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Abstract

We study procedures for the derivability problem of fragments of intuitionistic logic. Intuitionistic logic is
known to be PSPACE-complete, with implication being one of the main contributors to this complexity. In
fact, with just implication alone, we still have a PSPACE-complete logic. We study fragments of intuitionistic
logic with restricted implication, and develop algorithms for these fragments which are based on the proof
rules. We identify a core fragment whose derivability is solvable in linear time. Adding disjunction elim-
ination to this core gives a logic which is solvable in co-NP. These sub-procedures are applicable to a wide
variety of logics with rules of a similar flavour. We also show that we cannot do better than co-NPwhenever
disjunction elimination interacts with other rules.
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1 Introduction

Intuitionistic logic is well-known to be a PSPACE-complete logic [17]. One of themain contributors
to this complexity is implication, particularly the implication introduction rule. The very form
of the rule, displayed below, provides a hint as to the difficulties involved.

X,α ` β → i
X ` α→ β

Suppose we try to determine if a set of formulas X derives α. If α were derivable only using
rules for conjunction, say, then we could compute the “closure” of X by repeatedly adding to it all
formulas derivable in one step, and see if we ever reach α this way. The point to note here is that
the “context”, X, is fixed. But the moment the proof involves the→ i rule, we cannot work with a
fixed context anymore. To verify whether X derives α→ β, we have to change context, and verify
if X∪ {α} derives β. This “context switch” is at the heart of the complexity of intuitionistic logic.
Another rule which forces this kind of context switch in intuitionistic logic is disjunction

elimination, displayed below.

X ` α∨β X,α ` γ X,β ` γ ∨e
X ` γ
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2 The complexity of disjunction in intuitionistic logic

To verify if X derives γwhen we already know that it derives α∨β, we might have to check if γ is
derived both from X∪ {α} and X∪ {β}.
An interesting question to consider is whether these two rules have similar contributions to

the complexity ofderivability. Since implicationby itself isPSPACE-complete [17],weneed to study
disjunction in the presence of restricted forms of implication to address this question. We are
able to show that disjunction by itself is solvable in PTIME, and in the presence of conjunction and
restricted forms of negation and implication, it is solvable in co-NP. We also show that we can do
no better than co-NP, even for minimal fragments involving disjunction.

The decision procedure is interesting in its own right. We identify a core fragment that does
not involve context switches of the kind alluded to above. We solve this fragment in PTIME (lin-
ear time, in fact) in Section 3, and show how to extend this to a co-NP procedure when we add
disjunction elimination (in Section 4). This offers a source of parametrization, and we obtain
a PTIME decision procedure when we bound the set of formulas on which we apply disjunction
elimination (in Section 4.2).

We have already mentioned that we study disjunction in the presence of restricted forms of
implication and negation. What sort of restrictions are natural to impose? We have seen that the
problematic thing about implication is that the→ i rule forces a context switch. So we could re-
strict intuitionistic logic by only considering the elimination rule for implication3, while leaving
out the introduction rule. We can do a little better, by considering a variant known as primal im-
plication [11] (also referred to as semi-implication [2]). This is defined by the following introduction
rule.

X ` β →pX ` α→ β

Primal implication defines a strict sublogic of intuitionistic logic. For instance, intuitionistic
validities like p → p are not provable using the above rule. But more importantly, the rule is so
designed that no context switch is forced while trying to check ifX derives α. In fact, this feature
is crucial to the PTIME solvability of primal infon logic [11], which is a logic with primal implication,
conjunction, and some modalities.

It isworth noting thatwe consider the complexity of the derivability problem, and not the validity
problem as is usually done. While these two problems are equivalent in the presence of the→ i rule,
for the restricted fragments that we consider, derivability is more general.

For precisely the same reason (that we consider fragments without→ i), we cannot define ¬α
as α→⊥. We need to have explicit rules for negation. Of these, the elimination rule for negation
does not force a context switch, but the introduction rule does, just as in the case of implication.
The precise effect of negation introduction in the absence of→ i on complexity is unclear, so we
only consider restrictions where we drop negation introduction altogether.

3 It is clear that modus ponens does not force context switches of the kind we are discussing.
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Applications

Intuitionistic logic is a subject with a rich history, with connections to fundamental aspects of
mathematics, philosophy and computer science, but it also finds application in such concrete
areas of computer science as system security and communication security in distributed proto-
cols. Consider the derivability question: given afinite set of formulasX, a formulaα, doesXderive
α? This question is of practical importance when X is a security policy that specifies permissions
and α is the assertion of someone being permitted some action [1, 10]. Or it might be the case
that X is a set of terms picked by an eavesdropper watching a channel and α is a term to be kept
secret [8]. Inference in such situations is typically intuitionistic. This is essentially due to the fact
that terms are constructed in cryptographic protocols using encryption keys etc, andwhen a term
t is not constructible by an agent A, then A cannot even assert “(m occurs in t)∨¬(m occurs in t).”
For examples of such reasoning, see [15].
In the applications mentioned above, the complexity of derivability is of prime importance,

since a derivability check is often a vital component ofmore detailed security structures [6]. These
systems are usually disjunction-free, with a PTIME derivability procedure [3, 7, 11]. But reasoning
about disjunction is also important for security applications, even though it typically increases
the complexity of the derivability problem (see [15], for example).

Related work

The results reported in this paper are very close to work done in the realm of authorization lo-
gics, specifically primal infon logic and its extensions. It was shown that primal infon logic is
in PTIME [3, 11] but adding disjunction makes the problem co-NP-complete [4]. Specifically, it was
shown that a systemwith primal implication, conjunction, disjunction and⊥ is co-NP-hard, using
a translation from classical logic. Our lower bound results can be seen as a refinement of the result
in [4], as we show that disjunction with any one of these other connectives is already co-NP-hard.
The upper bound results are also very similar to those in [4], but we provide explicit algorithms
while the results there are obtained via a translation to classical logic. Our procedures can be seen
as a way of lifting PTIME decision procedures for local theories [7, 14] to co-NP procedures for the
same logics with disjunction. More recently, the complexity of primal logic with disjunction was
studied in further detail in [13], but the proofs are via semantic methods.
Another important area of study is the disjunction property and its effect on complexity. A

system is said to have the disjunction property if it satisfies the following condition: whenever
X ` α∨ β and X satisfies some extra conditions (for example, ∨ does not occur in any formula of
X), then X ` α or X ` β. The disjunction property and its effect on decidability and complexity
have been the subject of study for many years. For example, it has been proved that as long as any
(propositional) extension of intuitionistic logic satisfies the disjunction property, derivability is
PSPACE-hard, while otherwise it is in co-NP (see Chapter 18 of [5]). Various other papers also in-
vestigate extensions of intuitionistic logic with the disjunction property [9, 12, 16]. In contrast to
these results, our paper considers subsystems of intuitionistic logic obtained by restricting implica-
tion. Further, in our paper, the focus is more on the left disjunction property: namely thatX,α∨β ` γ
iff X,α ` γ and X,β ` γ.
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2 Preliminaries

Assume a countably infinite set of atomic propositionsP . The set of formulas Φ is given by
α,β ::= p | ¬α | α∧β | α∨β | α→ β

For a set of operatorsO , we denote byΦO the set of all formulas consisting only of the operators
inO . For example,Φ{∨} is the set of all formulas built only using the∨ operator,Φ{∨,∧} is the set of
all formulas built only using the ∨ and ∧ operators,etc. For ease of notation, we ignore the braces
and instead use Φ∨, Φ∨,∧,etc.
The set of subformulas of a formula α, denoted sf(α), is defined to be the smallest set S such that:

α � S; if ¬β � S, β � S; and if β∧ γ � S or β∨ γ � S or β→ γ � S, {β,γ} ⊆ S. For a set X of formulas,
sf(X) is defined to be

⋃
α�X

sf(α).

ax
X,α ` α

X,α ` β X,α ` ¬β ¬i
X ` ¬α

X ` β X ` ¬β ¬e
X ` α

X ` α X ` β ∧i
X ` α∧β

X ` α0 ∧ α1 ∧e
X ` αj

X ` αj ∨i
X ` α0 ∨ α1

X ` α∨β X,α ` γ X,β ` γ ∨e
X ` γ

X,α ` β → i
X ` α→ β

X ` α→ β X ` α →e
X ` βX ` β →p

X ` α→ β

Figure 1The system IL. Note that→ i subsumes→p, but we need to define both these rules since we con-
sider fragments without→ i but with→p.

