
The complexity of disjunction in intuitionistic logic

RRamanujam
The Institute of Mathematical Sciences, Chennai, India

jam@imsc.res.in

Vaishnavi Sundararajan*
Chennai Mathematical Institute

vaishnavi@cmi.ac.in

S P Suresh†
Chennai Mathematical Institute

spsuresh@cmi.ac.in

Abstract

We study procedures for the derivability problem of fragments of intuitionistic logic. Intuitionis-
tic logic is known to be PSPACE-complete, with implication being one of themain contributors to this
complexity. In fact, with just implication alone, we still have a PSPACE-complete logic. We study frag-
ments of intuitionistic logic with restricted implication, and develop algorithms for these fragments
which are based on the proof rules. We identify a core fragment whose derivability is solvable in lin-
ear time. Adding disjunction elimination to this core gives a logic which is solvable in co-NP. These
sub-procedures are applicable to a wide variety of logics with rules of a similar flavour. We also show
that we cannot do better than co-NPwhenever disjunction elimination interacts with other rules.

1 Introduction

Intuitionistic logic is well-known to be a PSPACE-complete logic [Sta79]. One of the main contributors to
this complexity is implication, particularly the implication introduction rule. The very form of the rule,
displayed below, provides a hint as to the difficulties involved.

X, α ⊢ β
→ i

X ⊢ α → β

Suppose we try to determine if a set of formulas X derives α. If α were derivable only using rules
for conjunction, say, then we could compute the “closure” of X by repeatedly adding to it all formulas
derivable in one step, and see if we ever reach α this way. The point to note here is that the “context”,X, is
fixed. But the moment the proof involves the→ i rule, we cannot work with a fixed context anymore. To
verify whether X derives α → β, we have to change context, and verify if X ∪ {α} derives β. This “context
switch” is at the heart of the complexity of intuitionistic logic.

*Supported by a TCS Research Fellowship, and partially by a grant from the Infosys Foundation.
†Partially supported by a grant from the Infosys Foundation.

1

Another rule which forces this kind of context switch in intuitionistic logic is disjunction elimina-
tion, displayed below.

X ⊢ α ∨ β X, α ⊢ γ X, β ⊢ γ
∨e

X ⊢ γ

To verify if X derives γ when we already know that it derives α ∨ β, we might have to check if γ is derived
both from X ∪ {α} and X ∪ {β}.
An interesting question to consider is whether these two rules have similar contributions to the com-

plexity of derivability. Since implication by itself is PSPACE-complete [Sta79], we need to study disjunc-
tion in the presence of restricted forms of implication to address this question. We are able to show that
disjunction by itself is solvable in PTIME, and in the presence of conjunction and restricted forms of nega-
tion and implication, it is solvable in co-NP. We also show that we can do no better than co-NP, even for
minimal fragments involving disjunction.
The decision procedure is interesting in its own right. We identify a core fragment that does not

involve context switches of the kind alluded to above. We solve this fragment in PTIME (linear time, in
fact) in Section 3, and showhow to extend this to a co-NPprocedurewhenwe adddisjunction elimination
(in Section 4). This offers a source of parametrization, and we obtain a PTIME decision procedure when
we bound the set of formulas on which we apply disjunction elimination (in Section 4.2).
We have alreadymentioned that we study disjunction in the presence of restricted forms of implica-

tion and negation. What sort of restrictions are natural to impose? We have seen that the problematic
aspect of implication is that the→ i rule forces a context switch. So we could restrict intuitionistic logic
by only considering the elimination rule for implication1, while leaving out the introduction rule. We
can do a little better, by considering a variant known as primal implication [GN11] (also referred to as semi-
implication [Avr10]). This is defined by the following introduction rule.

X ⊢ β
→p

X ⊢ α → β

Primal implication defines a strict sublogic of intuitionistic logic. For instance, intuitionistic validities
like p → p are not provable using the above rule. But more importantly, the rule is so designed that no
context switch is forced while trying to check if X derives α. In fact, this feature is crucial to the PTIME
solvability of primal infon logic [GN11], which is a logic with primal implication, conjunction, and some
modalities.
It is worth noting that we consider the complexity of the derivability problem, and not the validity prob-

lem as is usually done. While these two problems are equivalent in the presence of the → i rule, for the
restricted fragments that we consider, derivability is more general.
For precisely the same reason (thatwe consider fragmentswithout→ i), we cannot define¬α as α → ⊥.

We need to have explicit rules for negation. Of these, the elimination rule for negation does not force a
context switch, but the introduction rule does, just as in the case of implication. The precise effect of
negation introduction in the absence of → i on complexity is unclear, so we only consider restrictions
where we drop negation introduction altogether.

1It is clear that modus ponens does not force context switches of the kind we are discussing.

2

Applications Intuitionistic logic is a subject with a rich history, with connections to fundamental as-
pects of mathematics, philosophy and computer science, but it also finds application in such concrete
areas of computer science as system security and communication security in distributed protocols. Con-
sider the derivabilityquestion: given afinite set of formulasX, a formula α, doesX derive α? Thisquestion
is of practical importance when X is a security policy that specifies permissions and α is the assertion of
someone being permitted some action [ABLP93,GN08]. Or it might be the case that X is a set of terms
picked by an eavesdropper watching a channel and α is a term to be kept secret [DY83]. Inference in such
situations is typically intuitionistic. This is essentially due to the fact that terms are constructed in cryp-
tographic protocols using encryption keys etc, and when a term t is not constructible by an agentA, then
A cannot even assert “(m occurs in t) ∨ ¬(m occurs in t).” For examples of such reasoning, see [RSS14].
In the applications mentioned above, the complexity of derivability is of prime importance, since a

derivability check is often a vital component of more detailed security structures [CS03]. These systems
are usually disjunction-free, with a PTIME derivability procedure [BNRS13, CT03,GN11]. But reasoning
about disjunction is also important for security applications, even though it typically increases the com-
plexity of the derivability problem (see [RSS14], for example).

Related work The results reported in this paper are very close to work done in the realm of authoriza-
tion logics, specifically primal infon logic and its extensions. It was shown that primal infon logic is in
PTIME [BNRS13,GN11] but adding disjunction makes the problem co-NP-complete [BG14]. Specifically,
it was shown that a system with primal implication, conjunction, disjunction and ⊥ is co-NP-hard, us-
ing a translation from classical logic. Our lower bound results can be seen as a refinement of the result
in [BG14], as we show that disjunction with any one of these other connectives is already co-NP-hard. The
upper bound results are also very similar to those in [BG14], but we provide explicit algorithmswhile the
results there are obtained via a translation to classical logic. Our procedures can be seen as a way of lifting
PTIME decision procedures for local theories [CT03,McA93] to co-NP procedures for the same logics with
disjunction. More recently, the complexity of primal logic with disjunction was studied in further detail
in [MMP15], but the proofs are via semantic methods.
Another important area of study is the disjunction property and its effect on complexity. A system is

said to have the disjunction property if it satisfies the following condition: whenever X ⊢ α ∨ β and
X satisfies some extra conditions (for example, ∨ does not occur in any formula of X), then X ⊢ α or
X ⊢ β. The disjunction property and its effect on decidability and complexity have been the subject of
study for many years. For example, it has been proved that as long as any (propositional) extension of
intuitionistic logic satisfies the disjunction property, derivability is PSPACE-hard, while otherwise it is in
co-NP (see Chapter 18 of [CZ97]). Various other papers also investigate extensions of intuitionistic logic
with the disjunction property [GdJ74, Kur09, Sak04]. In contrast to these results, our paper considers
subsystems of intuitionistic logic obtained by restricting implication. Further, in our paper, the focus is
more on the left disjunction property: namely that X, α ∨ β ⊢ γ iff X, α ⊢ γ and X, β ⊢ γ.

3

ax
X, α ⊢ α

X, α ⊢ β X, α ⊢ ¬β
¬i

X ⊢ ¬α

X ⊢ β X ⊢ ¬β
¬e

X ⊢ α

X ⊢ α X ⊢ β
∧i

X ⊢ α ∧ β

X ⊢ α0 ∧ α1
∧e

X ⊢ αj

X ⊢ αj
∨i

X ⊢ α0 ∨ α1

X ⊢ α ∨ β X, α ⊢ γ X, β ⊢ γ
∨e

X ⊢ γ

X, α ⊢ β
→ i

X ⊢ α → β X ⊢ α → β X ⊢ α
→e

X ⊢ βX ⊢ β
→p

X ⊢ α → β

Table 1 : The system IL. Note that → i subsumes →p, but we need to define both these rules since we
consider fragments without→ i but with→p.

2 Preliminaries

Assume a countably infinite set of atomic propositionsP . The set of formulas Φ is given by

α, β ∶∶= p | ¬α | α ∧ β | α ∨ β | α → β

For a set of operatorsO , we denote byΦO the set of all formulas consisting only of the operators inO .
For example, Φ{∨} is the set of all formulas built only using the ∨ operator, Φ{∨,∧} is the set of all formulas
built only using the ∨ and ∧ operators,&c. For ease of notation, we ignore the braces and instead use Φ∨,
Φ∨,∧,&c.
The set of subformulas of a formula α, denoted sf(α), is defined to be the smallest set S such that: α ∈ S;

if ¬β ∈ S, β ∈ S; and if β ∧ γ ∈ S or β ∨ γ ∈ S or β → γ ∈ S, {β, γ} ⊆ S. For a setX of formulas, sf(X) is defined
to be�

α∈X
sf(α).

