems
are usually disjunction-free, with a PTIME derivability procedure [BNRS13, CT03, GN11]. But reasoning
about disjunction is also important for security applications, even though it typically increases the com-
plexity of the derivability problem (see [RSS14], for example).

Related work The results reported in this paper are very close to work done in the realm of authoriza-
tion logics, specifically primal infon logic and its extensions. It was shown that primal infon logic is in
PTIME [BNRS13, GN11] but adding disjunction makes the problem co-NP-complete [BG14]. Specifically,
it was shown that a system with primal implication, conjunction, disjunction and L is co-NP-hard, us-
ing a translation from classical logic. Our lower bound results can be seen as a refinement of the result
in [BG14], as we show that disjunction with any one of these other connectives is already co-NP-hard. The
upper bound results are also very similar to those in [BG14], but we provide explicit algorithms while the
results there are obtained via a translation to classical logic. Our procedures can be seen as a way of lifting
PTIME decision procedures for local theories [CTo3, McAg3] to co-NP procedures for the same logics with
disjunction. More recently, the complexity of primal logic with disjunction was studied in further detail
in [MMP15], but the proofs are via semantic methods.

Another important area of study is the disjunction property and its effect on complexity. A system is
said to have the disjunction property if it satisfies the following condition: whenever X + a Vv 8 and
X satisfies some extra conditions (for example, v does not occur in any formula of X), then X + « or
X + B. The disjunction property and its effect on decidability and complexity have been the subject of
study for many years. For example, it has been proved that as long as any (propositional) extension of
intuitionistic logic satisfies the disjunction property, derivability is PSPACE-hard, while otherwise it is in
co-NP (see Chapter 18 of [CZ97]). Various other papers also investigate extensions of intuitionistic logic
with the disjunction property [Gd]74, Kurog, Sakog]. In contrast to these results, our paper considers
subsystems of intuitionistic logic obtained by restricting implication. Further, in our paper, the focus is
more on the left disjunction property: namely that X,a vV - yiff X,a - yand X, I y.
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Table1: The system IL. Note that - i subsumes —,, but we need to define both these rules since we

consider fragments without — i but with =

2 Preliminaries

Assume a countably infinite set of atomic propositions 2. The set of formulas ¢ is given by
,Bu=plaa|aAPlavp|a—p

For a set of operators &, we denote by &7 the set of all formulas consisting only of the operators in &.
For example, {} is the set of all formulas built only using the V operator, "} is the set of all formulas
built only using the v and A operators, &c. For ease of notation, we ignore the braces and instead use ¢V,
PV &

The set of subformulas of a formula a, denoted sf(«), is defined to be the smallest set S such that: « € S;
if-BeS peS;andif fAyeSorpvyeSorf-yeS {By}cS. Foraset X of formulas, sf(X) is defined
to be Usf((x).

a€X
The logic IL is defined by the derivation system in Table 1. Two important fragments of IL are DL

(disjunction logic), which has all the rules except for =i and — i, and CL (core logic), which has all the rules
except for —i, = {, and Ve. By X | a, we mean that there is a derivation of X F « in the subsystem L < IL.
(For ease of notation, we drop the suffix and use X + « when it is clear from the context which subsystem
is being referred to.)

DEFINITION 1 (Derivability problem).  Given X, &, and a subsystem L S IL, is it the case that X + a?

Among the rules, ax, Ae and — ¢ are the pure elimination rules, —e, =i and Ve are the hybrid rules and the
rest are the pure introduction rules. A normal derivation is one where the major premise of every pure elim-
ination rule and hybrid rule is the conclusion of a pure elimination rule. The following fundamental



properties hold, and the proofs are standard in the proof theory literature. Detailed proofs are presented
in Appendix A, for ease of reference.

PROPOSITION 2.
1. (Monotonicity) If X - aand X € X', then X' + a.
2. (Admissibility of Cut) If X + e and X, a + B, then X + p.

THEOREM 3 (Weak normalization).  If there is a derivation 7 of X - « then there is a normal derivation p of X + a.
Further, if a formula a v B occurs as the major premise of an instance of Ve in p, it also occurs as the major premise of an
instance of Ve in 7.

THEOREM 4 (Subformula property). Let 7 be a normal derivation with conclusion X + « and last ruler. Let X' + j8
occur in . Then X' € sf(X U {a}) and B € sf(X U {a}). Furthermore, if r is a pure elimination rule, then X' < sf(X)
and B € sf(X).

PROPOSITION 5 (Left Disjunction Property). X,aVBrFyiffX,aFyandX,B  y.

Proof. Suppose X,z V f + y. Note that X,« - aV fand X,  a V B (by the Vi rule). By Admissibility of
Cut,we have X,a + yand X, + y.

On the other hand, suppose X, « + y and X, 8 + y. By Monotonicity, it follows that X,a v f,a + y and
X,aVp B+ y. Wealsohave X,aVp + aV f (by the ax rule). From these, we can build a proof of X + y using
the ve rule. 4

PROPOSITION 6 (Left Conjunction Property). X, aAB+yiffX,a,BFy.

Proof. Suppose X,a A I y. Note that X, o, - a A B (by the Ai rule). By Admissibility of Cut, we have
X,a,BFy.

On the other hand, suppose X, , - y. Note that X,a A - e and X,z A B + B (by the Ac rule). By
Admissibility of Cut, we have that X,a A B  y. .

3 Linear time algorithm for CL

In this section, we consider CL and solve its derivability problem in linear time. The algorithm is based on
the linear time procedure presented in [GN11], and can be thought of as a core subroutine in the solution

of more complex fragments.
THEOREM 7.  The derivability problem for CL is solvable in linear time.
Fix a set of formulas X, U {«,} for the rest of the section. Let sf = sf(X, U {#5}). Let N = |sf].

DerinITION 8. Forany X € sf:
 closure(X) ={a € sf | X +y a}.
o dertve(X) = {a € sf| X +p, a}-

c core(X)={a€sfl X ¢ a}.



Checking if X, ¢ @ amounts to checking if ay € core(X,). In the rest of this section, we describe
how to compute core(X) for any X < sf. We compute core(X) by a marking procedure which initially
marks all elements of X and propagates the marking in a clever manner. To understand its working, we
first consider a naive strategy for propagating the marking. It would, for example, detect all pairs «, f of
marked formulas and mark aAB, aVy, BV 3, &c. (if those formulas are in sf). This propagation step itself is
repeated many times till no new formula can be marked. In the course of this, the same formula « may be
‘touched” many times - in deriving a A B, 2V y, &. Our marking proceeds differently. When we “process”
a marked a, we mark all of its consequences that we can determine at that stage, and do not process it
again. For this to work, we need information about « being already marked when we process some other
marked f (to mark a A B, for instance). Towards this, we maintain some auxiliary lists. For instance, for
each formula « there is a list of conjunctions whose left conjunct is «. While processing a, we mark each
B = a Ay in this list such that y is also marked. We maintain similar lists for other operators and the
position of a, as is made clear below.