The logic IL is defined by the derivation system in Figure 1. Two important fragments of IL are
DL (disjunction logic), which has all the rules except for ¬i and→ i, and CL (core logic), which has all
the rules except for ¬i,→ i, and ∨e. By X `L α, we mean that there is a derivation of X ` α in the
subsystem L ⊆ IL. (For ease of notation, we drop the suffix and use X ` αwhen it is clear from the
context which subsystem is being referred to.)
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É Definition 1 (Derivability problem). Given X, α, and a subsystem L ⊆ IL, is it the case that X `L α?
Among the rules, ax, ∧e and→ e are the pure elimination rules, ¬e, ¬i and ∨e are the hybrid rules

and the rest are the pure introduction rules. A normal derivation is onewhere themajor premise of every
pure elimination rule and hybrid rule is the conclusion of a pure elimination rule. The following
fundamental properties hold, and the proofs are standard in the proof theory literature. Detailed
proofs are presented in Appendix A, for ease of reference.

É Proposition 2.

1. (Monotonicity) If X ` α and X ⊆ X′, then X′ ` α.
2. (Admissibility of Cut) If X ` α and X,α ` β, then X ` β.
É Theorem 3 (Weak normalization). If there is a derivationπ of X ` α then there is a normal derivationϖ of
X ` α. Further, if a formula α ∨ β occurs as the major premise of an instance of ∨e inϖ , it also occurs as the
major premise of an instance of ∨e inπ.
É Theorem 4 (Subformula property). Letπ be a normal derivation with conclusion X ` α and last rule r. Let
X′ ` β occur inπ. Then X′ ⊆ sf(X∪ {α}) and β � sf(X∪ {α}). Furthermore, if r is a pure elimination rule, then
X′ ⊆ sf(X) and β � sf(X).

É Proposition 5 (Left Disjunction Property). X,α∨β ` γ iff X,α ` γ and X,β ` γ.
Proof. SupposeX,α∨β ` γ. Note thatX,α ` α∨β andX,β ` α∨β (by the∨i rule). ByAdmissibility
of Cut, we have X,α ` γ and X,β ` γ.
On the other hand, supposeX,α ` γ andX,β ` γ. ByMonotonicity, it follows thatX,α∨β,α `

γ and X,α ∨ β,β ` γ. We also have X,α ∨ β ` α ∨ β (by the ax rule). From these, we can build a
proof of X ` γ using the ∨e rule.

Ê

É Proposition 6 (Left Conjunction Property). X,α∧β ` γ iff X,α,β ` γ.
Proof. SupposeX,α∧β ` γ. Note thatX,α,β ` α∧β (by the ∧i rule). By Admissibility of Cut, we
have X,α,β ` γ.
On the other hand, supposeX,α,β ` γ. Note thatX,α∧β ` α andX,α∧β ` β (by the ∧e rule).

By Admissibility of Cut, we have that X,α∧β ` γ.
Ê

3 Linear time algorithm for CL

In this section, we consider CL and solve its derivability problem in linear time. The algorithm is
based on the linear time procedure presented in [11], and can be thought of as a core subroutine
in the solution of more complex fragments.

É Theorem 7. The derivability problem for CL is solvable in linear time.

Fix a set of formulas X0 ∪ {α0} for the rest of the section. Let sf = sf(X0 ∪ {α0}). LetN = |sf|.
É Definition 8. For any X ⊆ sf:
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closure(X) = {α � sf | X `IL α}.
derive(X) = {α � sf | X `DL α}.
core(X) = {α � sf | X `CL α}.
Checking if X0 `CL α0 amounts to checking if α0 � core(X0). In the rest of this section, we

describe how to compute core(X) for anyX ⊆ sf. We compute core(X) by amarking procedurewhich
initially marks all elements of X and propagates the marking in a clever manner. To understand
its working, we first consider a naïve strategy for propagating themarking. It would, for example,
detect all pairs α,β of marked formulas and mark α∧β, α∨ γ, β∨ δ,etc. (if those formulas are in
sf). This propagation step itself is repeated many times till no new formula can be marked. In the
course of this, the same formula αmay be “touched”many times – in deriving α∧β, α∨γ,etc. Our
marking proceeds differently. Whenwe “process” amarked α, wemark all of its consequences that
we can determine at that stage, and do not process it again. For this to work, we need information
about α being alreadymarkedwhenwe process some othermarked β (tomark α∧β, for instance).
Towards this, we maintain some auxiliary lists. For instance, for each formula α there is a list of
conjunctions whose left conjunct is α. While processing α, wemark each β = α∧γ in this list such
that γ is also marked. We maintain similar lists for other operators and the position of α, as is
made clear below.
For a formula α, we define left(α), right(α), and op(α) as follows:
If α �P , left(α), right(α) and op(α) are all undefined.
If α = β∧ γ, left(α) = β, right(α) = γ, and op(α) = ∧.
If α = β∨ γ, left(α) = β, right(α) = γ, and op(α) = ∨.
If α = β→ γ, left(α) = β, right(α) = γ, and op(α) =→.
If α = ¬β, left(α) = β, right(α) is undefined, and op(α) = ¬.

For every α � sf, we define the following sets.
Al(α) = {β � sf | op(β) = ∧ and left(β) = α}.
Ar(α) = {β � sf | op(β) = ∧ and right(β) = α}.
Ol(α) = {β � sf | op(β) = ∨ and left(β) = α}.
Or(α) = {β � sf | op(β) = ∨ and right(β) = α}.
Ir(α) = {β � sf | op(β) =→ and right(β) = α}.
Nl(α) = {β � sf | op(β) = ¬ and left(β) = α}.
The procedure to compute core(X) is described in Algorithm 1. For each α � sf it maintains a

variable status(α) � {raw,pending,processed}. It also uses a queue Q of formulas, with the correspond-
ing enqueue and dequeue functions. The correctness of the algorithm is presented below.

É Lemma 9 (Soundness). If status(β) = processed, then β � core(X).

Proof. Initially, the status of every β � sf is either raw or pending. It is clear from the code that
status(β) becomes processed only after becoming pending. It is also clear that any formula is enqueued
only after it becomes pending. We prove by induction that if status(β) becomes pending at any stage
of the while loop, β � core(X).
The base case is when status(β) becomes pending before the start of the loop. This means that

β � X and hence β � core(X).
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Algorithm 1Linear time algorithm for core(X)

1: Q← ∅;
2: for all α � X : status(α)← pending; enqueue(Q,α);
3: for all α � sf \X : status(α)← raw;
4: while Q 6= ∅ do
5: α← dequeue(Q);
6:

7: if (op(α) = ∧) & (status(left(α)) = raw) then ▷ α is premise of ∧e.
8: status(left(α))← pending; enqueue(Q, left(α));
9: end if
10: if (op(α) = ∧) & (status(right(α)) = raw) then ▷ α is premise of ∧e.
11: status(right(α))← pending; enqueue(Q, right(α));
12: end if
13: if
�
op(α) =→) & (status(left(α)) 6=raw) & (status(right(α))=raw� then

14: status(right(α))← pending; ▷ α is major premise of→e.
15: end if
16:

17: if (α = ¬γ) & (status(γ) 6= raw) then
18: status(β)← processed for all β; return sf; ▷ Everything derivable.
19: end if
20: if (¬α � sf) & (status(¬α) 6= raw) then
21: status(β)← processed for all β; return sf; ▷ Everything derivable.
22: end if
23:

24: for all β � Al(α) s.t
�
status(right(β)) 6= raw� & �status(β) = raw� do

25: status(β)← pending; ▷ α is left premise of ∧i.
26: enqueue(Q,β);
27: end for
28: for all β � Ar(α) s.t.