The logic IL is defined by the derivation system in Table 1. Two important fragments of IL are DL
(disjunction logic), which has all the rules except for ¬i and → i, and CL (core logic), which has all the rules
except for ¬i,→ i, and ∨e. By X ⊢L α, we mean that there is a derivation of X ⊢ α in the subsystem L ⊆ IL.
(For ease of notation, we drop the suffix and useX ⊢ αwhen it is clear from the context which subsystem
is being referred to.)
Definition 1 (Derivability problem). GivenX, α, and a subsystem L ⊆ IL, is it the case thatX ⊢L α?

Among the rules, ax, ∧e and → e are the pure elimination rules, ¬e, ¬i and ∨e are the hybrid rules and the
rest are the pure introduction rules. A normal derivation is one where the major premise of every pure elim-
ination rule and hybrid rule is the conclusion of a pure elimination rule. The following fundamental

4

properties hold, and the proofs are standard in the proof theory literature. Detailed proofs are presented
in Appendix A, for ease of reference.
Proposition 2.

1. (Monotonicity) IfX ⊢ α andX ⊆ X′, thenX′ ⊢ α.

2. (Admissibility of Cut) IfX ⊢ α andX, α ⊢ β, thenX ⊢ β.

Theorem 3 (Weak normalization). If there is a derivation π of X ⊢ α then there is a normal derivation ρ of X ⊢ α.
Further, if a formula α ∨ β occurs as the major premise of an instance of ∨e in ρ, it also occurs as the major premise of an
instance of ∨e in π.

Theorem 4 (Subformula property). Let π be a normal derivation with conclusion X ⊢ α and last rule r. Let X′ ⊢ β
occur in π. Then X′ ⊆ sf(X ∪ {α}) and β ∈ sf(X ∪ {α}). Furthermore, if r is a pure elimination rule, then X′ ⊆ sf(X)
and β ∈ sf(X).

Proposition 5 (Left Disjunction Property). X, α ∨ β ⊢ γ iffX, α ⊢ γ andX, β ⊢ γ.

Proof. Suppose X, α ∨ β ⊢ γ. Note that X, α ⊢ α ∨ β and X, β ⊢ α ∨ β (by the ∨i rule). By Admissibility of
Cut, we have X, α ⊢ γ and X, β ⊢ γ.
On the other hand, suppose X, α ⊢ γ and X, β ⊢ γ. ByMonotonicity, it follows that X, α ∨ β, α ⊢ γ and

X, α∨ β, β ⊢ γ. We also haveX, α∨ β ⊢ α∨ β (by the ax rule). From these, we can build a proof of X ⊢ γ using
the ∨e rule. ⊣

Proposition 6 (Left Conjunction Property). X, α ∧ β ⊢ γ iffX, α, β ⊢ γ.

Proof. Suppose X, α ∧ β ⊢ γ. Note that X, α, β ⊢ α ∧ β (by the ∧i rule). By Admissibility of Cut, we have
X, α, β ⊢ γ.
On the other hand, suppose X, α, β ⊢ γ. Note that X, α ∧ β ⊢ α and X, α ∧ β ⊢ β (by the ∧e rule). By

Admissibility of Cut, we have that X, α ∧ β ⊢ γ. ⊣

3 Linear time algorithm for CL

In this section, we considerCL and solve its derivability problem in linear time. The algorithm is based on
the linear time procedure presented in [GN11], and can be thought of as a core subroutine in the solution
of more complex fragments.
Theorem 7. The derivability problem for CL is solvable in linear time.

Fix a set of formulas X0 ∪ {α0} for the rest of the section. Let sf = sf(X0 ∪ {α0}). LetN = |sf|.
Definition 8. For anyX ⊆ sf:

• closure(X) = {α ∈ sf ∣ X ⊢IL α}.

• derive(X) = {α ∈ sf ∣ X ⊢DL α}.

• core(X) = {α ∈ sf ∣ X ⊢CL α}.

5

Checking if X0 ⊢CL α0 amounts to checking if α0 ∈ core(X0). In the rest of this section, we describe
how to compute core(X) for any X ⊆ sf. We compute core(X) by a marking procedure which initially
marks all elements of X and propagates the marking in a clever manner. To understand its working, we
first consider a naïve strategy for propagating the marking. It would, for example, detect all pairs α, β of
marked formulas andmark α∧β, α∨γ, β∨δ,&c. (if those formulas are in sf). This propagation step itself is
repeatedmany times till no new formula can bemarked. In the course of this, the same formula αmay be
“touched” many times – in deriving α∧ β, α∨ γ,&c. Ourmarking proceeds differently. Whenwe “process”
a marked α, we mark all of its consequences that we can determine at that stage, and do not process it
again. For this to work, we need information about α being already marked when we process some other
marked β (to mark α ∧ β, for instance). Towards this, we maintain some auxiliary lists. For instance, for
each formula α there is a list of conjunctions whose left conjunct is α. While processing α, we mark each
β = α ∧ γ in this list such that γ is also marked. We maintain similar lists for other operators and the
position of α, as is made clear below.
For a formula α, we define left(α), right(α), and op(α) as follows:

• If α ∈ P , left(α), right(α) and op(α) are all undefined.

• If α = β ∧ γ, left(α) = β, right(α) = γ, and op(α) = ∧.

• If α = β ∨ γ, left(α) = β, right(α) = γ, and op(α) = ∨.

• If α = β → γ, left(α) = β, right(α) = γ, and op(α) =→.

• If α = ¬β, left(α) = β, right(α) is undefined, and op(α) = ¬.

For every α ∈ sf, we define the following sets.2

• Al(α) = {β ∈ sf ∣ op(β) = ∧ and left(β) = α}.

• Ar(α) = {β ∈ sf ∣ op(β) = ∧ and right(β) = α}.

• Ol(α) = {β ∈ sf ∣ op(β) = ∨ and left(β) = α}.

• Or(α) = {β ∈ sf ∣ op(β) = ∨ and right(β) = α}.

• Il(α) = {β ∈ sf ∣ op(β) =→ and left(β) = α}.

• Ir(α) = {β ∈ sf ∣ op(β) =→ and right(β) = α}.

• Nl(α) = {β ∈ sf ∣ op(β) = ¬ and left(β) = α}.

The procedure to compute core(X) is described in Algorithm 1. For each α ∈ sf it maintains a variable
status(α) ∈ {raw, pending, processed}. It also uses a queue Q of formulas, with the corresponding enqueue and
dequeue functions. The correctness of the algorithm is presented below.
2These sets can all be computed in time O(N), assuming that each formula α is represented by a node with three fields: op(α),

and two pointers, viz. left(α) and right(α). The sets Al(⋅),Or(⋅),&c. can be represented as lists s.t. it requires only constant time to
add an element to a list. We assume that the set of all formulas is also given as a list of nodes. We traverse the list of all formulas,
and if the formula is γ = α ∨ β, we add γ to the lists Ol(α) and Or(β). Similarly for other cases. If γ = ¬α, we add γ to Nl(α). If
γ = α → β, we add γ to Il(α) and Ir(β). Since each formula is added to at most two such lists, the overall time needed to create all
the auxiliary lists is O(N).

6

Algorithm 1 Linear time algorithm for core(X)
1: Q ← ∅;
2: for all α ∈ sf do
3: if α ∈ X then
4: status(α) ← pending; enqueue(Q , α);
5: else
6: status(α) ← raw;

7: while Q ≠ ∅ do
8: α ← dequeue(Q);
9: if (op(α) = ∧)& (status(left(α)) = raw) then ▷ α is premise of ∧e.
10: status(left(α)) ← pending; enqueue(Q , left(α));
11: if (op(α) = ∧)& (status(right(α)) = raw) then ▷ α is premise of ∧e.
12: status(right(α)) ← pending; enqueue(Q , right(α));
13: if �op(α) =→� & (status(left(α))≠ raw& status(right(α)) = raw) then
14: status(right(α)) ← pending; enqueue(Q , right(α)); ▷ α is a major premise of→e.
15: for all γ ∈ Il(α) s.t. (status(γ) ≠ raw& status(right(α)) = raw) do
16: status(right(γ)) ← pending; enqueue(Q , right(γ)); ▷ α is a minor premise of→e.

17: if (op(α) = ¬)& (status(left(α)) ≠ raw) then
18: status(β) ← processed for all β; return sf; ▷ Everything derivable.

19: for all γ ∈ Nl(α) s.t. (status(γ) ≠ raw) do
20: status(β) ← processed for all β; return sf; ▷ Everything derivable.

21: for all β ∈ Al(α) s.t �status(right(β)) ≠ raw� & �status(β) = raw� do ▷ α is left premise of ∧i.
22: status(β) ← pending; enqueue(Q , β);
23: for all β ∈ Ar(α) s.t. �status(left(β)) ≠ raw� & �status(β) = raw� do ▷ α is right premise of ∧i.
24: status(β) ← pending; enqueue(Q , β);
25: for all β ∈ Ol(α) s.t. status(β) = raw do ▷ α is premise of ∨i.
26: status(β) ← pending; enqueue(Q , β);
27: for all β ∈ Or(α) s.t. status(β) = raw do ▷ α is premise of ∨i.
28: status(β) ← pending; enqueue(Q , β);
29: for all β ∈ Ir(α) s.t. status(β) = raw do ▷ α is premise of→p.
30: status(β) ← pending; enqueue(Q , β);

31: status(α) ← processed;

32: return {α ∈ sf ∣ status(α) = processed};

7

Lemma 9 (Soundness). If status(β) = processed, then β ∈ core(X).