For a formula «, we define left(«), right(«), and op(«) as follows:

- Ifa € P, left(a), right(e) and op(«) are all undefined.

- Ifa=BAy, lefi(2) = B, right(a) = y, and op(e)) = A.

- Ifa=BVy,left(a) = B, right(2) = y, and op(a) = V.

« Ifa =B -y, left(2) = B, right(2) = y, and op(a) =-.

« If o = =B, left(2) = B, right(«) is undefined, and op(@) = .
For every « € sf, we define the following sets.

* Ai(e) = {Besflop(p) = Aand left(p) = a}.

* A(@) = {B € sflop(B) = Aand right(B) = a}.

* O(e) = {B €sflop(B) = Vand left(B) = a}.

+ O/(@) = {B € sflop(B) = vand right(B) = a}.

* li(@) = {B € sf | op(B) =— and left(B) = a}.

* 1h(2) = {B € sf | op(B) =— and right() = a}.

* Ni(a) = {B € sf 1 op(p) = — and left(B) = a}.

The procedure to compute core(X) is described in Algorithm 1. For each « € sf it maintains a variable
status(a) € {raw, pending, processed}. It also uses a queue Q of formulas, with the corresponding enqueue and
dequeue functions. The correctness of the algorithm is presented below.

2These sets can all be computed in time O(N), assuming that each formula a is represented by a node with three fields: op(«),
and two pointers, viz. left(a) and right(e). The sets A/(), O,(-), &. can be represented as lists s.t. it requires only constant time to
add an element to a list. We assume that the set of all formulas is also given as a list of nodes. We traverse the list of all formulas,
and if the formula is y = a v , we add y to the lists O((«) and O,(f). Similarly for other cases. If y = —a, we add y to Ni(«). If
y = a > B, we add y to I;(«) and I,(B). Since each formula is added to at most two such lists, the overall time needed to create all
the auxiliary lists is O(N).



Algorithm 1 Linear time algorithm for core(X)
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: Q_<—®;
: forall o € sfdo

if« € X then

’ status(a) « pending;  enqueue(Q, a);
else

|_ status(a) « raw;

while O # ¢ do

a « dequeue(Q);

if (op(2) = A) & (status(left(2)) = raw) then

|_ status(left(2)) < pending;  enqueue(Q, left(a));

if (op(2) = A) & (status(right(a)) = raw) then

|_ status(right(a)) « pending;  enqueue(Q, right(a));

if (op(2) =-) & (status(left(@)) #raw & status(right(e)) = raw) then
|_ status(right(a)) « pending;  enqueue(Q, right(a));

forally € I)() s.t. (status(y) # raw & status(right(«)) = raw) do

|_ status(right(y)) < pending;  enqueue(Q, right(y));

if (op(2) = =) & (status(left(«)) # raw) then
|_ status(B) « processed forall f;  return sf;

forall y € Ny(a) s.t. (status(y) # raw) do
|_ status(B) « processed forall f;  return sf;

forall B € Ai(«) s.t (status(right(B)) # raw) & (status(B) = raw) do
status(B) « pending;  enqueue(Q, B);

forall g € A (@) sit. (status(left(B)) # raw) & (status(B) = raw) do

|_ status(B) « pending;  enqueue(Q, B);

for all B € Oy() s.t. status(B) = raw do

|_ status(f) « pending;  enqueue(Q, p);

for all B € O,(a) s.t. status(B) = raw do

|_ status(B) « pending;  enqueue(Q, p);

forall B € I,() s.t. status(B) = raw do

|_ status(B) « pending;  enqueue(Q, f);

status(a) « processed;

. return {« € sf | status(a) = processed};

> o is premise of Ae.

> o is premise of Ae.

> a is a major premise of —e.

D> o is a minor premise of —e.
> Everything derivable.

> Everything derivable.
D> a is left premise of Al

D> a is right premise of Al
D> a is premise of V.
D> a is premise of V.

D> a is premise of—>P.




LEMMA 9 (Soundness).  If status(B) = processed, then f € core(X).

Proof. Initially, the status of every f € sf is either raw or pending. It is clear from the code that status(f)
becomes processed only after becoming pending. It is also clear that any formula is enqueued only after it
becomes pending. We prove by induction that if status(f) becomes pending at any stage of the while loop,
B € core(X).

The base case is when status(f) becomes pending before the start of the loop. This means that f € X and
hence f € core(X).

Suppose status(B) becomes pending in some iteration of the Ioop. We consider a few sample cases that
might occur.

status(f) changes at line 10: Here f = left(«). Since a has been dequeued, status(x) became pending in an
earlier iteration. So by induction hypothesis, « € core(X). Now, since f = left(«), « = B Ay for some
y. It is clear that 8 can be derived from « using the Ac rule. Thus 8 € core(X).

status(f) changes at line 18: Here  changes status because ¢ = -y and status(y) # raw. Since o has been
dequeued, status(a) became pending in an earlier iteration. Since status(y) # raw, status(y) became
pending at an earlier stage of the while loop (in an earlier iteration or earlier in the same iteration).
So a,y € core(X), by induction hypothesis. It is clear that any f can be derived from « and y using
the —e rule. Thus f € core(X).

status(B) changes at line 22: Here a = left(B). Let right(B) = y. Since « was dequeued at the start of the
iteration, status() became pending in an earlier iteration. We see that status(y) # raw, and therefore
status(y) became pending at an earlier stage of the while loop (in an earlier iteration or earlier in the
same iteration). So by induction hypothesis, «,y € core(X). It is clear that f can be derived from «
and y using the Ai rule. Thus 8 € core(X).

The other cases proceed similarly, and we have the required claim. -
LEMMA 10 (Completeness).  If B € core(X), eventually status(B) = processed.

Proof. We first prove by induction on size of proofs that if f € core(X) then eventually status(f) becomes
pending (it is enough to show this - if B ever becomes pending, it is enqueued, and upon dequeue it gets
assigned the status processed).