�
status(left(β)) 6= raw� & �status(β) = raw� do

29: status(β)← pending; ▷ α is right premise of ∧i.
30: enqueue(Q,β);
31: end for
32: for all β � Ol(α) s.t. status(β) = raw do ▷ α is premise of ∨i.
33: status(β)← pending; enqueue(Q,β);
34: end for
35: for all β � Or(α) s.t. status(β) = raw do ▷ α is premise of ∨i.
36: status(β)← pending; enqueue(Q,β);
37: end for
38: for all β � Ir(α) s.t. status(β) = raw do
39: status(β)← pending; ▷ α is premise of→p.
40: end for
41:

42: status(α)← processed;
43: end while
44: return {α � sf | status(α) = processed};
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Suppose status(β) becomes pending in some iteration of the loop. We consider a few sample
cases that might occur.
status(β) changes at line 8: Here β = left(α). Since α has been dequeued, status(α) became pending
in an earlier iteration. So by induction hypothesis, α � core(X). Now, since β = left(α), α = β∧γ
for some γ. It is clear that β can be derived from α using the ∧e rule. Thus β � core(X).

status(β) changes at line 18: Here β changes status because α = ¬γ and status(γ) 6= raw. Since α has
been dequeued, status(α) became pending in an earlier iteration. Since status(γ) 6= raw, status(γ)
became pending at an earlier stage of the while loop (in an earlier iteration or earlier in the same
iteration). So α,γ � core(X), by induction hypothesis. It is clear that any β can be derived from
α and γ using the ¬e rule. Thus β � core(X).

status(β) changes at line 25: Here α = left(β). Let right(β) = γ. Since αwas dequeued at the start of
the iteration, status(α) became pending in an earlier iteration. We see that status(γ) 6= raw, and
therefore status(γ) became pending at an earlier stage of the while loop (in an earlier iteration or
earlier in the same iteration). So by induction hypothesis, α,γ � core(X). It is clear that β can
be derived from α and γ using the ∧i rule. Thus β � core(X).

The other cases proceed similarly, and we have the required claim.
Ê

É Lemma 10 (Completeness). If β � core(X), eventually status(β) = processed.

Proof. We first prove by induction on size of proofs that if β � core(X) then eventually status(β)
becomes pending (it is enough to show this – if β ever becomes pending, it is enqueued, and upon
dequeue it gets assigned the status processed).
Suppose π is a proof of X ` β that does not use the ∨e rule. Let r be the last rule of π. We

consider a few sample cases.
r is ax: In this case, β � X and status(β) becomes pending in line 2.
r is∧e: Suppose the premise of r isX ` β∧γ. Then by induction hypothesis, status(β∧γ) becomes
pending eventually and enters the queue Q. Since each iteration of the while loop terminates,
eventually β∧ γ is dequeued. In that iteration of the loop, status(β) becomes pending in line 8.

r is¬e: Suppose the premises of r are X ` α and X ` γ, where α = ¬γ. By induction hypothesis,
status(α) and status(γ) become pending eventually. Without loss of generality, let αbe the second
element tobedequeued fromQ. Whenα is dequeued, it is certainly the case that status(γ) 6= raw.
Now one can see that status(β) directly becomes processed in line 18. (In fact, the status of all
formulas becomes processed and the algorithm terminates.)

r is∧i: Suppose β = α∧ γ. Then the premises of r are X ` α and X ` γ. By induction hypothesis,
status(α) and status(γ) become pending eventually. Without loss of generality, let αbe the second
element tobedequeued fromQ. Whenα is dequeued, it is certainly the case that status(γ) 6= raw.
Now one can see that status(β) becomes pending in line 25, when α is being processed.

A similar analysis for the other cases completes the proof.
Ê

É Lemma 11 (Running time). The algorithm terminates in O(N) time.
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Proof. Each element enters Q at most once (when its status changes from raw to pending). We pro-
cess each element of Q exactly once, after dequeuing it and before marking it processed. Processing
an element involves setting the status of left(α) and right(α) and perhaps enqueueing them (all
these operations take constant time). It also involves going through each element of the five sets
Al(α), Ar(α), Ol(α), Or(α), and Ir(α). Each of these for all loops takes at most O(N) time. So it would
appear that the algorithm takes O(N2) overall. But we need to use the following crucial property.
For distinct α and β and f � {Al,Ar,Ol,Or, Ir}: f(α)∩ f(β) = ∅.
Thus the total time spent processing the sets Al(α) is O(N) across all α � sf. And similarly for

Ar, Ol,etc. From this it follows that the algorithm terminates in O(N) time.
Ê

4 Decision procedures for DL

We now solve the derivability problem for the fragment DL, the fragment of ILwithout→ i or ¬i.4
Fix a set of formulas X0 and a formula α0 for the rest of the section. Let sf = sf(X0 ∪ {α0}) and

N = |sf|, as in Section 3.
Recall the definitions of closure(X), derive(X), and core(X) from Section 3. In this section, we

show how to compute derive(X) for any X ⊆ sf. We can then check whether X0 `DL α0 by checking
if α0 � derive(X0). The following properties of derive and core are useful in this regard.
X ⊆ core(X) ⊆ derive(X).
derive(X) = core(derive(X)) = derive(derive(X)) (by Admissibility of Cut).
core(X) = core(core(X)) (by Admissibility of Cut).
If X = core(Y), then core(X) = X. If X = derive(Y), then derive(X) = X.

4.1 A co-NP procedure for derive

Algorithm 2 checks if X0 ⊬ α0. It uses the notion of a down-closed set. A set X of formulas is down-
closed if it satisfies the following two conditions:
core(X) ⊆ X.
whenever α∨β � X, then either α � X or β � X.

Y is said to be a down-closure of X if Y is down-closed and X ⊆ Y.
Algorithm 2Algorithm to check if X0 ⊬ α0
1: Y← core(X0);
2: while (Y is not down-closed) do
3: guess a formula β0 ∨β1 � Y such that β0 6� Y and β1 6� Y;
4: guess i � {0, 1};
5: Y← core(Y∪ {βi});
6: end while
7: Return “Yes” if α0 6� Y, and “No” otherwise.

4 It is important to note that we consider only the negation elimination rule. The algorithms in this section do
not work in the presence of the ¬i rule. Nor do we know of a straightforward modification to handle the ¬i rule.
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In Algorithm 2, it is an invariant that Y = core(Z) for some Z and hence core(Y) ⊆ Y. Thus when
Y is not down-closed, there exists β0 ∨β1 � Y such that neither β0 nor β1 is in Y.
The algorithm guesses a down-closure Y of X0 such that α0 6� Y. The next theorem guarantees

that one can successfully guess such a Y iff X0 ⊬ α0. This ensures the correctness of the algorithm.
É Theorem 12. For any X and α (with X∪ {α} ⊆ sf), X ` α iff α � Y for every down-closure Y of X.

This theorem is a consequence of the following three lemmas. But firstwe need a general claim
related to the Left Disjunction Property.

É Proposition 13. Suppose φ0 ∨φ1 � Z and i � {0, 1}. Then Z \ {φ0 ∨φ1},φi ` θ iff Z,φi ` θ.

É Lemma 14. For any X and α (with X∪ {α} ⊆ sf), X ` α iff Y ` α for every down-closure Y of X.

Proof. Suppose X ` α and Y is a down-closure of X. Then X ⊆ Y and hence it is immediate that
Y ` α.
Suppose on the other hand that X ⊬ α. We show that there is a sequence
Y0 ⊊ Y1 ⊊ · · · ⊊ Yn ⊆ sf

of sets such that
X ⊆ Y0,
Yn is down-closed,
for all i ¶ n, core(Yi) ⊆ Yi, and
for all i ¶ n, Yi ⊬ α.