Proof. Initially, the status of every β ∈ sf is either raw or pending. It is clear from the code that status(β)
becomes processed only after becoming pending. It is also clear that any formula is enqueued only after it
becomes pending. We prove by induction that if status(β) becomes pending at any stage of the while loop,
β ∈ core(X).
The base case is when status(β) becomes pending before the start of the loop. Thismeans that β ∈ X and

hence β ∈ core(X).
Suppose status(β) becomes pending in some iteration of the loop. We consider a few sample cases that

might occur.

status(β) changes at line 10: Here β = left(α). Since α has been dequeued, status(α) became pending in an
earlier iteration. So by induction hypothesis, α ∈ core(X). Now, since β = left(α), α = β ∧ γ for some
γ. It is clear that β can be derived from α using the ∧e rule. Thus β ∈ core(X).

status(β) changes at line 18: Here β changes status because α = ¬γ and status(γ) ≠ raw. Since α has been
dequeued, status(α) became pending in an earlier iteration. Since status(γ) ≠ raw, status(γ) became
pending at an earlier stage of the while loop (in an earlier iteration or earlier in the same iteration).
So α, γ ∈ core(X), by induction hypothesis. It is clear that any β can be derived from α and γ using
the ¬e rule. Thus β ∈ core(X).

status(β) changes at line 22: Here α = left(β). Let right(β) = γ. Since α was dequeued at the start of the
iteration, status(α) became pending in an earlier iteration. We see that status(γ) ≠ raw, and therefore
status(γ) became pending at an earlier stage of the while loop (in an earlier iteration or earlier in the
same iteration). So by induction hypothesis, α, γ ∈ core(X). It is clear that β can be derived from α
and γ using the ∧i rule. Thus β ∈ core(X).

The other cases proceed similarly, and we have the required claim. ⊣

Lemma 10 (Completeness). If β ∈ core(X), eventually status(β) = processed.

Proof. We first prove by induction on size of proofs that if β ∈ core(X) then eventually status(β) becomes
pending (it is enough to show this – if β ever becomes pending, it is enqueued, and upon dequeue it gets
assigned the status processed).
Suppose π is a proof of X ⊢ β that does not use the ∨e rule. Let r be the last rule of π. We consider a

few sample cases.

r is ax: In this case, β ∈ X and status(β) becomes pending in line 4.

r is ∧e: Suppose the premise of r isX ⊢ β ∧ γ. Then by induction hypothesis, status(β ∧ γ) becomes pending
eventually and enters the queueQ . Since each iteration of thewhile loop terminates, eventually β∧γ
is dequeued. In that iteration of the loop, status(β) becomes pending in line 10.

r is ¬e: Suppose the premises of r are X ⊢ α and X ⊢ γ, where α = ¬γ. By induction hypothesis, status(α)
and status(γ) become pending eventually. Without loss of generality, let α be the second element to
be dequeued from Q . When α is dequeued, it is certainly the case that status(γ) ≠ raw. Now one can

8

see that status(β) directly becomes processed in line 18. (In fact, the status of all formulas becomes
processed and the algorithm terminates.)

r is ∧i: Suppose β = α ∧ γ. Then the premises of r are X ⊢ α and X ⊢ γ. By induction hypothesis, status(α)
and status(γ) become pending eventually. Without loss of generality, let α be the second element to
be dequeued from Q . When α is dequeued, it is certainly the case that status(γ) ≠ raw. Now one can
see that status(β) becomes pending in line 22, when α is being processed.

A similar analysis for the other cases completes the proof. ⊣

Lemma 11 (Running time). The algorithm terminates in O(N) time.

Proof. Each element enters Q at most once (when its status changes from raw to pending). We process
each element of Q exactly once, after dequeuing it and before marking it processed. Processing an element
involves setting the status of left(α) and right(α) and perhaps enqueueing them (all these operations take
constant time). It also involves going through each element of the five sets Al(α), Ar(α), Ol(α), Or(α), and
Ir(α). Each of these for all loops takes atmostO(N) time. So itwould appear that the algorithm takesO(N2)
overall. But we need to use the following crucial property. For distinct α and β and f ∈ {Al,Ar ,Ol,Or , Ir}:
f (α) ∩ f (β) = ∅.
Thus the total time spent processing the sets Al(α) is O(N) across all α ∈ sf. And similarly for Ar, Ol,

&c. From this it follows that the algorithm terminates in O(N) time. ⊣

4 Decision procedures for DL

We now solve the derivability problem for the fragment DL, the fragment of ILwithout→ i or ¬i.3
Fix a set of formulasX0 and a formula α0 for the rest of the section. Let sf = sf(X0 ∪ {α0}) andN = |sf|,

as in Section 3.
Recall the definitions of closure(X), derive(X), and core(X) fromSection 3. In this section, we showhow

to compute derive(X) for any X ⊆ sf. We can then check whether X0 ⊢DL α0 by checking if α0 ∈ derive(X0).
The following properties of derive and core are useful in this regard.

• X ⊆ core(X) ⊆ derive(X).

• derive(X) = core(derive(X)) = derive(derive(X)) (by Admissibility of Cut).

• core(X) = core(core(X)) (by Admissibility of Cut).

• If X = core(Y), then core(X) = X. If X = derive(Y), then derive(X) = X.
3It is important to note that we consider only the negation elimination rule. The algorithms in this section do not work in

the presence of the ¬i rule. Nor do we know of a straightforward modification to handle the ¬i rule.

9

4.1 A co-NP procedure for derive

Algorithm 2 checks if X0 ⊬ α0. It uses the notion of a down-closed set. A set X of formulas is down-closed if it
satisfies the following two conditions:

• core(X) ⊆ X.

• whenever α ∨ β ∈ X, then either α ∈ X or β ∈ X.

Y is said to be a down-closure of X if Y is down-closed and X ⊆ Y.

Algorithm 2 Algorithm to check if X0 ⊬ α0
1: Y ← core(X0);
2: while (Y is not down-closed) do
3: guess a formula β0 ∨ β1 ∈ Y such that β0 ∉ Y and β1 ∉ Y;
4: guess i ∈ {0, 1};
5: Y ← core(Y ∪ {βi});
6: if α0 ∉ Y then
7: return “Yes”
8: else
9: return “No”

In Algorithm 2, it is an invariant that Y = core(Z) for some Z and hence core(Y) ⊆ Y. Thus when Y is
not down-closed, there exists β0 ∨ β1 ∈ Y such that neither β0 nor β1 is in Y.
The algorithm guesses a down-closure Y ofX0 such that α0 ∉ Y. The next theorem guarantees that one

can successfully guess such a Y iff X0 ⊬ α0. This ensures the correctness of the algorithm.
Theorem 12. For anyX and α (withX ∪ {α} ⊆ sf),X ⊢ α iff α ∈ Y for every down-closure Y ofX.

This theorem is a consequence of the following three lemmas. But firstwe need a general claim related
to the Left Disjunction Property.
Proposition 13. Suppose φ0 ∨ φ1 ∈ Z and i ∈ {0, 1}. Then Z ∖ {φ0 ∨ φ1}, φi ⊢ θ iff Z, φi ⊢ θ.

Lemma 14. For anyX and α (withX ∪ {α} ⊆ sf),X ⊢ α iff Y ⊢ α for every down-closure Y ofX.

Proof. Suppose X ⊢ α and Y is a down-closure of X. Then X ⊆ Y and hence it is immediate that Y ⊢ α.
Suppose on the other hand that X ⊬ α. We show that there is a sequence

Y0 ⊊ Y1 ⊊ ⋯ ⊊ Yn ⊆ sf

of sets such that

• X ⊆ Y0,

• Yn is down-closed,

• for all i ⩽ n, core(Yi) ⊆ Yi, and

10

• for all i ⩽ n, Yi ⊬ α.

The sequence is constructed by induction. Y0 is defined to be core(X). Since X ⊬ α, it follows that Y0 ⊬ α.
SupposeYk hasbeendefined for some k ⩾ 0 such thatYk ⊬ α. IfYk is down-closed,we aredone. Otherwise,
since core(Yk) ⊆ Yk, there is a β0 ∨ β1 ∈ Yk such that β0 ∉ Yk and β1 ∉ Yk. Since Yk ⊬ α, it follows that
Yk ∖ {β0∨, β1}, βi ⊬ α for some i ∈ {0, 1}, by the Left Disjunction property. By Claim 13 it follows that
Yk , βi ⊬ α for some i ∈ {0, 1}.

Yk+1 = �
core(Yk ∪ {β0}) if Yk , β0 ⊬ α

core(Yk ∪ {β1}) otherwise

Clearly Yk ⊊ Yk+1 and core(Yk+1) = Yk+1. Assume w.l.o.g. that Yk+1 = core(Yk ∪ {β0}). By construction,
Yk∪{β0} ⊬ α. Now supposeYk+1 ⊢ α. SinceYk∪{β0} ⊢ φ for every φ ∈ Yk+1, it would followbyAdmissibilty
of Cut that Yk ∪ {β0} ⊢ α, which is a contradiction. Thus Yk+1 ⊬ α and we can always extend the sequence
as desired.
Further, the Yi’s are strictly increasing, and are all subsets of sf. Thus n ⩽ |sf| and the above construc-

tion terminates. Yn is a down-closure of X that does not derive α. ⊣

Lemma 15. Let π be a proof of X ⊢ α with at least one occurrence of the ∨e rule. Then there is an occurrence of ∨e in π
with major premiseX ⊢ φ ∨ ψ such that φ ∨ ψ ∈ core(X).