Suppose 7 is a proof of X + f that does not use the Ve rule. Let r be the last rule of 7. We consider a
few sample cases.

risax: In this case, f € X and status(B) becomes pending in line 4.

ris Ae: Suppose the premise of ris X + A y. Then by induction hypothesis, status( A y) becomes pending
eventually and enters the queue Q. Since each iteration of the while loop terminates, eventually fAy
is dequeued. In that iteration of the loop, status(8) becomes pending in line 10.

ris —e: Suppose the premises of r are X + ¢ and X + y, where « = —y. By induction hypothesis, status(«)
and status(y) become pending eventually. Without loss of generality, let « be the second element to
be dequeued from Q. When « is dequeued, it is certainly the case that status(y) # raw. Now one can



see that status(B) directly becomes processed in line 18. (In fact, the status of all formulas becomes
processed and the algorithm terminates.)

ris Ai: Suppose f = a Ay. Then the premises of r are X + « and X I y. By induction hypothesis, status(«)
and status(y) become pending eventually. Without loss of generality, let a be the second element to
be dequeued from Q. When « is dequeued, it is certainly the case that status(y) # raw. Now one can
see that status() becomes pending in line 22, when « is being processed.

A similar analysis for the other cases completes the proof. -
LEMMA 11 (Running time).  The algorithm terminates in O(N) time.

Proof. Each element enters Q at most once (when its status changes from raw to pending). We process
each element of Q exactly once, after dequeuing it and before marking it processed. Processing an element
involves setting the status of left(«) and right(«) and perhaps enqueueing them (all these operations take
constant time). It also involves going through each element of the five sets A;(«), A,(), Oy(a), O,(«), and
I, (et). Each of these for all loops takes at most O(N) time. So it would appear that the algorithm takes O(N?)
overall. But we need to use the following crucial property. For distinct « and g and f € {A,A,, O, O,,1,}:
F@ nf(B) = 9.

Thus the total time spent processing the sets Aj(a) is O(N) across all « € sf. And similarly for A,, Oy,
&. From this it follows that the algorithm terminates in O(N) time. =

4 Decision procedures for DL

We now solve the derivability problem for the fragment DL, the fragment of IL without - i or —i.3

Fix a set of formulas X, and a formula &, for the rest of the section. Let sf = sf(X, U {ap}) and N = |sf],
as in Section 3.

Recall the definitions of closure(X), derive(X), and core(X) from Section 3. In this section, we show how
to compute derive(X) for any X < sf. We can then check whether X, Fp, @, by checking if o, € derive(X,).
The following properties of derive and core are useful in this regard.

« X € core(X) C derive(X).
« dertve(X) = core(derive(X)) = derive(derive(X)) (by Admissibility of Cut).
+ core(X) = core(core(X)) (by Admissibility of Cut).

« If X = core(Y), then core(X) = X. If X = derive(Y), then derive(X) = X.

3]t is important to note that we consider only the negation elimination rule. The algorithms in this section do not work in
the presence of the =i rule. Nor do we know of a straightforward modification to handle the =i rule.



4.1 A co-NP procedure for derive

Algorithm 2 checks if X, # . It uses the notion of a down-closed set. A set X of formulas is down-closed if it
satisfies the following two conditions:

+ core(X) € X.
+ whenevera v g € X, then eitherz € X or f € X.

Y is said to be a down-closure of X if Y is down-closed and X € Y.

Algorithm 2 Algorithm to check if X, ¥ ay
Y « core(Xo);
2: while (Y is not down-closed) do
3 guess a formula B, v f; € Y such that f, € Y and 5, ¢ Y;
a guess i € {0,1};
5 L Y e core(YU{B));
6: if 2, ¢ Y then
7
8
9

return “Yes”

. else
: |_ return ‘No”

In Algorithm 2, it is an invariant that Y = core(Z) for some Z and hence core(Y) € Y. Thus when Y is
not down-closed, there exists , V f; € Y such that neither f, nor f; isin Y.

The algorithm guesses a down-closure Y of X, such that o, ¢ Y. The next theorem guarantees that one
can successfully guess such a Y iff X, t# a,. This ensures the correctness of the algorithm.

THEOREM 12.  For any X and « (with X U {a} S sf), X + a iff a € Y for every down-closure Y of X.

This theorem is a consequence of the following three lemmas. But first we need a general claim related
to the Left Disjunction Property.

PROPOSITION 13.  Suppose @, V ¢; € Zand i € {0,1}. Then Z \ {po V @1}, ¢; - 3 Uff Z,¢; - 9.
LEMMA 14. Forany X and a (with X U {a} S sf), X + a {ff Y F « for every down-closure Y of X.

Proof. Suppose X + « and Y is a down-closure of X. Then X € Y and hence it is immediate that Y + .
Suppose on the other hand that X # «. We show that there is a sequence

of sets such that
. X g YO’
« Y, is down-closed,

« foralli < n, core(Y;) € Y;, and

IO



« forallign, Y; i a.

The sequence is constructed by induction. Y, is defined to be core(X). Since X ¥ «, it follows that Y, # a.
Suppose Y; has been defined for some k > 0 such that Y i a. If Y} is down-closed, we are done. Otherwise,
since core(Yy) € Y, thereis a By vV B, € Y such that B, € Y and B; ¢ Y. Since Y, # «, it follows that
Y \ {BoV. B}, Bi ¥ « for some i € {0,1}, by the Left Disjunction property. By Claim 13 it follows that
Yy, Bi #+ a for some i € {0,1}.

core(Ye U{Bo}) if Yy, Bota

core(Y U {f;}) otherwise

Clearly Yy & Yi4; and core(Yy4;) = Yiy. Assume w.lo.g. that Y, = core(Yy U {Bo}). By construction,
Y, U{Bo} ¥ a. Now suppose Yj; + a. Since Y, U{Bo} F ¢ for every ¢ € Y4, it would follow by Admissibilty
of Cut that Y, U {,} + a, which is a contradiction. Thus Y;,; # « and we can always extend the sequence
as desired.

Further, the Y;’s are strictly increasing, and are all subsets of sf. Thus n < |sf| and the above construc-
tion terminates. Y,, is a down-closure of X that does not derive a. =

LEMMA 15.  Let m be a proof of X + « with at least one occurrence of the Ve rule. Then there is an occurrence of Ve in
with major premise X + @ V § such that ¢ V 9 € core(X).

Proof. In any proof of the form
51 T, T3

Xika Xoka, Xzhko

r
Yy

we say that any rule in 7; is to the left of r, r is to the left of any rule in 7,, and any rule in 7, is to the left
of any rule in ;.

Now consider the leftmost occurrence of Ve in 7. It is the last rule of a subproof 7" of = which looks as
follows.

! ! '
T L) T3

Xrovy X,or3 X, prF3S
X' 3

Since this is the leftmost occurrence of Ve, there is no occurrence of Ve in «j. Further, if X' # X, it means

Ve

that 7’ is part of the proof of a minor premise of some other Ve rule in 7. But that contradicts the fact that
n’ ends in the leftmost Ve in 7. Thus X’ = X, and n] witnesses the fact that ¢ vV 3 € core(X). =

LEMMA 16.  For a down-closed Y, Y F aiffa € Y.