The sequence is constructed by induction. Y0 is defined to be core(X). Since X ⊬ α, it follows that
Y0 ⊬ α. Suppose Yk has been defined for some k ≥ 0 such that Yk ⊬ α. If Yk is down-closed, we are
done. Otherwise, since core(Yk) ⊆ Yk, there is a β0 ∨ β1 � Yk such that β0 6� Yk and β1 6� Yk. Since
Yk ⊬ α, it follows that Yk \ {β0∨,β1},βi ⊬ α for some i � {0, 1}, by the Left Disjunction property. By
Claim 13 it follows that Yk,βi ⊬ α for some i � {0, 1}.
Yk+1 =

core(Yk ∪ {β0}) if Yk,β0 ⊬ αcore(Yk ∪ {β1}) otherwise

ClearlyYk ⊊ Yk+1 and core(Yk+1) = Yk+1. Assumew.l.o.g. thatYk+1 = core(Yk∪{β0}). By construction,
Yk ∪ {β0} ⊬ α. Now suppose Yk+1 ` α. Since Yk ∪ {β0} ` φ for every φ � Yk+1, it would follow by
Admissibilty of Cut that Yk ∪ {β0} ` α, which is a contradiction. Thus Yk+1 ⊬ α and we can always
extend the sequence as desired.
Further, the Yi’s are strictly increasing, and are all subsets of sf. Thus n ¶ |sf| and the above

construction terminates. Yn is a down-closure of X that does not derive α.
Ê

É Lemma 15. Letπ be a proof of X ` α with at least one occurrence of the ∨e rule. Then there is an occurrence
of ∨e inπ with major premise X ` φ ∨ψ such that φ ∨ψ � core(X).
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Proof. In any proof of the form

π1···
X1 ` α1

π2···
X2 ` α2

π3···
X3 ` α3

r
Y ` γ

we say that any rule inπ1 is to the left of r, r is to the left of any rule inπ2, and any rule inπ2 is to
the left of any rule inπ3.
Now consider the leftmost occurrence of∨e inπ. It is the last rule of a subproofπ′ ofπwhich

looks as follows.

π′1···
X′ ` φ ∨ψ

π′2···
X′,φ ` θ

π′3···
X′,ψ ` θ ∨e

X′ ` θ
Since this is the leftmost occurrence of ∨e, there is no occurrence of ∨e in π′1. Further, if X′ 6= X,
it means that π′ is part of the proof of a minor premise of some other ∨e rule in π. But that
contradicts the fact that π′ ends in the leftmost ∨e in π. Thus X′ = X, and π′1 witnesses the fact
that φ ∨ψ � core(X).

Ê

É Lemma 16. For a down-closed Y, Y ` α iff α � Y.
Proof. If α � Y, then it is obvious that Y ` α.
In the otherdirection, supposeY ` αvia aproofπwith k instances of∨e. Weprove the required

claim by induction on k.
In the base case, k = 0, and α � core(Y). Since Y is down-closed, core(Y) ⊆ Y, and hence α � Y.
In the induction step, suppose there is an instance of ∨e in the proof of Y ` α. By Lemma 15,

we know that there is at least one occurrence of ∨e (say Y ` γ) with major premise Y ` φ ∨ψ such
that φ ∨ψ � core(Y) ⊆ Y, which looks as follows.

π1···
Y ` φ ∨ψ

π2···
Y,φ ` γ

π3···
Y,ψ ` γ ∨e

Y ` γ
Thus we have φ ∨ ψ � Y. Since Y is down-closed either φ � Y or ψ � Y. Suppose, without loss of
generality, thatφ � Y. Now considerπ2. Sinceφ � Y, we know that Y∪{φ} = Y, andwe can replace
the big proof of Y ` γ byπ2, thereby reducing the number of instances of ∨e in the proof of Y ` α.
By induction hypothesis, α � Y, and the lemma follows.

Ê

Running time

We now analyze the running time of Algorithm 2. Since Y strictly increases with each iteration
of the loop, there are at mostN = |sf| iterations of the loop. In each iteration, we test whether Y is
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down-closed, which amounts to checking whether there is some β0 ∨ β1 � Y such that neither β0
nor β1 is in Y. This check takes O(N) time. We also compute core(Y) in each iteration, which takes
time O(N). Thus the overall running time is O(N2).

4.2 Bounding disjunction elimination

It is evident from the algorithm for derive that the use of the ∨e rule is an important resource. It
makes sense to bound its use and explore its effect on the efficiency of the algorithm. In this sec-
tion, we show that if we bound the set of formulas onwhich disjunction elimination is performed,
we get a procedure whose running time is polynomial in the input size, though exponential in the
number of disjunction eliminations allowed. The following definition makes this notion precise.

É Definition 17. Let A be a set of disjunctive formulas. We define a proof of α from X using A (denoted X `A α)
as a proof where any ∨e rules are applied only to formulas which appear in A.
Recall that we have fixed a set sf of sizeN, and consider the derivability of X ` αwhere sf(X∪

{α}) ⊆ sf. We define deriveA(X) to be {β � sf | X `A β}. Note that derive∅(X) is core(X). The check for
X `A α is done by usingAlgorithm3 to compute deriveA(X) and then testingwhether α � deriveA(X).
(For the purposes of the algorithm, we assume that the setA is equippedwith a linear order, so we
can refer to the least formula in any subset of A.)

Algorithm 3Algorithm to compute deriveA(X)

1: function f(A,X)
2: Y← core(X);
3: if A∩Y = ∅ then
4: return Y;
5: else
6: A′← A \ {α∨β}, where α∨β is the least formula in A∩Y;
7: return f(A′,Y∪ {α})∩ f(A′,Y∪ {β});
8: end if
9: end function

In order to prove the correctness of the above algorithm, we require the following claim.

É Proposition 18. Let A be a set of disjunctions and α∨β � A. Let A′ = A \ {α∨β}. Then the following hold:
If X `A γ then X,α `A′ γ and X,β `A′ γ.
If X `A α∨β, X,α `A′ γ and X,β `A′ γ, then X `A γ.

Proof.

Suppose X `A γ. Then by monotonicity, we obtain a proof π of X,α ` γ, such that the major
premise of every instance of the ∨e rule in π is in A. Note that for every sequent X′ ` δ in π,
it is the case that α � X′. Consider any subproof π′ of π whose conclusion is X′ ` δ and last
rule is∨ewithmajor premise α∨β (if there is no such subproof, thenπwitnesses the fact that
X,α `A′ γ). π′ has the following form.
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π′1···
X′ ` α∨β

π′2···
X′,α ` δ

π′3···
X′,β ` δ ∨e

X′ ` δ
But observe that since α � X′, X′ ∪ {α} = X′. Thus π′2 is itself a proof of X′ ` δ. We can replace
π′ byπ′2, thereby removing at least one instance of the∨e rule involving α∨β inπ. Repeating
this, we obtain that X,α `A′ γ. A similar reasoning gives us the result for X,β `A′ γ.
Aplying ∨e on α ∨ β using the given proofs of X,α `A′ γ and X,β `A′ γ and X `A α ∨ β for
premises gives us the required result of X `A γ.

Ê

É Lemma 19 (Correctness of Algorithm 3). For all X and A,

deriveA(X) = f(A,X).

Proof. The proof is by induction on the size of A. The base case is when A = ∅, when clearly the
procedure f returns core(X).
For the induction case, suppose X `A γ, and let Y = core(X). Consider a normal proof π wit-

nessingX `A γ and assume without loss of generality that there is at least one instance of ∨e inπ.
From Lemma 15, we see that there is an instance of ∨e in πwith major premise X ` φ ∨ψ, where
φ ∨ψ � core(X). Thus A∩ Y 6= ∅. Let α∨ β be the least formula in A∩ Y. Now since X ⊆ Y, Y `A γ.
Furthermore, α ∨ β � Y. Hence, by Claim 18, Y,α `A′ γ and Y,β `A′ γ, where A′ = A \ {α ∨ β}.
Since A′ is of smaller size than A, by the induction hypothesis, deriveA′(Z) = f(A′,Z) for any Z.
Thus γ � f(A′,Y ∪ {α}) ∩ f(A′,Y ∪ {β}). It follows from the definition of f that γ � f(A,X). Thus
deriveA(X) ⊆ f(A,X).
On the other hand, suppose that γ � f(A,X), and assume w.l.o.g. that A ∩ Y 6= ∅, where Y =

core(X). Letting α∨β be the least formula in A∩Y and A′ = A \ {α∨β}, it is clear that γ � f(A′,Y∪
{α})∩ f(A′,Y∪ {β}) from the definition of f. Since A′ is of smaller size than A, it follows from the
induction hypothesis that Y,α `A′ γ and Y,β `A′ γ. Since Y = core(X), it is the case that X `A′ γ
for every γ � Y. Thus we can appeal to the admissibility of cut to conclude that X,α `A′ γ and
X,β `A′ γ. It follows from Claim 18 that X `A γ. Thus f(A,X) ⊆ deriveA(X).