Proof. In any proof of the form
π1
⋅
⋅
⋅

X1 ⊢ α1

π2
⋅
⋅
⋅

X2 ⊢ α2

π3
⋅
⋅
⋅

X3 ⊢ α3
r

Y ⊢ γ

we say that any rule in π1 is to the left of r, r is to the left of any rule in π2, and any rule in π2 is to the left
of any rule in π3.
Now consider the leftmost occurrence of ∨e in π. It is the last rule of a subproof π′ of πwhich looks as

follows.
π′1
⋅
⋅
⋅

X′ ⊢ φ ∨ ψ

π′2
⋅
⋅
⋅

X′, φ ⊢ θ

π′3
⋅
⋅
⋅

X′,ψ ⊢ θ
∨e

X′ ⊢ θ
Since this is the leftmost occurrence of ∨e, there is no occurrence of ∨e in π′1. Further, if X′ ≠ X, it means
that π′ is part of the proof of aminor premise of some other ∨e rule in π. But that contradicts the fact that
π′ ends in the leftmost ∨e in π. Thus X′ = X, and π′1 witnesses the fact that φ ∨ ψ ∈ core(X). ⊣

Lemma 16. For a down-closed Y, Y ⊢ α iff α ∈ Y.

Proof. If α ∈ Y, then it is obvious that Y ⊢ α.
In the other direction, suppose Y ⊢ α via a proof πwith k instances of ∨e. We prove the required claim

by induction on k.
In the base case, k = 0, and α ∈ core(Y). Since Y is down-closed, core(Y) ⊆ Y, and hence α ∈ Y.

11

In the induction step, suppose there is an instance of ∨e in the proof of Y ⊢ α. By Lemma 15, we
know that there is at least one occurrence of ∨e (say Y ⊢ γ) with major premise Y ⊢ φ ∨ ψ such that
φ ∨ ψ ∈ core(Y) ⊆ Y, which looks as follows.

π1
⋅
⋅
⋅

Y ⊢ φ ∨ ψ

π2
⋅
⋅
⋅

Y , φ ⊢ γ

π3
⋅
⋅
⋅

Y ,ψ ⊢ γ
∨e

Y ⊢ γ

Thuswe have φ∨ψ ∈ Y. Since Y is down-closed either φ ∈ Y or ψ ∈ Y. Suppose, without loss of generality,
that φ ∈ Y. Now consider π2. Since φ ∈ Y, we know that Y ∪ {φ} = Y, and we can replace the big proof
of Y ⊢ γ by π2, thereby reducing the number of instances of ∨e in the proof of Y ⊢ α. By induction
hypothesis, α ∈ Y, and the lemma follows. ⊣

Running time We now analyze the running time of Algorithm 2. Since Y strictly increases with each
iteration of the loop, there are at most N = |sf| iterations of the loop. In each iteration, we test whether
Y is down-closed, which amounts to checking whether there is some β0 ∨ β1 ∈ Y such that neither β0 nor
β1 is in Y. This check takes O(N) time. We also compute core(Y) in each iteration, which takes time O(N).
Thus the overall running time is O(N2).

4.2 Bounding disjunction elimination

It is evident from the algorithm for derive that the use of the ∨e rule is an important resource. It makes
sense to bound its use and explore its effect on the efficiency of the algorithm. In this section, we show
that if we bound the set of formulas on which disjunction elimination is performed, we get a procedure
whose running time is polynomial in the input size, though exponential in the number of disjunction
eliminations allowed. The following definition makes this notion precise.
Definition 17. Let A be a set of disjunctive formulas. We define a proof of α from X using A (denoted X ⊢A α) as a
proof where any ∨e rules are applied only to formulas which appear in A.

Recall that we have fixed a set sf of sizeN, and consider the derivability ofX ⊢ αwhere sf(X∪{α}) ⊆ sf.
We define deriveA(X) to be {β ∈ sf ∣ X ⊢A β}. Note that derive∅(X) is core(X). The check for X ⊢A α is done
by using Algorithm 3 to compute deriveA(X) and then testing whether α ∈ deriveA(X). (For the purposes
of the algorithm, we assume that the set A is equipped with a linear order, so we can refer to the least
formula in any subset of A.)
In order to prove the correctness of the above algorithm, we require the following claim.

Proposition 18. Let A be a set of disjunctions and α ∨ β ∈ A. Let A′ = A ∖ {α ∨ β}. Then the following hold:

• IfX ⊢A γ thenX, α ⊢A′ γ andX, β ⊢A′ γ.

• IfX ⊢A α ∨ β,X, α ⊢A′ γ andX, β ⊢A′ γ, thenX ⊢A γ.

Proof.

12

Algorithm 3 Algorithm to compute deriveA(X)
1: function f (A,X)
2: Y ← core(X);
3: if A ∩ Y = ∅ then
4: return Y;
5: else
6: A′ ← A ∖ {α ∨ β}, where α ∨ β is the least formula in A ∩ Y;
7: return f (A′,Y ∪ {α}) ∩ f (A′,Y ∪ {β});

• SupposeX ⊢A γ. Then bymonotonicity, we obtain a proof π ofX, α ⊢ γ, such that themajor premise
of every instance of the ∨e rule in π is in A. Note that for every sequent X′ ⊢ δ in π, it is the case
that α ∈ X′. Consider any subproof π′ of πwhose conclusion isX′ ⊢ δ and last rule is ∨ewithmajor
premise α ∨ β (if there is no such subproof, then π witnesses the fact that X, α ⊢A′ γ). π′ has the
following form.

π′1
⋅
⋅
⋅

X′ ⊢ α ∨ β

π′2
⋅
⋅
⋅

X′, α ⊢ δ

π′3
⋅
⋅
⋅

X′, β ⊢ δ
∨e

X′ ⊢ δ

But observe that since α ∈ X′, X′ ∪ {α} = X′. Thus π′2 is itself a proof of X′ ⊢ δ. We can replace π′
by π′2, thereby removing at least one instance of the ∨e rule involving α ∨ β in π. Repeating this, we
obtain that X, α ⊢A′ γ. A similar reasoning gives us the result for X, β ⊢A′ γ.

• Aplying ∨e on α ∨ β using the given proofs of X, α ⊢A′ γ and X, β ⊢A′ γ and X ⊢A α ∨ β for premises
gives us the required result of X ⊢A γ. ⊣

Lemma 19 (Correctness of Algorithm 3). For all A andX,

deriveA(X) = f (A,X).

Proof. Theproof is by induction on the size ofA. For eachfixedA, we assume the statement for all smaller
A′ and all setsZ (nomatter the size), and prove the statement forA and allX. The base case iswhenA = ∅,
when it is clearly the case that for all X, f (∅,X) = core(X) = derive∅(X).
For the induction case, consider X and A s.t. X ⊢A γ, and let Y = core(X). Consider a normal proof π

witnessingX ⊢A γ and assumewithout loss of generality that there is at least one instance of ∨e in π. From
Lemma 15, we see that there is an instance of ∨e in π with major premiseX ⊢ φ ∨ ψ, where φ ∨ ψ ∈ core(X).
Thus A∩Y ≠ ∅. Let α ∨ β be the least formula in A∩Y. Now sinceX ⊆ Y, Y ⊢A γ. Furthermore, α ∨ β ∈ Y.
Hence, by Claim 18, Y , α ⊢A′ γ and Y , β ⊢A′ γ, where A′ = A ∖ {α ∨ β}. Since A′ is of smaller size than A, by
induction hypothesis, deriveA′(Z) = f (A′,Z) for any Z. Thus γ ∈ f (A′,Y ∪ {α}) ∩ f (A′,Y ∪ {β}). It follows
from the definition of f that γ ∈ f (A,X). Thus deriveA(X) ⊆ f (A,X).
On the other hand, suppose that γ ∈ f (A,X), and assume w.l.o.g. that A ∩ Y ≠ ∅, where Y = core(X).

Letting α∨β be the least formula inA∩Y andA′ = A∖{α∨β}, it is clear that γ ∈ f (A′,Y∪{α})∩ f (A′,Y∪{β})

13

from the definition of f . Since A′ is of smaller size than A, it follows from the induction hypothesis that
Y , α ⊢A′ γ and Y , β ⊢A′ γ. Since Y = core(X), it is the case that X ⊢A′ γ for every γ ∈ Y. Thus we can appeal
to the admissibility of cut to conclude thatX, α ⊢A′ γ andX, β ⊢A′ γ. It follows fromClaim 18 thatX ⊢A γ.
Thus f (A,X) ⊆ deriveA(X). ⊣

Theorem 20. If |A| = k, then deriveA(X) is computable in time O(2k ⋅N).

Proof. There are atmost 2k recursive calls to f , and in each invocationwemake one call to core, which takes
O(N) time. Thus the overall running time is O(2k ⋅N). ⊣

5 The complexity of disjunction

Wehave seen that CL is solvable in linear time, and thatDL is solvable in co-NP. Is this the best we can do?
Might there not be some clever way to handle disjunction elimination that yields a PTIME algorithm?
In this section, we answer these questions by proving co-NP-hardness for three (reasonably minimal)
fragments involving disjunction. But first, as a study in contrast, we consider disjunction by itself, and
show that that fragment is solvable in PTIME.This indicates that the lower bound results that appear later
in this section are a result of interaction between the various logical rules, rather than due to disjunction
alone.