Proof. If « € Y, then it is obvious that Y + «.

In the other direction, suppose Y + a via a proof m with k instances of ve. We prove the required claim
by induction on k.

In the base case, k = 0, and « € core(Y). Since Y is down-closed, core(Y) € Y, and hencex € Y.

II



In the induction step, suppose there is an instance of Ve in the proof of Y + «. By Lemma 15, we
know that there is at least one occurrence of Ve (say Y + y) with major premise Y + ¢ V ¢ such that
@V € core(Y) € Y, which looks as follows.

51 ) T3

YroVvy Yoty Y 9ry
Ve
Yy

Thus we have ¢ V3 € Y. Since Y is down-closed either ¢ € Y or ¢ € Y. Suppose, without loss of generality,
that ¢ € Y. Now consider m,. Since ¢ € Y, we know that Y U {¢} = Y, and we can replace the big proof
of Y + y by m,, thereby reducing the number of instances of ve in the proof of Y + a. By induction
hypothesis, « € Y, and the lemma follows. =

Running time We now analyze the running time of Algorithm 2. Since Y strictly increases with each
iteration of the loop, there are at most N = [sf] iterations of the loop. In each iteration, we test whether
Y is down-closed, which amounts to checking whether there is some f, v §; € Y such that neither f, nor
f,is in Y. This check takes O(N) time. We also compute core(Y) in each iteration, which takes time O(N).
Thus the overall running time is O(N?).

4.2 Bounding disjunction elimination

It is evident from the algorithm for derive that the use of the Ve rule is an important resource. It makes
sense to bound its use and explore its effect on the efficiency of the algorithm. In this section, we show
that if we bound the set of formulas on which disjunction elimination is performed, we get a procedure
whose running time is polynomial in the input size, though exponential in the number of disjunction
eliminations allowed. The following definition makes this notion precise.

DEerINITION 17.  Let A be a set of disjunctive formulas. We define a proof of « from X using A (denoted X 5 @) as a

proof where any Ve rules are applied only to formulas which appear in A.

Recall that we have fixed a set sf of size N, and consider the derivability of X + a where sf(X U{a}) C sf.
We define derives (X) to be {8 € sf | X 5 B}. Note that derivey(X) is core(X). The check for X 4 a is done
by using Algorithm 3 to compute derives (X) and then testing whether « € derives (X). (For the purposes
of the algorithm, we assume that the set A is equipped with a linear order, so we can refer to the least
formula in any subset of A.)

In order to prove the correctness of the above algorithm, we require the following claim.

PROPOSITION 18.  Let A be a set of disjunctions and vV p € A. Let A’ = A\ {a v B}. Then the following hold:
. IfX Fa ythenX,a Far yandX,ﬁ Fary.
s IfXrpavB Xarpy yand X, B rary, then X 4 y.

Proof.

12



Algorithm 3 Algorithm to compute derives (X)
1 function f (A, X)
Y « core(X);
ifANY = ¢ then
’ return Y;
else
L A’ « A\ {aV B}, where a v f is the least formulain AnY;
returnf (A, YU {a) nf(A", Y U {B});

N

N 9w Row

+ Suppose X +, y. Then by monotonicity, we obtain a proof 7 of X, « +- y, such that the major premise
of every instance of the Ve rule in 7 is in A. Note that for every sequent X' + & in =, it is the case
that « € X'. Consider any subproof 7’ of m whose conclusion is X' - § and last rule is Ve with major
premise « V f (if there is no such subproof, then = witnesses the fact that X,a 4/ y). 7’ has the
following form.

X'ravp X,ar8§ X,Br6
X' +4

Ve

But observe that since « € X', X' U {a} = X'. Thus =} is itself a proof of X' - 6. We can replace n’
by m;, thereby removing at least one instance of the ve rule involving « v f in 7. Repeating this, we
obtain that X, & +-4s y. A similar reasoning gives us the result for X, -4 y.

+ Aplying Ve on a V f using the given proofs of X, F5r yand X, +4r y and X 4 a v f for premises
gives us the required result of X +-, y. -

LEMMA 19 (Correctness of Algorithm 3).  Forall A and X,
derives (X) = f(A, X).

Proof. The proofis by induction on the size of A. For each fixed A, we assume the statement for all smaller
A’ and all sets Z (no matter the size), and prove the statement for A and all X. The base case iswhen A = @,
when it is clearly the case that for all X, (@, X) = core(X) = derivey(X).

For the induction case, consider X and A s.t. X +, y, and let Y = core(X). Consider a normal proof ©
witnessing X +, y and assume without loss of generality that there is at least one instance of Ve in w. From
Lemma 15, we see that there is an instance of Ve in 7 with major premise X + ¢ V ), where ¢ v 9 € core(X).
Thus AnY # @. Let a v  be the least formulain AnY. Now since X €Y, Y +, y. Furthermore,a vV € Y.
Hence, by Claim 18, Y,a 5 yand Y,  +-4r y, where A’ = A\ {a Vv f}. Since A’ is of smaller size than A, by
induction hypothesis, deriveyr(Z) = f(A’,Z) for any Z. Thusy € f(A’,Y U {a}) nf(A’, Y U {B}). It follows
from the definition of f that y € f(A, X). Thus derives (X) < f(A, X).

On the other hand, suppose that y € f(A, X), and assume w.lLo.g. that AnY # @, where Y = core(X).
Letting 2V B be the least formulain AnY and A’ = A\ {aV},itisclearthaty € f(A", Yu{a}) nf (A", YU{B})

13



from the definition of f. Since A’ is of smaller size than A, it follows from the induction hypothesis that
Y,a by yand Y, Far y. Since Y = core(X), it is the case that X 4/ y for every y € Y. Thus we can appeal
to the admissibility of cut to conclude that X, « -4 y and X, B+ y. It follows from Claim 18 that X +, y.
Thus f (A, X) C derives (X). =

THEOREM 20.  If |A| = k, then derive, (X) is computable in time O(2 - N).

Proof. There are at most 2 recursive calls to f, and in each invocation we make one call to core, which takes
O(N) time. Thus the overall running time is 0@k - N). =

5 'The complexity of disjunction

We have seen that CL is solvable in linear time, and that DL is solvable in co-NP. Is this the best we can do?
Might there not be some clever way to handle disjunction elimination that yields a PTIME algorithm?
In this section, we answer these questions by proving co-NP-hardness for three (reasonably minimal)
fragments involving disjunction. But first, as a study in contrast, we consider disjunction by itself, and
show that that fragment is solvable in PTIME. This indicates that the lower bound results that appear later
in this section are a result of interaction between the various logical rules, rather than due to disjunction
alone.