Ê

É Theorem 20. If |A| = k, then deriveA(X) is computable in time O(2k ·N).
Proof. There are at most 2k recursive calls to f, and in each invocation we make one call to core,
which takes O(N) time. Thus the overall running time is O(2k ·N).

Ê

5 The complexity of disjunction

We have seen that CL is solvable in linear time, and that DL is solvable in co-NP. Is this the best
we can do? Might there not be some clever way to handle disjunction elimination that yields a
PTIME algorithm? In this section, we answer these questions by proving co-NP-hardness for three
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(reasonably minimal) fragments involving disjunction. But first, as a study in contrast, we con-
sider disjunction by itself, and show that that fragment is solvable in PTIME.This indicates that the
lower bound results that appear later in this section are a result of interaction between the various
logical rules, rather than due to disjunction alone.

5.1 The disjunction-only fragment

Let IL[∨] denote the fragment of IL consisting of the ax, ∨i and ∨e rules, and involving formulas of
Φ∨.

É Theorem 21. The derivability problem for IL[∨] is in PTIME.

Suppose X = {α1i ∨ α2i ∨ · · · ∨ αki | 1 ¶ i ¶ n} is a set of formulas from Φ∨, with each αji �P . Let
β = β1 ∨ β2 ∨ · · · ∨ βk � Φ∨, with each βj �P . (Note that any input to the derivability problem of
IL∨ can be converted to the above form by choosing appropriate k, flattening the disjunctions, and
repeating disjuncts). We now have the following claim.

É Proposition 22. X ` β iff there exists i ¶ n such that α1i ∨ α2i ∨ · · · ∨ αki ` β.
Proof. It is obvious that if α1i ∨ α2i ∨ · · · ∨ αki ` β then X ` β (byMonotonicity).
For proving the other direction, suppose (towards a contradiction)X ` β, but there is no i such

that α1i ∨α2i ∨· · ·∨αki ` β. In particular, from the LeftDisjunction Property, for every i, some αjii ⊬ β.
W.l.o.g., assume that ji = 1 for every i. Therefore we have

α11 ⊬ β, α12 ⊬ β, . . . , α1n ⊬ β.
Now, since X ` β and α1i ` α1i ∨ · · · ∨ αki for each i ¶ n, it follows by Admissibility of Cut that

α11, . . . ,α1n ` β (and there is a normal proof π with that conclusion). Since all the α1i s are atomic
propositions, the only rules that can appear in π are ax and ∨i. Therefore, at some point, one of
the α1i s must have contributed to a β

j via an ax rule. However, this gives us α1i ` β (by deriving βj
and then applying ∨i), which is a contradiction. Thus we have the required claim.

Ê

Given this claim, we know that it is enough to see if a particular formula on the left (say αi)
derives β. In particular, from the LeftDisjunction Property, we get that every disjunct in αi needs
to derive β. Therefore, the derivability problem is equivalent to checking if there is a formula inX
all of whose disjuncts occur in β, and thus we obtain the required PTIME procedure.

5.2 Disjunction and conjunction

We have now confirmed that the ∨-only fragment is in PTIME. It is also known that some other
fragments without disjunction elimination (CL, for example) give rise to PTIME logics. However,
we obtain the following result for the logic with conjunction and disjunction.5

5 This fragment is interesting: one can show that X `IL[∨,∧] α iff α is a consequence of X in classical logic. Thus an
NP procedure for non-derivability would just guess a valuation that satisfied X but not α. While this translation
to classical logic yields a simple algorithm, it is not clear to us how to use this translation to prove lower bounds.
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Let IL[∨,∧] denote the fragment of IL consisting of the ax,∨i,∨e,∧i and∧e rules, and involving
formulas of Φ∨,∧.

É Theorem 23. The derivability problem for IL[∨,∧] is co-NP-hard.
The hardness result is obtained by reducing the validity problem for boolean formulas to the

derivability problem for IL[∨,∧]. In fact, it suffices to consider the validity problem for boolean
formulas in disjunctive normal form. We show how to define for each DNF formula φ a set of
IL[∨,∧]-formulas Sφ and an IL[∨,∧]-formula φ such that Sφ ` φ iff φ is a tautology.
Let {x1, x2, . . .} be the set of all boolean variables. For each boolean variable xi, fix two distinct

atomic propositions pi, qi �P . We define φ as follows, by induction.
xi = pi
¬xi = qi
φ ∨ψ = φ ∨ψ
φ ∧ψ = φ ∧ψ
Let Voc(φ), the set of all boolean variables occurring in φ, be {x1, . . . , xn}. Then

Sφ = {p1 ∨ q1, . . . ,pn ∨ qn}.

É Lemma 24. Sφ ` φ iff φ is a tautology.
Proof. Recall that a propositional valuation v over a set of variablesV is just a subset ofV , namely
those variables that are set to true by v.
For a valuation v ⊆ {x1, . . . , xn}, define Sv = {pi | xi � v}∪ {qi | xi � v}.
By repeated appeal to the Left Disjunction Property, it is easy to see that Sφ ` φ iff for all

valuations v over {x1, . . . , xn}, Sv ` φ. We now show that Sv ` φ iff v |= φ. The statement of the
lemma follows immediately from this.
We first show by induction on ψ � sf(φ) that whenever v |= ψ, it is the case that Sv ` ψ.
If ψ = xi or ψ = ¬xi, then Sv ` ψ follows from the ax rule.
If ψ = ψ1 ∧ψ2, then it is the case that v |= ψ1 and v |= ψ2. By induction hypothesis, Sv ` ψ1
and Sv ` ψ2. Hence, by using ∧i, it follows that Sv ` ψ1 ∧ψ2.
If ψ = ψ1 ∨ ψ2, then it is the case that either v |= ψ1 or v |= ψ2. By induction hypothesis,
Sv ` ψ1 or Sv ` ψ2. In either case it follows that Sv ` ψ1 ∨ψ2, by using ∨i.

We now show that if Sv ` φ, then v |= φ. Suppose π is a normal proof of Sv ` φ, and that
there is an occurrence of the ∧e rule or ∨e rule in π with major premise S′ ` γ. We denote
by ϖ this subproof with conclusion S′ ` γ. Note that ϖ ends in a pure elimination rule,
sinceπ is normal and every pure elimination rule and hybrid rule has as itsmajor premise the
conclusion of a pure elimination rule. ByTheorem 4, we see that S′ ⊆ sf(Sv) = Sv, and γ � sf(S′).
But γ is of the form α∨ β or α∧ β, and this contradicts the fact that Sv ⊆ P . Thus π consists
of only the ax, ∧i and ∨i rules. We now show by induction that for all subproofsπ′ ofπwith
conclusion Sv ` ψ, it is the case that v |= ψ.
Suppose the last rule ofπ′ is ax. Then ψ � Sv, and for some i ¶ n, ψ = xi or ψ = ¬xi. It can be
easily seen that v |= ψ (by the definition of Sv).



16 The complexity of disjunction in intuitionistic logic

Suppose the last rule of π′ is ∧i. Then ψ = ψ1 ∧ ψ2, and Sv ` ψ1 and Sv ` ψ2. Thus, by
induction hypothesis, v |= ψ1 and v |= ψ2. Therefore v |= ψ.
Suppose the last rule of π′ is ∨i. Then ψ = ψ1 ∨ψ2, and either Sv ` ψ1 or Sv ` ψ2. Thus, by
induction hypothesis, either v |= ψ1 or v |= ψ2. Therefore v |= ψ.