5.1 The disjunction-only fragment

Let IL[∨] denote the fragment of IL consisting of the ax, ∨i and ∨e rules, and involving formulas of Φ∨.
Theorem 21. The derivability problem for IL[∨] is in PTIME.

Suppose X = {α1i ∨ α
2
i ∨ ⋯ ∨ αki ∣ 1 ⩽ i ⩽ n} is a set of formulas from Φ∨, with each αji ∈ P . Let

β = β1 ∨ β2 ∨ ⋯ ∨ βk ∈ Φ∨, with each βj ∈ P . (Note that any input to the derivability problem of IL∨

can be converted to the above form by choosing appropriate k, flattening the disjunctions, and repeating
disjuncts). We now have the following claim.
Proposition 22. X ⊢ β iff there exists i ⩽ n such that α1i ∨ α

2
i ∨ ⋯ ∨ αki ⊢ β.

Proof. It is obvious that if α1i ∨ α2i ∨ ⋯ ∨ αki ⊢ β then X ⊢ β (byMonotonicity).
For proving the other direction, suppose (towards a contradiction) X ⊢ β, but there is no i such that

α1i ∨ α
2
i ∨ ⋯ ∨ αki ⊢ β. In particular, from the Left Disjunction Property, for every i, some αjii ⊬ β. W.l.o.g.,

assume that ji = 1 for every i. Therefore we have

α11 ⊬ β, α12 ⊬ β, … , α1n ⊬ β.

Now, sinceX ⊢ β and α1i ⊢ α1i ∨⋯∨αki for each i ⩽ n, it follows byAdmissibility of Cut that α11, … , α1n ⊢ β
(and there is a normal proof π with that conclusion). Since all the α1is are atomic propositions, the only
rules that can appear in π are ax and ∨i. Therefore, at some point, one of the α1is must have contributed
to a βj via an ax rule. However, this gives us α1i ⊢ β (by deriving βj and then applying ∨i), which is a
contradiction. Thus we have the required claim. ⊣

14

Given this claim,weknowthat it is enough to see if a particular formula on the left (sayαi) derives β. In
particular, from theLeftDisjunctionProperty, we get that everydisjunct in αi needs to derive β. Therefore,
the derivability problem is equivalent to checking if there is a formula in X all of whose disjuncts occur
in β, and thus we obtain the required PTIME procedure.

5.2 Disjunction and conjunction

Wehave now confirmed that the ∨-only fragment is in PTIME. It is also known that some other fragments
without disjunction elimination (CL, for example) give rise to PTIME logics. However, we obtain the fol-
lowing result for the logic with conjunction and disjunction.4
Let IL[∨, ∧]denote the fragment of IL consisting of the ax, ∨i, ∨e, ∧i and∧e rules, and involving formulas

of Φ∨,∧.
Theorem 23. The derivability problem for IL[∨, ∧] is co-NP-hard.

The hardness result is obtained by reducing the validity problem for boolean formulas to the deriv-
ability problem for IL[∨, ∧]. In fact, it suffices to consider the validity problem for boolean formulas in
disjunctive normal form. We show how to define for each DNF formula φ a set of IL[∨, ∧]-formulas Sφ and
an IL[∨, ∧]-formula φ such that Sφ ⊢ φ iff φ is a tautology.
Let {x1, x2, …} be the set of all boolean variables. For each boolean variable xi, fix two distinct atomic

propositions pi, qi ∈ P . We define φ as follows, by induction.

• xi = pi

• ¬xi = qi

• φ ∨ ψ = φ ∨ ψ

• φ ∧ ψ = φ ∧ ψ

Let Voc(φ), the set of all boolean variables occurring in φ, be {x1, … , xn}. Then

Sφ = {p1 ∨ q1, … , pn ∨ qn}.

Lemma 24. Sφ ⊢ φ iff φ is a tautology.

Proof. Recall that a propositional valuation v over a set of variables V is just a subset of V , namely those
variables that are set to true by v.
For a valuation v ⊆ {x1, … , xn}, define Sv = {pi ∣ xi ∈ v} ∪ {qi ∣ xi ∉ v}.
By repeated appeal to the Left Disjunction Property, it is easy to see that Sφ ⊢ φ iff for all valuations v

over {x1, … , xn}, Sv ⊢ φ. Wenowshow that Sv ⊢ φ iff v ⊧ φ. The statement of the lemma follows immediately
from this.

• We first show by induction on ψ ∈ sf(φ) that whenever v ⊧ ψ, it is the case that Sv ⊢ ψ.
4This fragment is interesting: one can show thatX ⊢IL[∨,∧] α iff α is a consequence ofX in classical logic. Thus anNP procedure

for non-derivability would just guess a valuation that satisfied X but not α. While this translation to classical logic yields a
simple algorithm, it is not clear to us how to use this translation to prove lower bounds.

15

– If ψ = xi or ψ = ¬xi, then Sv ⊢ ψ follows from the ax rule.

– If ψ = ψ1 ∧ ψ2, then it is the case that v ⊧ ψ1 and v ⊧ ψ2. By induction hypothesis, Sv ⊢ ψ1 and
Sv ⊢ ψ2. Hence, by using ∧i, it follows that Sv ⊢ ψ1 ∧ ψ2.

– If ψ = ψ1 ∨ ψ2, then it is the case that either v ⊧ ψ1 or v ⊧ ψ2. By induction hypothesis, Sv ⊢ ψ1 or
Sv ⊢ ψ2. In either case it follows that Sv ⊢ ψ1 ∨ ψ2, by using ∨i.

• We now show that if Sv ⊢ φ, then v ⊧ φ. Suppose π is a normal proof of Sv ⊢ φ, and that there is an
occurrence of the ∧e rule or ∨e rule in π with major premise S′ ⊢ γ. We denote by ρ this subproof
with conclusion S′ ⊢ γ. Note that ρ ends in a pure elimination rule, since π is normal and every pure
elimination rule and hybrid rule has as its major premise the conclusion of a pure elimination rule.
ByTheorem 4, we see that S′ ⊆ sf(Sv) = Sv, and γ ∈ sf(S′). But γ is of the form α ∨ β or α ∧ β, and this
contradicts the fact that Sv ⊆ P . Thus π consists of only the ax, ∧i and ∨i rules. We now show by
induction that for all subproofs π′ of π with conclusion Sv ⊢ ψ, it is the case that v ⊧ ψ.

– Suppose the last rule of π′ is ax. Then ψ ∈ Sv, and for some i ⩽ n, ψ = xi or ψ = ¬xi. It can be
easily seen that v ⊧ ψ (by the definition of Sv).

– Suppose the last rule of π′ is ∧i. Then ψ = ψ1 ∧ ψ2, and Sv ⊢ ψ1 and Sv ⊢ ψ2. Thus, by induction
hypothesis, v ⊧ ψ1 and v ⊧ ψ2. Therefore v ⊧ ψ.

– Suppose the last rule of π′ is ∨i. Then ψ = ψ1 ∨ ψ2, and either Sv ⊢ ψ1 or Sv ⊢ ψ2. Thus, by
induction hypothesis, either v ⊧ ψ1 or v ⊧ ψ2. Therefore v ⊧ ψ. ⊣

5.3 Disjunction and implication elimination

Wenowconsider anotherminimal system, IL[∨,→e], consisting of the rules ax,∨i,∨e and→e and involving
formulas from Φ∨,→, and prove the following result.
Theorem 25. The derivability problem for IL[∨,→e] is co-NP-hard.

The proof is by reduction from the validity problem for 3-DNF, as detailed below.
Let φ be a 3-DNF formulawith each clause having exactly 3 literals. Let Voc(φ) be {x1, … , xn}. We define

indx(φ) = {1, … , n}∪{1′, … , n′}, where (i′)′ = i for any i ∈ indx(φ). For i ⩽ n, we define l(i) = xi and l(i′) = ¬xi.
We define the following sets.

Sφ ∶= �pa ∨ pa′ ∣ a ∈ indx(φ)� .

Tφ ∶= �pa → pb → pc → pabc ∣ a, b, c ∈ indx(φ)� .

We define φ as follows:

φ ∶=��pabc ∣ l(a) ∧ l(b) ∧ l(c) is a disjunct of φ� .

For each valuation v ⊆ {x1, … , xn}, define Sv to be

{pi ∣ xi ∈ v} ∪ {pi′ ∣ xi ∉ v}.

Lemma 26. Sφ,Tφ ⊢ φ iff φ is a tautology.