5.1 The disjunction-only fragment

Let IL[v] denote the fragment of IL consisting of the ax, vi and Ve rules, and involving formulas of ¢V.
THEOREM 21.  The derivability problem for IL[V] is in PTIME.

Suppose X = {a} Va? V- Vel | 1< i< n}isa set of formulas from &V, with each a’; € . Let
B=pvpv-vpe ¥ witheach fi € &2. (Note that any input to the derivability problem of ILY
can be converted to the above form by choosing appropriate k, flattening the disjunctions, and repeating

disjuncts). We now have the following claim.

PROPOSITION 22. X + f iff there exists i < nsuch thatal v a? v -+ v &k + B.

Proof. It is obvious that if a} v a? v - v ak - B then X + B (by Monotonicity).

For proving the other direction, suppose (towards a contradiction) X + f, but there is. no i such that
VotV v (x{f + B. In particular, from the Left Disjunction Property, for every i, some oz’ii ¥ B. W.lo.g,
assume that j; = 1 for every i. Therefore we have

o B ok B, .., ok 1B

Now, since X + and a! + a}v---vak foreach i < n, it follows by Admissibility of Cut that o, ..., ¢} + f
(and there is a normal proof 7 with that conclusion). Since all the a!s are atomic propositions, the only
rules that can appear in 7 are ax and Vi. Therefore, at some point, one of the a}s must have contributed
to a f via an ax rule. However, this gives us «! + B (by deriving i and then applying Vi), which is a
contradiction. Thus we have the required claim. -
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Given this claim, we know that it is enough to see if a particular formula on the left (say «;) derives f. In
particular, from the Left Disjunction Property, we get that every disjunct in o; needs to derive . Therefore,
the derivability problem is equivalent to checking if there is a formula in X all of whose disjuncts occur
in f, and thus we obtain the required PTIME procedure.

5.2 Disjunction and conjunction

We have now confirmed that the v-only fragment is in PTIME. It is also known that some other fragments
without disjunction elimination (CL, for example) give rise to PTIME logics. However, we obtain the fol-
lowing result for the logic with conjunction and disjunction.*

Let L[V, A] denote the fragment of IL consisting of the ax, Vi, Ve, At and Ac rules, and involving formulas
of @V,

THEOREM 23.  The derivability problem for IL[V, A] is co-NP-hard.

The hardness result is obtained by reducing the validity problem for boolean formulas to the deriv-
ability problem for IL[V, A]. In fact, it suffices to consider the validity problem for boolean formulas in
disjunctive normal form. We show how to define for each DNF formula ¢ a set of IL[V, A]-formulas S, and
an IL[V, A]-formula @ such that S, + @ iff ¢ is a tautology.

Let {x;, x,, ...} be the set of all boolean variables. For each boolean variable x;, fix two distinct atomic
propositions p;, q; € <. We define g as follows, by induction.

© X = pi

© X =g
CPVP=3Vy
C AP =BAP

Let Voc(g), the set of all boolean variables occurring in ¢, be {x;, ..., x,}. Then

Se={P1Vaqu-pa V)
LEMMA 24. S, + g iff @ is a tautology.

Proof. Recall that a propositional valuation v over a set of variables ¥ is just a subset of ', namely those
variables that are set to true by v.

For avaluationv € {x,, ..., x,}, define S, = {p; | x; e v} U {q; | x; & v}.

By repeated appeal to the Left Disjunction Property, it is easy to see that S, + @ iff for all valuations v
over {x, ..., x,}, S, + . We now showthat S, - giffv k ¢. The statement of the lemma follows immediately
from this.

- We first show by induction on € sf(p) that whenever v k 9, it is the case that S, + .

#This fragment is interesting: one can show that X +, . @ iff 2 is a consequence of X in classical logic. Thus an NP procedure
for non-derivability would just guess a valuation that satisfied X but not «. While this translation to classical logic yields a
simple algorithm, it is not clear to us how to use this translation to prove lower bounds.
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- Ify = x;or = =x;, then S, + ¢ follows from the ax rule.
- If Y = 9; Ay, then it is the case that v k ¥, and v F 9,. By induction hypothesis, S, + 3; and
S,  ¥,. Hence, by using A, it follows that S, F ; A ,.

- Ifp = p, V), then it is the case that either v k y; or v k 9,. By induction hypothesis, S, + ¥, or
S,  ¥,. In either case it follows that S, F %, V 9,, by using Vi.

+ We now show that if S, + @, then v k ¢. Suppose 7 is a normal proof of S, I %, and that there is an
occurrence of the Ae rule or Ve rule in w with major premise S’  y. We denote by p this subproof
with conclusion S’ + y. Note that p ends in a pure elimination rule, since 7 is normal and every pure
elimination rule and hybrid rule has as its major premise the conclusion of a pure elimination rule.
By Theorem 4, we see that S’ € sf(S,) = S,, and y € sf(S"). But y is of the form « v f or « A §, and this
contradicts the fact that S, € . Thus 7 consists of only the ax, Ai and Vi rules. We now show by
induction that for all subproofs 7’ of m with conclusion S, I §, it is the case that v F .

- Suppose the last rule of 7’ is ax. Then 9 € S, and for some i < n, ¢ = x; or p = —x;. It can be
easily seen that v £ 9 (by the definition of S,).

~ Suppose the last rule of 7’ is Ai. Then § = P; AW, and S, + ¢; and S, + ¥,. Thus, by induction
hypothesis, v k ¢; and v k 9,. Therefore v F 3.

- Suppose the last rule of «’ is vi. Then ¢ = §; V §,, and either S, + §; or S, + 3,. Thus, by
induction hypothesis, either v k 3, or v k ,. Therefore v E 3. -

5.3 Disjunction and implication elimination

We now consider another minimal system, IL[V, = ¢], consisting of the rules ax, Vi, ve and — ¢ and involving
formulas from @Y7, and prove the following result.

THEOREM 25.  The derivability problem for IL[V, —¢] is co-NP-hard.

The proof is by reduction from the validity problem for 3-DNF, as detailed below.
Let ¢ be a 3-DNF formula with each clause having exactly 3 literals. Let Voc(¢p) be {x;, ..., x,}. We define
indx(@) = {1, ...,n}U{l’, ..., n'}, where (")’ = iforany € indx(p). Fori < n, we define [(i) = x;and (") = —x;.
We define the following sets.
Sy :={pa V pr | a € indx(p)}.