Ê

5.3 Disjunction and implication elimination

Wenow consider anotherminimal system, IL[∨,→e], consisting of the rules ax,∨i,∨e and→e and
involving formulas from Φ∨,→, and prove the following result.
É Theorem 25. The derivability problem for IL[∨,→e] is co-NP-hard.
The proof is by reduction from the validity problem for 3-DNF, as detailed below.
Let φ be a 3-DNF formula with each clause having exactly 3 literals. Let Voc(φ) be {x1, . . . , xn}.

We define indx(φ) = {1, . . . ,n} ∪ {1′, . . . ,n′}, where (i′)′ = i for any i � indx(φ). For i ¶ n, we define
l(i) = xi and l(i′) = ¬xi.
We define the following sets.

Sφ :=
�
pa ∨ pa′ | a � indx(φ)

	
.

Tφ :=
�
pa→ pb→ pc→ pabc | a, b, c � indx(φ)

	
.

We define φ as follows:

φ :=
∨�
pabc | l(a)∧ l(b)∧ l(c) is a disjunct of φ

	
.

For each valuation v ⊆ {x1, . . . , xn}, define Sv to be
{pi | xi � v}∪ {pi′ | xi � v}.

É Lemma 26. Sφ ,Tφ ` φ iff φ is a tautology.
Proof. By repeated appeal to the Left Disjunction Property, it is easy to see that Sφ ,Tφ ` φ iff
Sv,Tφ ` φ for all valuations v over {x1, . . . , xn}. We now show that for all such valuations, v |= φ iff
Sv,Tφ ` φ.
Let π be a normal proof of Sv,Tφ ` φ. The last rule of π has to be ∨i, since if π ends in an

elimination rule, from the Subformula Property it follows that a disjunction is a subformula of
Sv ∪Tφ , which is not the case. Repeating this argument, we see that there is a subproof ofπwith
conclusion Sv,Tφ ` pabc for some disjunct l(a)∧ l(b)∧ l(c) ofφ. We now show that for any valuation
v, Sv,Tφ ` pabc iff v |= l(a)∧ l(b)∧ l(c).
If v |= l(a)∧ l(b)∧ l(c), then we have pa,pb,pc � Sv (from the definition of Sv), and therefore by

applying the→ e rule to pa → pb → pc → pabc in Tφ , we have Sv,Tφ ` pabc. In the other direction,
suppose we have a normal proof π of Sv,Tφ ` pabc. By examining Sv and Tφ , we see that only
pa→ pb→ pc→ pabc mentions pabc. So it is clear that pc must be derivable from Sv,Tφ , and the last
rule ofπmust be→e, applied to pc→ pabc. Now in order for this formula to be derivable, pb must
be derivable, and similarly pa must be derivable. Since pa,pb and pc can only be obtained by ax, it
must be that pa,pb,pc � Sv and therefore v |= l(a)∧ l(b)∧ l(c).
Thus we have that Sv,Tφ ` pabc iff v |= l(a)∧ l(b)∧ l(c), and the required claim follows.

Ê
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5.4 Disjunction and negation elimination

We consider yet another minimal system, IL[∨,¬e], consisting of the rules ax, ∨i, ∨e and→ e and
involving formulas from Φ∨,¬, and prove the following result.

É Theorem 27. The derivability problem for IL[∨,¬e] is co-NP-hard.
The proof is again by reduction from the validity problem for 3-DNF, as detailed below.
Let φ be a 3-DNF formula with each clause having exactly 3 literals. Let Voc(φ) be {x1, . . . , xn}.

We define indx(φ) = {1, . . . ,n} ∪ {1′, . . . ,n′}, where (i′)′ = i for any i � indx(φ). For i ¶ n, we define
l(i) = xi and l(i′) = ¬xi. For i ¶ n, we define bpi = ¬pi and Òpi′ = pi.
We define the following sets.

Sφ :=
�
pi ∨¬pi | i ¶ n
	
.

Tφ :=
�Òpa ∨Òpb ∨ bpc ∨ pabc | a, b, c � indx(φ)	 .

We define φ as follows:

φ :=
∨�
pabc | (l(a)∧ l(b)∧ l(c)) � φ

	
.

For each valuation v ⊆ {x1, . . . , xn}, define Sv to be

{pi | xi � v}∪ {pi′ | xi � v}.

É Lemma 28. Sφ ,Tφ ` φ iff φ is a tautology.
Proof. Let us assume that φ =

∨�
l(ai)∧ l(bi)∧ l(ci) | i ¶ m

	
, for ease of notation. By repeated ap-

peal to theLeftDisjunction Property, it is easy to see that Sφ ,Tφ ` φ iff Sv,Tφ ` φ for all valuations
v over {x1, . . . , xn}. We now show that for all valuations v,

v |= φ iff Sv,Tφ ` φ.

Suppose v |= φ. This means that v |= l(ai) ∧ l(bi) ∧ l(ci) for some i. For the sake of readability,
let us refer to this disjunct as l(a) ∧ l(b) ∧ l(c). It is clear in this case that {pa,pb,pc} ⊆ Sv. Let
T′ = Tφ \ {Òpa ∨Òpb ∨ bpc ∨ pabc}. Now

Sv,Tφ ` φ (1)

iff

Sv,T
′,Òpa ` φ and (2)

Sv,T
′,Òpb ` φ and (3)

Sv,T
′, bpc ` φ and (4)

Sv,T
′,pabc ` φ (5)

Now it is easily seen that (2), (3) and (4) are true, since {pa,pb,pc} ⊆ Sv and we can use the ¬e
rule. Now Sv,T′,pabc ` pabc, and hence (5) follows (by a series of applications of ∨i rules). Thus
Sv,Tφ ` φ.
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Suppose v ⊭ φ. This means that for every i ¶ m, either v ⊭ l(ai) or v ⊭ l(bi) or v ⊭ l(ci). Without
loss of generality, let us assume that v ⊭ l(ai) for all i ¶ m. Now it is clear that pai � Sv, and thuscpai � Sv, for each i ¶ m.
Now suppose Sv,Tφ ` φ. This implies that Sv, {cpai | i ¶ m} ` φ. However,cpai � Sv for all i ¶ m,
and therefore Sv ` φ. Suppose there is a normal proof π for the same. Since Sv ⊆ P , the only
rules that can occur inπ are ax and ∨i. This in turn implies that Sv ` paibici for some i ¶ m. But
a proof of Sv ` paibici can only use the ax rule, but paibici � Sv, so we have a contradiction. Thus
we have proved that if v ⊭ φ then Sv,Tφ ⊬ φ.

Ê

6 Discussion

To summarize our results, we have presented a core fragment of IL, which we call CL, whose deriv-
ability problem is solvable in linear time, and used this algorithm as a core subroutine in a co-NP
decision procedure for the larger fragment DL (which includes the ∨e rule). We cannot do bet-
ter than co-NP when we consider disjunction interacting with other operators, as demonstrated
by the lower bound proofs we have provided for IL[∨,∧], IL[∨,→ e], and IL[∨,¬e]. The fragment
IL[∨] (which includes only the ax, ∨i, and ∨e rules) though, is solvable in PTIME, in contrast to the
implication-only fragment of IL. Of the two rules for negation, ¬e does not modify the assump-
tions in the sequents, whereas ¬i discharges the assumption α while concluding ¬α. There does
not appear to be a straightforward adaptation of our algorithms to handle ¬i.6
We can also consider adding �-like modalities to the [∧,∨] fragment of our logic. This system

is in co-NP, and the algorithm proceeds along similar lines to the one in [15]. On the other hand,
if we add modalities to a logic with implication (even primal implication), the system is PSPACE-
complete [4].
Perhaps the most important way to take this work further is to identify restricted forms of

disjunction that are efficiently solvable, as this would be of use in many practical applications. If
we can identify scenarios in which a bounded number of applications of the disjunction elimin-
ation rule would suffice, our PTIME algorithm in Section 4.2 would come very handy, opening the
door for parametrized algorithms for derivability.
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A Weak normalization and subformula property

Among the rules, ax,∧e and→e are the pure elimination rules,¬e,¬i and∨e are the hybrid rules and the
rest are pure introduction rules. A normal derivation is one where themajor premise of every pure elim-
ination rule and hybrid rule is the conclusion of a pure elimination rule. A derivation is normal
iff its cut rank is 0, as given by the following definition.