16

Proof. By repeated appeal to the Left Disjunction Property, it is easy to see that Sφ,Tφ ⊢ φ iff Sv,Tφ ⊢ φ
for all valuations v over {x1, … , xn}. We now show that for all such valuations, v ⊧ φ iff Sv,Tφ ⊢ φ.
Let π be a normal proof of Sv,Tφ ⊢ φ. The last rule of π has to be ∨i, since if π ends in an elimination

rule, from the Subformula Property it follows that a disjunction is a subformula of Sv ∪ Tφ, which is not
the case. Repeating this argument, we see that there is a subproof of π with conclusion Sv,Tφ ⊢ pabc for
some disjunct l(a)∧ l(b)∧ l(c) of φ. We now show that for any valuation v, Sv,Tφ ⊢ pabc iff v ⊧ l(a)∧ l(b)∧ l(c).
If v ⊧ l(a) ∧ l(b) ∧ l(c), then we have pa, pb, pc ∈ Sv (from the definition of Sv), and therefore by applying

the → e rule to pa → pb → pc → pabc in Tφ, we have Sv,Tφ ⊢ pabc. In the other direction, suppose we have a
normal proof π of Sv,Tφ ⊢ pabc. By examining Sv and Tφ, we see that only pa → pb → pc → pabcmentions pabc.
So it is clear that pc must be derivable from Sv,Tφ, and the last rule of π must be→ e, applied to pc → pabc.
Now in order for this formula to be derivable, pb must be derivable, and similarly pa must be derivable.
Since pa, pb and pc can only be obtained by ax, it must be that pa, pb, pc ∈ Sv and therefore v ⊧ l(a)∧ l(b)∧ l(c).
Thus we have that Sv,Tφ ⊢ pabc iff v ⊧ l(a) ∧ l(b) ∧ l(c), and the required claim follows. ⊣

5.4 Disjunction and negation elimination

We consider yet another minimal system, IL[∨, ¬e], consisting of the rules ax, ∨i, ∨e and→e and involving
formulas from Φ∨,¬, and prove the following result.
Theorem 27. The derivability problem for IL[∨, ¬e] is co-NP-hard.

The proof is again by reduction from the validity problem for 3-DNF, as detailed below.
Let φ be a 3-DNF formulawith each clause having exactly 3 literals. Let Voc(φ) be {x1, … , xn}. We define

indx(φ) = {1, … , n}∪{1′, … , n′}, where (i′)′ = i for any i ∈ indx(φ). For i ⩽ n, we define l(i) = xi and l(i′) = ¬xi.
For i ⩽ n, we define �pi = ¬pi and�pi′ = pi.
We define the following sets.

Sφ ∶= �pi ∨ ¬pi ∣ i ⩽ n� .

Tφ ∶= ��pa ∨ �pb ∨ �pc ∨ pabc ∣ a, b, c ∈ indx(φ)� .

We define φ as follows:
φ ∶=��pabc ∣ (l(a) ∧ l(b) ∧ l(c)) ∈ φ� .

For each valuation v ⊆ {x1, … , xn}, define Sv to be

{pi ∣ xi ∈ v} ∪ {pi′ ∣ xi ∉ v}.

Lemma 28. Sφ,Tφ ⊢ φ iff φ is a tautology.

Proof. Let us assume that φ = ⋁ {l(ai) ∧ l(bi) ∧ l(ci) ∣ i ⩽ m}, for ease of notation. By repeated appeal to the
Left Disjunction Property, it is easy to see that Sφ,Tφ ⊢ φ iff Sv,Tφ ⊢ φ for all valuations v over {x1, … , xn}.
We now show that for all valuations v,

v ⊧ φ iff Sv,Tφ ⊢ φ.

17

• Suppose v ⊧ φ. This means that v ⊧ l(ai) ∧ l(bi) ∧ l(ci) for some i. For the sake of readability, let
us refer to this disjunct as l(a) ∧ l(b) ∧ l(c). It is clear in this case that {pa, pb, pc} ⊆ Sv. Letting
T′ = Tφ ∖ {�pa ∨ �pb ∨ �pc ∨ pabc}, we have

Sv,Tφ ⊢ φ (1)
iff

Sv,T′, �pa ⊢ φ and (2)
Sv,T′, �pb ⊢ φ and (3)
Sv,T′, �pc ⊢ φ and (4)
Sv,T′, pabc ⊢ φ (5)

Now it is easily seen that (2), (3) and (4) are true, since {pa, pb, pc} ⊆ Sv and we can use the ¬e rule.
Now Sv,T′, pabc ⊢ pabc, and hence (5) follows (by a series of applications of ∨i rules). Thus Sv,Tφ ⊢ φ.

• Suppose v ⊭ φ. This means that for every i ⩽ m, either v ⊭ l(ai) or v ⊭ l(bi) or v ⊭ l(ci). Without loss
of generality, let us assume that v ⊭ l(ai) for all i ⩽ m. Now it is clear that pai ∉ Sv, and thus �pai ∈ Sv,
for each i ⩽ m.

Now suppose Sv,Tφ ⊢ φ. This implies that Sv, {�pai ∣ i ⩽ m} ⊢ φ. However, �pai ∈ Sv for all i ⩽ m, and
therefore Sv ⊢ φ. Suppose there is a normal proof π for the same. Since Sv ⊆ P , the only rules that
can occur in π are ax and ∨i. This in turn implies that Sv ⊢ paibici for some i ⩽ m. But a proof of
Sv ⊢ paibici can only use the ax rule, but paibici ∉ Sv, so we have a contradiction. Thus we have proved
that if v ⊭ φ then Sv,Tφ ⊬ φ. ⊣

6 Discussion

To summarize our results, we have presented a core fragment of IL, which we call CL, whose derivability
problem is solvable in linear time, and used this algorithm as a core subroutine in a co-NP decision pro-
cedure for the larger fragment DL (which includes the ∨e rule). We cannot do better than co-NP when
we consider disjunction interacting with other operators, as demonstrated by the lower bound proofs we
have provided for IL[∨, ∧], IL[∨,→ e], and IL[∨, ¬e]. The fragment IL[∨] (which includes only the ax, ∨i, and
∨e rules) though, is solvable in PTIME, in contrast to the implication-only fragment of IL. Of the two rules
for negation,¬e does notmodify the assumptions in the sequents, whereas¬i discharges the assumption
α while concluding ¬α. There does not appear to be a straightforward adaptation of our algorithms to
handle ¬i.5
We can also consider adding �-like modalities to the [∧, ∨] fragment of our logic. This system is in

co-NP, and the algorithm proceeds along similar lines to the one in [RSS14]. On the other hand, if we add
modalities to a logic with implication (even primal implication), the system is PSPACE-complete [BG14].
Perhaps themost importantway to take thiswork further is to identify restricted formsof disjunction

that are efficiently solvable, as this would be of use in many practical applications. If we can identify
5Note that the fragment studied in [BG14], consisting of rules for primal implication, disjunction, and a ⊥ operator, does

not subsume¬i. While full implication and⊥ can be used to code the negation rules, primal implication and⊥ can only capture
the effect of the ¬e rule.

18

scenarios in which a bounded number of applications of the disjunction elimination rule would suffice,
our PTIME algorithm inSection4.2would comeveryhandy, opening thedoor for parametrized algorithms
for derivability.

References

[ABLP93] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in dis-
tributed systems. ACMTransactions on Programming Languages and Systems, 15(4):706–734, 1993.

[Avr10] Arnon Avron. Tonk – a full mathematical solution. In Hues of Philosophy: Essays in Memory of
RuthManor, pages 17–42. College Publications, 2010.

[BG14] L.D. Beklemishev and Y. Gurevich. Propositional Primal Logic with Disjunction. Journal of
Logic and Computation, 24(1):257–282, 2014.

[BNRS13] A. Baskar, P. Naldurg, K. R. Raghavendra, and S. P. Suresh. Primal Infon Logic: Derivability
in Polynomial Time. In Foundations of Software Technology andTheoretical Computer Science (FSTTCS
2013), volume 24 of Leibniz International Proceedings in Informatics (LIPIcs), pages 163–174, 2013.

[CS03] H.Comon-Lundh andV. Shmatikov. IntruderDeductions, Constraint Solving and Insecurity
Decision in Presence of Exclusive or. In 18th IEEE Symposium on Logic in Computer Science (LICS
2003), pages 271–282, 2003.

[CT03] H. Comon-Lundh and R. Treinen. Easy Intruder Deductions. In N. Dershowitz, editor, Veri-
fication: Theory and Practice, volume 2772 of Lecture Notes in Computer Science, pages 225–242, 2003.

[CZ97] A. Chagrov andM. Zakharyaschev. Modal Logic. Clarendon Press, Oxford, 1997.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–207, 1983.

[GdJ74] D.M. Gabbay andD.H.J. de Jongh. A Sequence of Decidable Finitely Axiomatizable Interme-
diate Logics with the Disjunction Property. Journal of Symbol Logic, 39(1):67–78, 1974.

[GN08] Y. Gurevich and I. Neeman. DKAL: Distributed-Knowledge Authorization Language. In 21st
IEEE CSF Symposium, pages 149–162, 2008.

[GN11] Y. Gurevich and I. Neeman. Logic of Infons: ThePropositional Case. ACMTrans. Comput. Logic,
12(2):9:1–9:28, January 2011.

[Kur09] H. Kurokawa. Hypersequent Calculi for Intuitionistic Logic with Classical Atoms. Annals of
Pure and Applied Logic, 161(3):427–446, 2009.

[McA93] D.A. McAllister. Automatic Recognition of Tractability in Inference Relations. J. ACM,
40(2):284–303, 1993.

19

[MMP15] M. Magirius, M. Mundhenk, and R. Palenta. The Complexity of Primal Logic with Disjunc-
tion. Information Processing Letters, 115(5):536–542, 2015.

[RSS14] R. Ramanujam, V. Sundararajan, and S. P. Suresh. Extending Dolev-Yao with Assertions. In
Information Systems Security - 10th International Conference, ICISS 2014, pages 50–68, 2014.

[Sak04] A. Sakharov. Median Logic. Technical report, St. PetersbergMathematical Society, 2004.