T, := {Pa = Pb = Pc = Pabe | &b, ¢ € indx(p)}.
We define 9 as follows:

Q= \/ {Pave 1 L(@) A L(b) A l(c) is a disjunct of ¢} .
For each valuation v € {x, ..., x,}, define S, to be

{pi | xi € v} U {pr | x; € v}.

LemmAa 26. S, T, + @ iff @ is a tautology.
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Proof. By repeated appeal to the Left Disjunction Property, it is easy to see that S, T, + @ iff S, T, - @
for all valuations v over {xj, ..., x,}. We now show that for all such valuations, v ¢ @iff S, T, 3.

Let  be a normal proof of S, T, + . The last rule of 7 has to be Vi, since if 7 ends in an elimination
rule, from the Subformula Property it follows that a disjunction is a subformula of S, U T, which is not
the case. Repeating this argument, we see that there is a subproof of 7 with conclusion S, T, + pg. for
some disjunct [(a) Al(b) Al(c) of ¢. We now show that for any valuation v, S, T, + pgyc iff v £ [(a) Al(b) AL(C).

If v E l(a) Al(b) Al(c), then we have p,, py, p. € S, (from the definition of S,), and therefore by applying
the — e rule to p, = py = pc = papc in Ty, we have S, T, + pgpe. In the other direction, suppose we have a
normal proof 7 of S, Ty, - pgye. By examining S, and T, we see that only p, = py = pc = pasc mentions pep.
So it is clear that p. must be derivable from S,, T, and the last rule of 7 must be — ¢, applied to p. = pap.
Now in order for this formula to be derivable, p, must be derivable, and similarly p, must be derivable.
Since p,, py and p, can only be obtained by ax, it must be that p, py, p. € S, and therefore v k [(a) Al(b) Al(c).

Thus we have that S, T, + pgy iff v £ [(@) A [(b) A (), and the required claim follows. .

5.4 Disjunction and negation elimination
We consider yet another minimal system, IL[V, —¢], consisting of the rules ax, Vi, Ve and — ¢ and involving
formulas from "7, and prove the following result.
THEOREM 27.  The derivability problem for IL[V, =] is co-NP-hard.

The proof is again by reduction from the validity problem for 3-DNF, as detailed below.

Let ¢ be a 3-DNF formula with each clause having exactly 3 literals. Let Voc(¢) be {x;, ..., x,}. We define
indx(®) = {1, ...,n}u{l’, ..., n'}, where (")’ = iforanyi € indx(p). Fori < n,we define [(i) = x;and (") = —x;.
For i < n, we define p; = —p; and py = p;.

We define the following sets.

Sy ={piv-pili<n}.
Ty = {fa VbV Pe Vpabe | @, b,c € indx(@)}.

We define ¢ as follows:

7= \/ lpu | (@ A L) A 1)) € 6.

For each valuation v € {x, ..., x,}, define S, to be
{pil x; €viU{pr | x; € v}.
Lemma 28. S, T, @ iff @ is a tautology.

Proof. Letusassume thatg =V {l(a;) A l(b) Al(c;) | i < m}, for ease of notation. By repeated appeal to the
Left Disjunction Property, it is easy to see that SpTo -9 iff S, T, -9 for all valuations v over {xj, ..., x,}.
We now show that for all valuations v,

vE@iff S, T, 9.
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+ Suppose v k ¢. This means that v E [(a;) A [(b;)) A l(c;) for some i. For the sake of readability, let
us refer to this disjunct as [(a) A [(b) A [(c). It is clear in this case that {p,, ps,p.} S S,. Letting
T' =Ty \ {fa VbV Pe V Pabc}, We have

SvToHo (1)

iff
S,T,pare and (2)
S»Tpp+o  and )
S, T,p:+® and (@)
S T Pabe @ (5)

Now it is easily seen that (2), (3) and (4) are true, since {p,, pp, p.} S S, and we can use the —e rule.
Now S, T', pahe & Pabe, and hence (5) follows (by a series of applications of vi rules). Thus S,, T,, + @.

+ Suppose v # ¢. This means that for every { < m, either v # [(a;) or v # (b)) or v # [(c;). Without loss
of generality, let us assume that v # [(a;) for all i < m. Now it is clear that p,. & S, and thus p € S,,
foreachi < m.

Now suppose S,, T, + . This implies that S, {p, | i < m} + @. However, p, € S, foralli < m, and
therefore S, - @. Suppose there is a normal proof 7 for the same. Since S, € Z, the only rules that
can occur in 7 are ax and Vi. This in turn implies that S, + pq,. for some i < m. But a proof of
Sy F Pab; can only use the ax rule, but pg . & S, so we have a contradiction. Thus we have proved
thatif v # ¢ then S, T, ¥ . .

6 Discussion

To summarize our results, we have presented a core fragment of IL, which we call CL, whose derivability
problem is solvable in linear time, and used this algorithm as a core subroutine in a co-NP decision pro-
cedure for the larger fragment DL (which includes the Ve rule). We cannot do better than co-NP when
we consider disjunction interacting with other operators, as demonstrated by the lower bound proofs we
have provided for IL[V, A], IL[V, = ¢], and IL[V, —=¢]. The fragment IL[V] (which includes only the ax, vi, and
ve rules) though, is solvable in PTIME, in contrast to the implication-only fragment of IL. Of the two rules
for negation, —¢ does not modify the assumptions in the sequents, whereas —i discharges the assumption
« while concluding —«. There does not appear to be a straightforward adaptation of our algorithms to
handle —i.5

We can also consider adding [J-like modalities to the [A, V] fragment of our logic. This system is in
co-NP, and the algorithm proceeds along similar lines to the one in [RSS14]. On the other hand, if we add
modalities to a logic with implication (even primal implication), the system is PSPACE-complete [BG14].

Perhaps the most important way to take this work further is to identify restricted forms of disjunction
that are efficiently solvable, as this would be of use in many practical applications. If we can identify

5Note that the fragment studied in [BG14], consisting of rules for primal implication, disjunction, and a L operator, does
not subsume —i. While full implication and 1 can be used to code the negation rules, primal implication and L can only capture
the effect of the —e rule.
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scenarios in which a bounded number of applications of the disjunction elimination rule would suffice,

our PTIME algorithm in Section 4.2 would come very handy, opening the door for parametrized algorithms

for derivability.
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A Weak normalization and subformula property

Among the rules, ax, Ae and — ¢ are the pure elimination rules, —e¢, =i and Ve are the hybrid rules and the rest
are pure introduction rules. A normal derivation is one where the major premise of every pure elimination rule
and hybrid rule is the conclusion of a pure elimination rule. A derivation is normal iff its cut rank is 0, as
given by the following definition.