É Definition 29 (Cut rank of a derivation). Let π be a derivation with conclusion X ` α and last rule r. Let
π1, . . . ,πn be the immediate subproofs ofπ. Let eachπi end with rule ri and have conclusion Xi ` αi. Also, let
X1 ` α1 be the major premise of r. By induction onπ, we define cutrank(π) as follows:
If r is a pure elimination rule or a hybrid rule and r1 is not a pure elimination rule, then

cutrank(π) = max(|α1|, cutrank(π1), · · · , cutrank(πn)).

Otherwise

cutrank(π) = max(cutrank(π1), · · · , cutrank(πn)).

http://www.mathsoc.spb.ru/preprint/2004/index.html
http://www.mathsoc.spb.ru/preprint/2004/index.html
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(Note that if r is ax, cutrank(π) = 0, by the second clause above.)

É Proposition 30 (Monotonicity). If there is a proof of X ` α with cut rank m and X ⊆ X′, then there is a proof
of X′ ` α with cut rank m.
Proof. Letπ be a proof ofX ` α, and let Y = X′ \X. It is easy to check that replacing every sequent
Z ` β occurring inπ by Z∪Y ` β, we still have a valid proofπ′, with conclusionX′ ` α. (The point
is that in rules involving a discharge of the premises, the discharge is optional, so if some rule in
π discharges a formula in Y, we can apply the same rule inπ′ without discharging that formula.)
Since the structure of the proof does not change, the cut rank remains the same.

Ê

É Proposition 31 (Admissibility of Cut). Ifπ1 is a derivation of X ` α (with last rule r1) andπ a derivation of
Y ` β (with last rule r), then there is a derivationϖ of X,Y− α ` β such that
cutrank(ϖ) ¶ max(cutrank(π1), cutrank(π), |α|).

Further, either the last rule ofϖ is r or β = α and the last rule ofϖ is r1.

Proof. The proof is by induction on the size ofπ, and a case analysis on r. For notational ease, we
let cutrank(π1) = m1, cutrank(π) = m, and n = max(m1,m, |α|). We present a few sample cases below.
r is ax: If β 6= α, then β � Y− α and we can takeϖ to be the following proof:

ax
X,Y− α ` β

Clearly cutrank(ϖ) = 0 ¶ n and the last rule ofϖ is r.
If β = α, then we takeϖ to be the proof of X,Y− α ` β guaranteed by Monotonicity (applied
toπ1). Clearly cutrank(ϖ) = m1 ¶ n, and the last rule ofϖ is r1 as required.

r is∧i: Thenπ has the following structure:
τ1···
Y ` β1

τ2···
Y ` β2 ∧i

Y ` β
By induction hypothesis, there exist proofsϖ1 andϖ2 with conclusions X,Y − α ` β1 and
X,Y − α ` β2 respectively, both of which have cut ranks at most n. We define ϖ to be the
following proof:

ϖ1···
X,Y− α ` β1

ϖ2···
X,Y− α ` β2 ∧i

X,Y− α ` β
Clearly cutrank(ϖ) = max(cutrank(ϖ1), cutrank(ϖ2)) ¶ n. Further, the last rule ofϖ is r.

r is→ i: Then β = φ→ ψ andπ has the following structure:
τ1···

Y,φ ` ψ → i
Y ` φ→ ψ
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By induction hypothesis, there exist a proofϖ1 with conclusion X, (Y,φ) − α ` ψ whose cut
rank is at most n. By appealing toMonotonicity if necessary (in the case when φ = α), we can
take the conclusion ofϖ1 to be X,φ,Y− α ` ψ.ϖ is the following proof:

ϖ1···
X,φ,Y− α ` ψ → i
X,Y− α ` φ→ ψ

Clearly cutrank(ϖ) = cutrank(ϖ1) ¶ n. Further, the last rule ofϖ is r.
r is∨e: Thenπ has the following structure:

τ1···
r′1Y ` φ ∨ψ

τ2···
Y,φ ` β

τ3···
Y,ψ ` β ∨e

Y ` β
By induction hypothesis, there exist proofs ϖ1, ϖ2 and ϖ3 with conclusions respectively
X,Y − α ` φ ∨ ψ, X, (Y,φ) − α ` β, and X, (Y,ψ) − α ` β, all of whose cut ranks are ¶ n. By
appealing toMonotonicity if necessary (in the cases when α isφ orψ), we can take the conclu-
sion ofϖ2 andϖ3 to be X,φ,Y− α ` β and X,ψ,Y− α ` β.ϖ is the following proof:

ϖ1···
r′′1X,Y− α ` φ ∨ψ

ϖ2···
X,φ,Y− α ` β

ϖ3···
X,ψ,Y− α ` β ∨e

X,Y− α ` β
Now if r′′1 is a pure elimination, cutrank(ϖ) ¶ n. Otherwise, cutrank(ϖ) ¶ max(|φ ∨ψ|,n). But
then either r′′1 = r′1 (in which case |φ ∨ ψ| ¶ m ¶ n), or α = φ ∨ ψ and r′′1 = r1 (in which case
|φ ∨ψ| = |α| ¶ n). Thus cutrank(ϖ) ¶ n. Again the last rule ofϖ is r.

Ê

É Lemma 32. Letπ be a derivation with conclusion X ` α and last rule r with cutrank(π) = m > 0, such that
all proper subderivations ofπ are of rank < m. Then the following hold.
1. If r is a pure elimination rule, |α| < m.
2. There is a derivationπ′ of X ` α such that cutrank(π′) < m.
Proof. Letπ1, . . . ,πn be the immediate subproofs ofπ. Let eachπi end with rule ri and have con-
clusion Xi ` αi, and let X1 ` α1 be the major premise of r. Given the conditions of the lemma, it is
clear that cutrank(π) = |α1| = m, r1 is not a pure elimination rule, r is a pure elimination rule or a
hybrid rule, and X1 = X.
1. If r is a pure elimination rule, then we have the following cases:

α1 = α∧β or α1 = β∧ α, for some β.
α1 = β→ α for some β.

In both these cases, it is clear that |α| < |α1| = m.
2. To show the existence ofπ′, we perform an induction on ‖π‖ and a case analysis on r1.
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Suppose r1 is ∧i. Then r has to be ∧e. In this case we can takeπ′ to be one of the immediate
subproofs ofπ1, and clearly cutrank(π′) < m.
Suppose r1 is ∨i. Then r has to be ∨e. Say α1 = β∨ γ and the major premise of r1 is β. Note
that |β| < |β ∨ γ| = m. Let π2 be the immediate subproof of π with conclusion X,β ` α,
and letπ11 be the subproof ofπ1 with conclusion X ` β. Thus we can apply cut onπ11 and
π2 to get a derivationπ′ of X ` α such that

cutrank(π′) ¶ max(|β|, cutrank(π11), cutrank(π2)) < m.

Suppose r1 is→ i. Then r is→e and α1 = β→ α, andπ has the following form:

π11···
X,β ` α → i
X ` β→ α

π2···
X ` β →e

X ` α
Now by applying cut on π11 and π2, we see that there is a proof π′ of X ` α of cut rank
¶ max(m− 1, |β|) < m (since |β| < |β→ α| = m).
Suppose r1 is ¬i. Then r is either ¬i or ¬e. We consider the case when r is ¬i – the other case
is handled similarly. In this case α = ¬α′ andπ has the following form:

π11···
r11X,α′,β ` ¬γ

π12···
r12X,α′,β ` γ ¬i

X,α′ ` ¬β

π2···
r2X,α′ ` β ¬i

X ` ¬α′
Now by applying cut on π2 and π11, as well as on π2 and π12, we see that there are proofs
π′1 and π′2 of X,α′ ` ¬γ and X,α′ ` γ respectively, with last rules r′1 and r′2, and both of cut
rank ¶ max(m− 1, |β|) < m (since |β| < |¬β| = m). π′ can be taken to be the following:

π′1···
X,α′ ` ¬γ

π′2···
X,α′ ` γ ¬i

X ` ¬α′
Now if r′1 is a pure elimination,

cutrank(π′) = max(cutrank(π′1), cutrank(π′2)) < m.