[Sta79] R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical Com-
puter Science, 9(1):67–72, 1979.

A Weak normalization and subformula property

Among the rules, ax, ∧e and → e are the pure elimination rules, ¬e, ¬i and ∨e are the hybrid rules and the rest
are pure introduction rules. A normal derivation is one where the major premise of every pure elimination rule
and hybrid rule is the conclusion of a pure elimination rule. A derivation is normal iff its cut rank is 0, as
given by the following definition.
Definition 29 (Cut rank of a derivation). Let π be a derivation with conclusionX ⊢ α and last rule r. Let π1, … , πn
be the immediate subproofs of π. Let each πi end with rule ri and have conclusion Xi ⊢ αi. Also, let X1 ⊢ α1 be the major
premise of r. By induction on π, we define cutrank(π) as follows:

• If r is a pure elimination rule or a hybrid rule and r1 is not a pure elimination rule, then

cutrank(π) = max(|α1|, cutrank(π1),⋯ , cutrank(πn)).

• Otherwise
cutrank(π) = max(cutrank(π1),⋯ , cutrank(πn)).

(Note that if r is ax, cutrank(π) = 0, by the second clause above.)

Proposition 30 (Monotonicity). If there is a proof of X ⊢ α with cut rank m and X ⊆ X′, then there is a proof of
X′ ⊢ α with cut rank m.

Proof. Let π be a proof of X ⊢ α, and let Y = X′ ∖X. It is easy to check that replacing every sequent Z ⊢ β
occurring in π by Z ∪ Y ⊢ β, we still have a valid proof π′, with conclusion X′ ⊢ α. (The point is that in
rules involving a discharge of the premises, the discharge is optional, so if some rule in π discharges a
formula in Y, we can apply the same rule in π′ without discharging that formula.) Since the structure of
the proof does not change, the cut rank remains the same. ⊣

Proposition 31 (Admissibility of Cut). If π1 is a derivation of X ⊢ α (with last rule r1) and π a derivation of Y ⊢ β
(with last rule r), then there is a derivation ρ ofX,Y − α ⊢ β such that

cutrank(ρ) ⩽ max(cutrank(π1), cutrank(π), |α|).

Further, either the last rule of ρ is r or β = α and the last rule of ρ is r1.

20

Proof. The proof is by induction on the size of π, and a case analysis on r. For notational ease, we let
cutrank(π1) = m1, cutrank(π) = m, and n = max(m1,m, |α|). We present a few sample cases below.

r is ax: If β ≠ α, then β ∈ Y − α and we can take ρ to be the following proof:

ax
X,Y − α ⊢ β

Clearly cutrank(ρ) = 0 ⩽ n and the last rule of ρ is r.

If β = α, then we take ρ to be the proof of X,Y − α ⊢ β guaranteed byMonotonicity (applied to π1).
Clearly cutrank(ρ) = m1 ⩽ n, and the last rule of ρ is r1 as required.

r is ∧i: Then π has the following structure:

τ1
⋅
⋅
⋅

Y ⊢ β1

τ2
⋅
⋅
⋅

Y ⊢ β2
∧i

Y ⊢ β

By induction hypothesis, there exist proofs ρ1 and ρ2with conclusionsX,Y−α ⊢ β1 andX,Y−α ⊢ β2
respectively, both of which have cut ranks at most n. We define ρ to be the following proof:

ρ1
⋅
⋅
⋅

X,Y − α ⊢ β1

ρ2
⋅
⋅
⋅

X,Y − α ⊢ β2
∧i

X,Y − α ⊢ β

Clearly cutrank(ρ) = max(cutrank(ρ1), cutrank(ρ2)) ⩽ n. Further, the last rule of ρ is r.

r is→ i: Then β = φ → ψ and π has the following structure:

τ1
⋅
⋅
⋅

Y , φ ⊢ ψ
→ i

Y ⊢ φ → ψ

By induction hypothesis, there exist a proof ρ1 with conclusion X, (Y , φ) − α ⊢ ψ whose cut rank
is at most n. By appealing to Monotonicity if necessary (in the case when φ = α), we can take the
conclusion of ρ1 to be X, φ,Y − α ⊢ ψ. ρ is the following proof:

ρ1
⋅
⋅
⋅

X, φ,Y − α ⊢ ψ
→ i

X,Y − α ⊢ φ → ψ

Clearly cutrank(ρ) = cutrank(ρ1) ⩽ n. Further, the last rule of ρ is r.

21

r is ∨e: Then π has the following structure:

τ1
⋅
⋅
⋅

r′1
Y ⊢ φ ∨ ψ

τ2
⋅
⋅
⋅

Y , φ ⊢ β

τ3
⋅
⋅
⋅

Y ,ψ ⊢ β
∨e

Y ⊢ β

By inductionhypothesis, there exist proofs ρ1, ρ2 and ρ3with conclusions respectivelyX,Y−α ⊢ φ∨ψ,
X, (Y , φ) − α ⊢ β, andX, (Y ,ψ) − α ⊢ β, all of whose cut ranks are⩽ n. By appealing toMonotonicity
if necessary (in the caseswhen α is φ or ψ), we can take the conclusion of ρ2 and ρ3 to beX, φ,Y−α ⊢ β
and X,ψ,Y − α ⊢ β. ρ is the following proof:

ρ1
⋅
⋅
⋅

r″1
X,Y − α ⊢ φ ∨ ψ

ρ2
⋅
⋅
⋅

X, φ,Y − α ⊢ β

ρ3
⋅
⋅
⋅

X,ψ,Y − α ⊢ β
∨e

X,Y − α ⊢ β

Now if r″1 is a pure elimination, cutrank(ρ) ⩽ n. Otherwise, cutrank(ρ) ⩽ max(|φ ∨ ψ|, n). But then
either r″1 = r′1 (in which case |φ∨ψ| ⩽ m ⩽ n), or α = φ∨ψ and r″1 = r1 (in which case |φ∨ψ| = |α| ⩽ n).
Thus cutrank(ρ) ⩽ n. Again the last rule of ρ is r. ⊣

Lemma 32. Let π be a derivation with conclusionX ⊢ α and last rule r with cutrank(π) = m > 0, such that all proper
subderivations of π are of rank < m. Then the following hold.

1. If r is a pure elimination rule, |α| < m.

2. There is a derivation π′ ofX ⊢ α such that cutrank(π′) < m.

Proof. Let π1, … , πn be the immediate subproofs of π. Let each πi end with rule ri and have conclusion
Xi ⊢ αi, and let X1 ⊢ α1 be the major premise of r. Given the conditions of the lemma, it is clear that
cutrank(π) = |α1| = m, r1 is not a pure elimination rule, r is a pure elimination rule or a hybrid rule, and
X1 = X.

1. If r is a pure elimination rule, then we have the following cases:

• α1 = α ∧ β or α1 = β ∧ α, for some β.

• α1 = β → α for some β.

In both these cases, it is clear that |α| < |α1| = m.

2. To show the existence of π′, we perform an induction on ‖π‖ and a case analysis on r1.

• Suppose r1 is ∧i. Then r has to be ∧e. In this case we can take π′ to be one of the immediate
subproofs of π1, and clearly cutrank(π′) < m.

22

• Suppose r1 is ∨i. Then r has to be ∨e. Say α1 = β ∨ γ and the major premise of r1 is β. Note that
|β| < |β ∨ γ| = m. Let π2 be the immediate subproof of π with conclusion X, β ⊢ α, and let
π11 be the subproof of π1 with conclusion X ⊢ β. Thus we can apply cut on π11 and π2 to get a
derivation π′ of X ⊢ α such that

cutrank(π′) ⩽ max(|β|, cutrank(π11), cutrank(π2)) < m.

• Suppose r1 is→ i. Then r is→e and α1 = β → α, and π has the following form:

π11
⋅
⋅
⋅

X, β ⊢ α
→ i

X ⊢ β → α

π2
⋅
⋅
⋅
X ⊢ β

→e
X ⊢ α

Now by applying cut on π11 and π2, we see that there is a proof π′ of X ⊢ α of cut rank ⩽
max(m− 1, |β|) < m (since |β| < |β → α| = m).

• Suppose r1 is¬i. Then r is either¬i or¬e. We consider the case when r is¬i – the other case is
handled similarly. In this case α = ¬α′ and π has the following form:

π11
⋅
⋅
⋅

r11
X, α′, β ⊢ ¬γ

π12
⋅
⋅
⋅

r12
X, α′, β ⊢ γ

¬i
X, α′ ⊢ ¬β

π2
⋅
⋅
⋅

r2
X, α′ ⊢ β

¬i
X ⊢ ¬α′

Now by applying cut on π2 and π11, as well as on π2 and π12, we see that there are proofs π′1
and π′2 of X, α′ ⊢ ¬γ and X, α′ ⊢ γ respectively, with last rules r′1 and r′2, and both of cut rank
⩽ max(m− 1, |β|) < m (since |β| < |¬β| = m). π′ can be taken to be the following:

π′1
⋅
⋅
⋅

X, α′ ⊢ ¬γ

π′2
⋅
⋅
⋅

X, α′ ⊢ γ
¬i

X ⊢ ¬α′

Now if r′1 is a pure elimination,

cutrank(π′) = max(cutrank(π′1), cutrank(π′2)) < m.