DEerFINITION 29 (Cut rank of a derivation).  Let 7 be a derivation with conclusion X + « and last rule r. Let 7y, ..., 7,
be the immediate subproofs of w. Let each m; end with rule r; and have conclusion X; + a;. Also, let X; + o be the major
premise of r. By induction on 7, we define cutrank(m) as follows:

« Ifris a pure elimination rule or a hybrid rule and r; is not a pure elimination rule, then

cutrank(m) = max(|ey|, cutrank(my), -+, cutrank(m,)).

« Otherwise
cutrank(m) = max(cutrank(m,), -+, cutrank(zm,)).

(Note that if r is ax, cutrank(m) = 0, by the second clause above.)

PROPOSITION 30 (Monotonicity). If there is a proof of X + a with cut rank m and X € X', then there is a proof of
X' + o with cut rank m.

Proof. Letm be a proof of X +- o, and let Y = X' \ X. It is easy to check that replacing every sequent Z - f8
occurring in 7 by ZU Y + f, we still have a valid proof 7', with conclusion X' + a. (The point is that in
rules involving a discharge of the premises, the discharge is optional, so if some rule in 7 discharges a
formula in Y, we can apply the same rule in 7’ without discharging that formula.) Since the structure of
the proof does not change, the cut rank remains the same. =

PROPOSITION 31 (Admissibility of Cut).  If 7 is a derivation of X + « (with last rule r;) and 7 a derivation of Y + f8
(with last rule r), then there is a dertvation p of X, Y — « - B such that

cutrank(p) < max(cutrank(m,), cutrank(w), ||).

Further, either the last rule of p is r or B = a and the last rule of p is r;.
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Proof. The proof is by induction on the size of 7, and a case analysis on r. For notational ease, we let
cutrank(m;) = my, cutrank(m) = m, and n = max(my, m, |a|). We present a few sample cases below.

risax: If B # o, then p € Y — « and we can take p to be the following proof:

— ax
XY—arp
Clearly cutrank(p) = 0 < nand the last rule of pisr.

If B = a, then we take p to be the proof of X,Y — a +  guaranteed by Monotonicity (applied to 7).
Clearly cutrank(p) = m; < n, and the last rule of p is r; as required.

ris At: Then 7 has the following structure:
71 )
YHBE YHB,
YrB

Al

By induction hypothesis, there exist proofs p; and p, with conclusions X,Y —a + fand X, Y -« I §,
respectively, both of which have cut ranks at most n. We define p to be the following proof:

P_l P_z

X,Y_QFB1 X,Y_QFBZ
XY—arp

Al

Clearly cutrank(p) = max(cutrank(p;), cutrank(p,)) < n. Further, the last rule of pis .

ris —» i: Then = ¢ —» ¢ and m has the following structure:

T

Yoy
Yop—-19

-l

By induction hypothesis, there exist a proof p; with conclusion X, (Y,¢) — « + % whose cut rank
is at most n. By appealing to Monotonicity if necessary (in the case when ¢ = a), we can take the
conclusion of p; to be X, ¢, Y — « +- 9. p is the following proof:

P}

X,0Y—akry
XY—-atop—-1

-1

Clearly cutrank(p) = cutrank(p;) < n. Further, the last rule of pisr.
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ris ve: Then 7 has the following structure:
T
: T2 T3
— . :
Yrovy YorB Yyprp
V
YrB

€

By induction hypothesis, there exist proofs p;, p, and p; with conclusions respectively X, Y —a + ¢V,
X,(Y,p) —at+ B and X, (Y,9) —a + B, all of whose cut ranks are < n. By appealing to Monotonicity
if necessary (in the cases when a is ¢ or 1), we can take the conclusion of p, and p; tobe X, ¢, Y —a + f8
and X,,Y — a + B. p is the following proof:

P1

: P2 Ps

XY-arovep XoY-arB XpYV—arp
\Y
XY—arp

€

Now if r{ is a pure elimination, cutrank(p) < n. Otherwise, cutrank(p) < max(|e V $|,n). But then

"

either r{ = r{ (in which case |pVy| < m < n),ora = pvyandr{ = r; (in which case |[pVy| = |a| < n).
Thus cutrank(p) < n. Again the last rule of pisr. =

LemmA 32.  Let 7 be a derivation with conclusion X + « and last rule r with cutrank(m) = m > 0O, such that all proper
subderivations of 7 are of rank < m. Then the following hold.

1. Ifris a pure elimination rule, |a| < m.
2. There is a dertvation ' of X + a such that cutrank(z") < m.

Proof. Let 7y, ..., m, be the immediate subproofs of 7. Let each 7; end with rule r; and have conclusion
X; + a;, and let X; + «; be the major premise of r. Given the conditions of the lemma, it is clear that
cutrank(m) = |o;| = m, r; is not a pure elimination rule, r is a pure elimination rule or a hybrid rule, and
XI = X.

1. Ifris a pure elimination rule, then we have the following cases:

« a;=aAPora; =pAa, for somep.

« a; = B - afor some .
In both these cases, it is clear that |a| < |¢| = m.

2. To show the existence of 7', we perform an induction on ||7|| and a case analysis on r;.

+ Suppose r; is Al. Then r has to be Ae. In this case we can take 7’ to be one of the immediate
subproofs of m;, and clearly cutrank(n") < m.
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+ Suppose r; is Vi. Then r has to be ve. Say «; = pV y and the major premise of r; is f. Note that

|B] < |BVy| = m. Letm, be the immediate subproof of = with conclusion X, + «, and let
7y, be the subproof of 7; with conclusion X + f. Thus we can apply cut on 7;; and 7, to get a
derivation 7’ of X + « such that

cutrank(z") < max(|B|, cutrank(my), cutrank(w,)) < m.

Supposer; is - i. Thenris »eand «; = - «, and 7 has the following form:

o1
. 7['2
X, pFa ) :
i .
XFf-ua XrB
—e
XFa

Now by applying cut on m;; and 7,, we see that there is a proof n’ of X + a of cut rank <
max(m —1,|B|) < m (since |f| < |B = «a| = m).

+ Suppose r; is —i. Then r is either —i or —e. We consider the case when r is —i - the other case is

handled similarly. In this case « = ¢’ and 7 has the following form:

o1 T2
T,

. 51 ; 5%}

X, o' B Ay X,d,Bry
il rz
X, o' +—p X B
=l

X+ =

Now by applying cut on 7, and my;, as well as on 7, and 7,, we see that there are proofs ]
and ; of X, o' + =y and X, o’ + y respectively, with last rules r{ and r;, and both of cut rank
< max(m —1,|B|) < m (since |B| < |=f| = m). 7' can be taken to be the following:

m L)

X' -y XdFy

il

X+ —d

Now if r{ is a pure elimination,
cutrank(n") = max(cutrank(my), cutrank(w)) < m.