Otherwise, cutrank(π′) ¶ max(m − 1, |¬γ|). But by Proposition 31, either r′1 = r11, or r′1 = r2
(and ¬γ = β). In the former case, |¬γ| ¶ cutrank(π1) < m. Otherwise |¬γ| < |¬β| = m.
Therefore cutrank(π′) < m.
Suppose r1 is¬e. r could be any pure elimination or hybrid rule. We shall consider the cases
when it is ¬i and ∨e. The other cases are similar or simpler.
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Suppose r is ¬i. Then α = ¬α′ andπ has the following form:
π11···

X,α′ ` ¬γ

π12···
X,α′ ` γ ¬e

X,α′ ` ¬β

π2···
X,α′ ` β ¬i

X ` ¬α′
π′ is taken to be the following:

π11···
X,α′ ` ¬γ

π12···
X,α′ ` γ ¬i

X ` ¬α′
Clearly cutrank(π′) = cutrank(π1) < m.
Suppose r is ∨e. Thenπ has the following form:

π11···
X ` ¬γ

π12···
X ` γ ¬e

X ` φ ∨ψ

π2···
X,φ ` α

π3···
X,ψ ` α ∨e

X ` α
π′ is taken to be the following:

π11···
X ` ¬γ

π12···
X ` γ ¬e

X ` α
Clearly cutrank(π′) = cutrank(π1) < m.

Suppose r1 is ∨e. Now r can be any pure elimination or hybrid rule. We consider the case
when it is ∨e. The rest of the cases are similar. Now α1 = β ∨ β′ and π has the following
form:

π11···
X ` γ∨ γ′

π12···
X,γ ` β∨β′

π13···
X,γ′ ` β∨β′ ∨e

X ` β∨β′

π2···
X,β ` α

π3···
X,β′ ` α ∨e

X ` α
Let τ2 be the following proof

π12···
X,γ ` β∨β′

π2···
X,γ,β ` α

π3···
X,γ,β′ ` α ∨e

X,γ ` α
and let τ3 be the following proof.

π13···
X,γ′ ` β∨β′

π2···
X,γ′,β ` α

π3···
X,γ′,β′ ` α ∨e

X,γ′ ` α
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Nowit is possible that cutrank(τ2) = cutrank(τ3) = m, but ‖τ2‖ < ‖π‖ and ‖τ3‖ < ‖π‖. Hence
by induction hypothesis, there are proofsπ′2 andπ′3, both of cut rank< m, with conclusions
X,γ ` α and X,γ′ ` α respectively. We takeπ′ to be the following proof:

π11···
X ` γ∨ γ′

π′2···
X,γ ` α

π′3···
X,γ′ ` α ∨e

X ` α
Now ifπ11 ends in a pure elimination,

cutrank(π′) = max(cutrank(π11), cutrank(π′2), cutrank(π′3)) < m.

Otherwise cutrank(π′) ¶ max(m− 1, |γ∨ γ′|). But if π11 does not end in a pure elimination,
|γ∨ γ′| ¶ cutrank(π1) < m, and it follows that cutrank(π′) < m.

Ê

É Theorem 33 (Weak normalization). If there is a derivationπ of X ` α then there is a normal derivationϖ
of X ` α. Further, if a formula α∨β occurs as the major premise of an instance of ∨e inϖ , it also occurs as the
major premise of an instance of ∨e inπ.
Proof. For every derivation π, define µ(π) to be the pair (m,n) where m = cutrank(π), and n is
the number of subderivations of π of rank m. If cutrank(π) is 0, π is already normal. If not,
let cutrank(π) = m > 0 and let ϖ be a subderivation of π with conclusion X′ ` β such that
cutrank(ϖ) = m and no proper subderivation of ϖ is of rank ≥ m. By Lemma 32, there is an-
other derivationϖ ′ with the same conclusion such that cutrank(ϖ ′) < m. Replaceϖ byϖ ′ in π
to get the proofπ′. Now one subderivation of rank m has been eliminated in the process of going
from π to π′. But we need to check that no new derivations of rank ≥ m have been introduced in
π′. The only way this can happen is ifϖ ′ is not a pure elimination rule and is the major premise
of an elimination rule or hybrid rule in π′. But then either |β| < m orϖ itself ends in a hybrid
rule. In either case, no new subderivation of rank ≥ m gets introduced. Thus µ(π′) < µ(π). Since
lexicographic ordering on pairs of natural numbers is a well order, by repeating the above process
we eventually reach a proof of rank 0 – a normal proof, in other words.
Also note that the transformations in Lemma 32 do not introduce new formulas as major

premises of ∨e, even though it might increase the number of instances of ∨e. This proves the
second part of the theorem.

Ê

É Theorem 34 (Subformula property). Letπ be a normal derivation with conclusion X ` α and last rule r. Let
X′ ` β occur inπ. Then X′ ⊆ sf(X∪ {α}) and β � sf(X∪ {α}). Furthermore, if r is a pure elimination rule, then
X′ ⊆ sf(X) and β � sf(X).

Proof. The proof is by induction on the structure of π, and based on a case analysis on r. We
present a few representative cases here.
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Suppose r is ∧i. Then α = α′ ∧ α′′ andπ is of the following form:
π′···
X ` α′

π′′···
X ` α′′ ∧i

X ` α
Clearly α′ � sf(α) and α′′ � sf(α). Now either X′ = X and β = α or X′ ` β occurs in π′ or π′′. In
the second and third cases,X′ ⊆ sf(X∪{α′,α′′}) andβ � sf(X∪{α′,α′′}), by induction hypothesis.
But sf(X∪ {α′,α′′}) ⊆ sf(X∪ {α}), and hence we are done.
Suppose r is→ i. Then α = α′→ α′′ andπ is of the following form:

π1···
X,α′ ` α′′ → i
X ` α

Clearlyα′ � sf(α) andα′′ � sf(α). NoweitherX′ = X andβ = αorX′ ` βoccurs inπ1. In the latter
case, by induction hypothesisX′ ⊆ sf(X∪ {α′,α′′}) and β � sf(X∪ {α′,α′′}). But sf(X∪ {α′,α′′}) ⊆
sf(X∪ {α}), and hence we are done.
Suppose r is ∨e. Thenπ is of the following form:

π1···
X ` φ ∨ψ

π2···
X,φ ` α

π3···
X,ψ ` α ∨e

X ` α
Again, either X′ = X and β = α or X′ ` β occurs in one of the πi’s. Suppose it occurs in π1.
Notice that sinceπ is normal, the last rule ofπ1 is a pure elimination, and hence by induction
hypothesis, X′ ⊆ sf(X) and β � sf(X). In particular, φ ∨ψ � sf(X) and thus {φ,ψ} ⊆ sf(X). Now
suppose that X′ ` β occurs in π2 or π3. Then we have X′ ⊆ sf(X ∪ {φ,ψ,α}) ⊆ sf(X ∪ {α}) and
β � sf(X∪ {φ,ψ,α}) ⊆ sf(X∪ {α}), by induction hypothesis.
Suppose r is→e. Thenπ is of the following form (w.l.o.g.):

π′···
X ` φ→ α

π′′···
X ` φ →e

X ` α
Again, either X′ = X and β = α or X′ ` β occurs in π′ or π′′. Since π is normal, π′ ends in a
pure elimination rule. Therefore for any X′ ` β occurring in π′, X′ ⊆ sf(X) and β � sf(X). In
particular, φ→ α � sf(X) and so {φ,α} ⊆ sf(X). If X′ ` β occurs inπ′′, by induction hypothesis
X′ ⊆ sf(X ∪ {φ}) ⊆ sf(X) and β � sf(X ∪ {φ}) ⊆ sf(X). Finally, as already shown, α � sf(X), as
required for a proof ending in a pure elimination rule.

Ê
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