Otherwise, cutrank(π′) ⩽ max(m− 1, |¬γ|). But by Proposition 31, either r′1 = r11, or r′1 = r2 (and
¬γ = β). In the former case, |¬γ| ⩽ cutrank(π1) < m. Otherwise |¬γ| < |¬β| = m. Therefore
cutrank(π′) < m.

• Suppose r1 is ¬e. r could be any pure elimination or hybrid rule. We shall consider the cases
when it is ¬i and ∨e. The other cases are similar or simpler.

23

– Suppose r is ¬i. Then α = ¬α′ and π has the following form:

π11
⋅
⋅
⋅

X, α′ ⊢ ¬γ

π12
⋅
⋅
⋅

X, α′ ⊢ γ
¬e

X, α′ ⊢ ¬β

π2
⋅
⋅
⋅

X, α′ ⊢ β
¬i

X ⊢ ¬α′

π′ is taken to be the following:

π11
⋅
⋅
⋅

X, α′ ⊢ ¬γ

π12
⋅
⋅
⋅

X, α′ ⊢ γ
¬i

X ⊢ ¬α′

Clearly cutrank(π′) = cutrank(π1) < m.
– Suppose r is ∨e. Then π has the following form:

π11
⋅
⋅
⋅

X ⊢ ¬γ

π12
⋅
⋅
⋅
X ⊢ γ

¬e
X ⊢ φ ∨ ψ

π2
⋅
⋅
⋅

X, φ ⊢ α

π3
⋅
⋅
⋅

X,ψ ⊢ α
∨e

X ⊢ α

π′ is taken to be the following:

π11
⋅
⋅
⋅

X ⊢ ¬γ

π12
⋅
⋅
⋅
X ⊢ γ

¬e
X ⊢ α

Clearly cutrank(π′) = cutrank(π1) < m.
• Suppose r1 is ∨e. Now r can be any pure elimination or hybrid rule. We consider the case when
it is ∨e. The rest of the cases are similar. Now α1 = β ∨ β′ and π has the following form:

π11
⋅
⋅
⋅

X ⊢ γ ∨ γ′

π12
⋅
⋅
⋅

X, γ ⊢ β ∨ β′

π13
⋅
⋅
⋅

X, γ′ ⊢ β ∨ β′
∨e

X ⊢ β ∨ β′

π2
⋅
⋅
⋅

X, β ⊢ α

π3
⋅
⋅
⋅

X, β′ ⊢ α
∨e

X ⊢ α

Let τ2 be the following proof

π12
⋅
⋅
⋅

X, γ ⊢ β ∨ β′

π2
⋅
⋅
⋅

X, γ, β ⊢ α

π3
⋅
⋅
⋅

X, γ, β′ ⊢ α
∨e

X, γ ⊢ α

24

and let τ3 be the following proof.

π13
⋅
⋅
⋅

X, γ′ ⊢ β ∨ β′

π2
⋅
⋅
⋅

X, γ′, β ⊢ α

π3
⋅
⋅
⋅

X, γ′, β′ ⊢ α
∨e

X, γ′ ⊢ α

Now it is possible that cutrank(τ2) = cutrank(τ3) = m, but ‖τ2‖ < ‖π‖ and ‖τ3‖ < ‖π‖. Hence
by induction hypothesis, there are proofs π′2 and π′3, both of cut rank < m, with conclusions
X, γ ⊢ α and X, γ′ ⊢ α respectively. We take π′ to be the following proof:

π11
⋅
⋅
⋅

X ⊢ γ ∨ γ′

π′2
⋅
⋅
⋅

X, γ ⊢ α

π′3
⋅
⋅
⋅

X, γ′ ⊢ α
∨e

X ⊢ α

Now if π11 ends in a pure elimination,

cutrank(π′) = max(cutrank(π11), cutrank(π′2), cutrank(π′3)) < m.

Otherwise cutrank(π′) ⩽ max(m − 1, |γ ∨ γ′|). But if π11 does not end in a pure elimination,
|γ ∨ γ′| ⩽ cutrank(π1) < m, and it follows that cutrank(π′) < m. ⊣

Theorem 33 (Weak normalization). If there is a derivation π of X ⊢ α then there is a normal derivation ρ of X ⊢ α.
Further, if a formula α ∨ β occurs as the major premise of an instance of ∨e in ρ, it also occurs as the major premise of an
instance of ∨e in π.

Proof. For every derivation π, define μ(π) to be the pair (m, n)where m = cutrank(π), and n is the number
of subderivations of π of rank m. If cutrank(π) is 0, π is already normal. If not, let cutrank(π) = m > 0 and
let ρ be a subderivation of πwith conclusionX′ ⊢ β such that cutrank(ρ) = m and no proper subderivation
of ρ is of rank ⩾ m. By Lemma 32, there is another derivation ρ′ with the same conclusion such that
cutrank(ρ′) < m. Replace ρ by ρ′ in π to get the proof π′. Now one subderivation of rank m has been
eliminated in the process of going from π to π′. But we need to check that no new derivations of rank
⩾ m have been introduced in π′. The only way this can happen is if ρ′ is not a pure elimination rule and
is the major premise of an elimination rule or hybrid rule in π′. But then either |β| < m or ρ itself ends
in a hybrid rule. In either case, no new subderivation of rank ⩾ m gets introduced. Thus μ(π′) < μ(π).
Since lexicographic ordering on pairs of natural numbers is a well order, by repeating the above process
we eventually reach a proof of rank 0 – a normal proof, in other words.
Also note that the transformations in Lemma 32 do not introduce new formulas as major premises

of ∨e, even though it might increase the number of instances of ∨e. This proves the second part of the
theorem. ⊣

Theorem 34 (Subformula property). Let π be a normal derivation with conclusionX ⊢ α and last rule r. LetX′ ⊢ β
occur in π. Then X′ ⊆ sf(X ∪ {α}) and β ∈ sf(X ∪ {α}). Furthermore, if r is a pure elimination rule, then X′ ⊆ sf(X)
and β ∈ sf(X).

25

Proof. Theproof is by induction on the structure of π, and based on a case analysis on r. We present a few
representative cases here.

• Suppose r is ∧i. Then α = α′ ∧ α″ and π is of the following form:
π′
⋅
⋅
⋅

X ⊢ α′

π″
⋅
⋅
⋅

X ⊢ α″
∧i

X ⊢ α
Clearly α′ ∈ sf(α) and α″ ∈ sf(α). Now either X′ = X and β = α or X′ ⊢ β occurs in π′ or π″. In the
second and third cases, X′ ⊆ sf(X ∪ {α′, α″}) and β ∈ sf(X ∪ {α′, α″}), by induction hypothesis. But
sf(X ∪ {α′, α″}) ⊆ sf(X ∪ {α}), and hence we are done.

• Suppose r is→ i. Then α = α′ → α″ and π is of the following form:
π1
⋅
⋅
⋅

X, α′ ⊢ α″
→ i

X ⊢ α
Clearly α′ ∈ sf(α) and α″ ∈ sf(α). Now either X′ = X and β = α or X′ ⊢ β occurs in π1. In the latter
case, by induction hypothesis X′ ⊆ sf(X ∪ {α′, α″}) and β ∈ sf(X ∪ {α′, α″}). But sf(X ∪ {α′, α″}) ⊆
sf(X ∪ {α}), and hence we are done.

• Suppose r is ∨e. Then π is of the following form:
π1
⋅
⋅
⋅

X ⊢ φ ∨ ψ

π2
⋅
⋅
⋅

X, φ ⊢ α

π3
⋅
⋅
⋅

X,ψ ⊢ α
∨e

X ⊢ α
Again, either X′ = X and β = α or X′ ⊢ β occurs in one of the πi’s. Suppose it occurs in π1. Notice
that since π is normal, the last rule of π1 is a pure elimination, and hence by induction hypothesis,
X′ ⊆ sf(X) and β ∈ sf(X). Inparticular, φ∨ψ ∈ sf(X) and thus {φ,ψ} ⊆ sf(X). Nowsuppose thatX′ ⊢ β
occurs inπ2 orπ3. ThenwehaveX′ ⊆ sf(X∪{φ,ψ, α}) ⊆ sf(X∪{α}) and β ∈ sf(X∪{φ,ψ, α}) ⊆ sf(X∪{α}),
by induction hypothesis.

• Suppose r is→e. Then π is of the following form (w.l.o.g.):
π′
⋅
⋅
⋅

X ⊢ φ → α

π″
⋅
⋅
⋅
X ⊢ φ

→e
X ⊢ α

Again, either X′ = X and β = α or X′ ⊢ β occurs in π′ or π″. Since π is normal, π′ ends in a
pure elimination rule. Therefore for any X′ ⊢ β occurring in π′, X′ ⊆ sf(X) and β ∈ sf(X). In
particular, φ → α ∈ sf(X) and so {φ, α} ⊆ sf(X). If X′ ⊢ β occurs in π″, by induction hypothesis
X′ ⊆ sf(X∪{φ}) ⊆ sf(X) and β ∈ sf(X∪{φ}) ⊆ sf(X). Finally, as already shown, α ∈ sf(X), as required
for a proof ending in a pure elimination rule. ⊣

26

	Introduction
	Preliminaries
	Linear time algorithm for CL
	Decision procedures for the logic with only disjunction
	A co-NP procedure for derivability
	Bounding disjunction elimination

	The complexity of disjunction
	The disjunction-only fragment
	Disjunction and conjunction
	Disjunction and implication elimination
	Disjunction and negation elimination

	Discussion
	Weak normalization and subformula property