Otherwise, cutrank(n") < max(m — 1, |=y|). But by Proposition 31, either r; = ry;, or r; = r, (and
-y = p). In the former case, |-y| < cutrank(m;) < m. Otherwise |ay| < |-f| = m. Therefore
cutrank(z") < m.

Suppose r; is —e. r could be any pure elimination or hybrid rule. We shall consider the cases
when it is i and Ve. The other cases are similar or simpler.
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- Suppose r is —i. Then ¢ = ¢’ and 7 has the following form:
T T2

. . ,
X'y Xdry :

e

X, o'+ f X, o' -8

X+ ad

ll

' is taken to be the following:

SH T2

Xa'Fay Xaky

=l

X+ =ad

Clearly cutrank(z") = cutrank(m;) < m.
- Suppose ris Ve. Then 7 has the following form:
T T2
. . T, T3
Xt—y Xty : :
—_— ¢

XktoVy Xora X pra
Xta

Ve

' is taken to be the following:
71"11 71';2
Xy Xtky
Xta

—e

Clearly cutrank(z") = cutrank(m,) < m.

+ Supposer; is Ve. Now r can be any pure elimination or hybrid rule. We consider the case when
it is ve. The rest of the cases are similar. Now a; = f Vv " and 7 has the following form:

7T.11 71.12 7f}3

. . . 712 7[3

Xryvy XyrpBVvp Xy rBVE : :

Ve . .

X+Bvp XBpra Xpra
Ve
Xhka
Let 7, be the following proof
77_12 T2 3

XyFBEVE XyBra Xyvpra
X,yra

Ve
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and let 7; be the following proof.

USE! T, T3

Xy rpvpE Xy.Bra Xy.Bra

Ve
Xy o

Now it is possible that cutrank(z,) = cutrank(t;) = m, but ||z,|| < ||7|| and ||73|| < ||=]|. Hence
by induction hypothesis, there are proofs 7 and 73, both of cut rank < m, with conclusions
X,y +aand X,y F a respectively. We take 7’ to be the following proof:

! '
USH! T, T3

XkFyvy Xyra Xy bFa
Xta

Ve

Now if 7;; ends in a pure elimination,
cutrank(n") = max(cutrank(my;), cutrank(zy), cutrank(my)) < m.

Otherwise cutrank(n") < max(m — 1, |y V ¥'|). But if m; does not end in a pure elimination,
ly Vv'| < cutrank(m;) < m, and it follows that cutrank(z") < m. =

THEOREM 33 (Weak normalization).  If there is a derivation  of X  « then there is a normal derivation p of X  a.
Further, if a formula a v B occurs as the major premise of an instance of Ve in p, it also occurs as the major premise of an
instance of Ve in .

Proof. For every derivation =, define u(7) to be the pair (m, n) where m = cutrank(), and n is the number
of subderivations of 7 of rank m. If cutrank(w) is 0, 7 is already normal. If not, let cutrank(r) = m > 0 and
let p be a subderivation of 7 with conclusion X' + f such that cutrank(p) = m and no proper subderivation
of p is of rank > m. By Lemma 32, there is another derivation p" with the same conclusion such that
cutrank(p') < m. Replace p by p’ in 7 to get the proof n'. Now one subderivation of rank m has been
eliminated in the process of going from m to #’. But we need to check that no new derivations of rank
> m have been introduced in 7’. The only way this can happen is if p’ is not a pure elimination rule and
is the major premise of an elimination rule or hybrid rule in #’. But then either || < m or p itself ends
in a hybrid rule. In either case, no new subderivation of rank > m gets introduced. Thus u(7") < u(n).
Since lexicographic ordering on pairs of natural numbers is a well order, by repeating the above process
we eventually reach a proof of rank 0 - a normal proof, in other words.

Also note that the transformations in Lemma 32 do not introduce new formulas as major premises
of Ve, even though it might increase the number of instances of ve. This proves the second part of the
theorem. =

THEOREM 34 (Subformula property).  Let 7 be a normal derivation with conclusion X + o and last ruler. Let X' + j8
occur in 7. Then X' € sf(X U {a}) and B € sf(X U {a}). Furthermore, if r is a pure elimination rule, then X' < sf(X)
and B € sf(X).
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Proof. The proof is by induction on the structure of 7, and based on a case analysis on r. We present a few
representative cases here.

+ Suppose ris Al. Then « = &’ A« and = is of the following form:

! n

T T
XkFa XEFao

XFa
Clearly ' € sf(a) and " € sf(a). Now either X’ = X and f = ¢ or X' + foccurs in 7’ or 7". In the
second and third cases, X' € sf(X U {«’,«"}) and f € sf(X U {¢, #"}), by induction hypothesis. But

sf(X U {a',2"}) € sf(X U {«}), and hence we are done.

Al

+ Supposeris — . Then a = ¢’ - " and = is of the following form:

51

X, oz"l— a”
Xka
Clearly ' € sf(a) and «” € sf(«). Now either X' = X and f = « or X' + f occurs in 7;. In the latter
case, by induction hypothesis X' € sf(X U {¢',a"}) and B € sf(X U {a’,2"}). But sf(X U {’,2"}) <
sf(X U {a}), and hence we are done.

-1

+ Suppose r is Ve. Then 7 is of the following form:

51 T, T3

XktoVy Xopora XyPpra
Xta

Again, either X' = X and f = ¢ or X' + f occurs in one of the ;’s. Suppose it occurs in ;. Notice

Ve

that since 7 is normal, the last rule of m; is a pure elimination, and hence by induction hypothesis,
X' ¢ sf(X) and B € sf(X). In particular, ovy € sf(X) and thus {g, ¥} < sf(X). Now suppose that X' +-
occurs in, or ;. Then we have X' € sf(XU{g, 9, a}) € sf(XU{a}) and f € sf(XU{p, ¥, a}) S sf(Xu{a}),
by induction hypothesis.

+ Suppose ris —e. Then = is of the following form (w.Lo.g.):

! n

U T

Xtep—>a Xto
Xtka

Again, either X' = X and = aor X' + foccurs in n' or 7”. Since 7 is normal, 7’ ends in a

—¢

pure elimination rule. Therefore for any X' + B occurring in 7', X' <€ sf(X) and g € sf(X). In
particular, ¢ - « € sf(X) and so {,a} S sf(X). If X' + B occurs in ", by induction hypothesis
X' c sf(XU{e}) € sf(X) and B € sf(X U{p}) S sf(X). Finally, as already shown, a € sf(X), as required
for a proof ending in a pure elimination rule. =
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