
Decidability of context-explicit security protocols

R. Ramanujam

The Institute of Mathematical Sciences

C.I.T. Campus, Chennai 600 113, India.

E-mail:jam@imsc.res.in

S. P. Suresh∗

Chennai Mathematical Institute

92 G.N.Chetty Road, T.Nagar, Chennai 600 017, India.

E-mail: spsuresh@cmi.ac.in

Abstract

An important problem in the analysis of security protocols is that
of checking whether a protocol preserves secrecy, i.e., no secret owned
by the honest agents is unintentionally revealed to the intruder. This
problem has been proved to be undecidable in several settings. In
particular, [11] prove the undecidability of the secrecy problem in the
presence of an unbounded set of nonces, even when the message length
is bounded. In this paper we prove that even in the presence of an un-
bounded set of nonces the secrecy problem is decidable for a reasonable
subclass of protocols, which we call context-explicit protocols.

1 Introduction

Security protocols are specifications of communication patterns which are in-
tended to let agents share secrets over a public network. They are required
to perform correctly even in the presence of malicious intruders who listen to
the message exchanges that happen over the network and also manipulate
the system (by blocking or forging messages, for instance). An obvious cor-
rectness requirement is that of secrecy: an intruder cannot read the contents
of a message intended for others.

The presence of intruders necessitates the use of encrypted communica-

tion. It has been widely acknowledged that even if the cryptographic tools

∗
Work done while at The Institute of Mathematical Sciences.

are perfect, desired security goals may not be met, due to logical flaws in
the design of protocols. (See [4] for an illuminating account.) To deal with
this, many approaches have been proposed, one among which is the devel-
opment of systematic methods for finding flaws in security protocols. This
is complicated by the fact that when we model security protocols precisely,
we get infinite state systems. As such, it is to be expected that it is not
possible to verify even simple properties like secrecy of such systems. It has
been formally proved in ([11], [12], [3]) that in fact, the secrecy problem is
undecidable.

This leads us to examine the sources of undecidability and look for in-
teresting subclasses of protocols for which the secrecy problem is decidable.
Firstly, security protocols are informally presented as sequences of com-
munications of the form A→B :t, where A and B are abstract names for
principals and t is an abstract term obtained from atomic terms using tu-
pling and encryption. It is easy to see that such a presentation is too general
and that some admissibility conditions are needed. We therefore study well-
formed protocols where we ensure that in every communication the term
sent by a principal can be constructed using the messages received by that
principal earlier. Most protocols of interest in the literature follow these
well-formedness conditions. The notable exceptions are protocols which are
used to illustrate the computational power of the model, and which occur
in the undecidability proofs. But this is not to say that considering only
well-formed protocols leads to decidability of secrecy.

From the specification of a protocol, one can extract a set of roles played
by principals participating in the protocol. An event of a protocol Pr is
simply an occurrence of an action in an instantiation of a role of Pr. The
instantiations of a role of Pr are got by substituting concrete terms for the
abstract terms mentioned in the roles. It is clear that there are potentially
infinitely many events of a protocol. A run of a protocol is simply a sequence
of events of the protocol satisfying certain admissibility conditions. It is im-
portant to note that there is no bound on the number of events which can
occur in a run.

The secrecy problem is the problem of checking whether a given protocol
has a leaky run, where a run is leaky if some information (typically a nonce
or a key) was known only to some honest agents at some intermediate point
of the run but is known to the intruder at the end of the run. This problem
has been proved to be undecidable in [11]. In [12] and [3], it has been shown
that this problem is undecidable even if the set of atomic terms is assumed
to be fixed and finite, but if terms of arbitrary size can be substituted for
nonces.

2

In the presence of such results, one natural way to proceed is to insist
on a fixed finite set of nonces. [11] shows that in this case the secrecy
problem is DEXPTIME-complete. One of the key sources of undecidability
is the fact that there is no bound on the number of distinct events that can
occur in any run of a protocol. The approach to decidability in [16] and
[23] essentially bounds the number of events that can occur in any run of
the protocol, thereby obtaining decidability even in the setting which allows
terms of arbitrary size to be substituted for nonces.

The results in [15] are similar to ours. The paper introduces a property
called strong secrecy and proves that for a syntactic subclass of protocols
(which share some of the features of context-explicit protocols) that the
protocol has a breach of strong secrecy iff a small system corresponding to
the protocol has a breach of strong secrecy. (A small system as defined in
[15] admits runs in which each role is assigned to an honest agent, who plays
at most one session of the role in any run. The intruder is allowed to combine
the information in these sessions to send arbitrary messages, though.) This
result provides a justification for model checking approaches which usually
work with such small systems.

[2] is another work which is similar in spirit. For every protocol, a
“collapsed semantics” is introduced by allowing nonces generated in earlier
sessions of roles of the protocol to be confused with each other. This yields
a finite system which can be effectively checked for secrecy. A syntactic
subclass of protocols is defined for which the collapsed semantics admits
a leaky run exactly when the protocol does. A technique called set based
analysis is also introduced to verify secrecy of the collapsed system.

Independently of our work, [5] use tagging schemes to obtain termination
of a verification algorithm for secrecy (and some forms of authentication as
well) in the presence of both unboundedly many nonces and unboundedly
long messages. The protocol and intruder abilities are coded up a set of Horn
clauses. The resolution-based verification algorithm proposed in that paper
proceeds in two phases: in the first phase resolution is used to complete the
given set of clauses, and in the second phase a backward depth-first search
is used to determine whether a target formula (representing a breach of
secrecy in the protocol) can be derived from the (completed) set of clauses.
The tagging scheme is primarily used to prove that the first phase of the
algorithm terminates. The scheme used in their paper defines a strictly
larger syntactic subclass than that presented in this paper. But there are
significant differences between the framework and the proof ideas employed
in our paper and in [5].

An analysis of the undecidability proofs [22] shows that the protocols

3

used in them (coding up two-counter machines) have the following important
structural property:

• Different messages in the protocol specification have encrypted sub-
terms which can be unified.

The intruder crucially uses this property to transfer information from one
play to another, and ‘pump’ this process (using either unboundedly many
nonces or non-atomic instantiations) to generate unboundedly many plays
with distinct information content, leading to undecidability.

This suggests that it is desirable to avoid unification of the kind men-
tioned above. We formalise a way to do this in our definition of context-

explicit protocols. These are essentially protocols such that “distinct” en-
crypted subterms occurring in their specifications are not unifiable. We go
on to show that the secrecy problem is decidable for context-explicit proto-
cols. The key to the decidability argument is to show the following property
of runs of a context-explicit protocol:

• Whenever the intruder learns information from a message t and uses it
to construct a message t′ (where t and t′ are instances of distinct com-
munications in the protocol specification), then t′ can be constructed
from just the nonces and keys learnt by the intruder on receiving t.

The restriction on unifiability of encrypted subterms is crucially used in
proving this. Interestingly, the crucial steps of the proof of the above prop-
erty and others which lead to our main decidability result can be stated as
properties of analz-proofs and synth-proofs, which formalize how messages
are generated and received terms are analyzed.

The technique used here should be contrasted with approaches which
impose restrictions on the use of the tupling operator ([3], [9]), or use more
stringent admissibility criteria like [8] which uses techniques from tree au-
tomata theory to show decidability for the class of protocols in which every
agent copies at most one piece of any message it receives into any message
it sends.

The work presented here is an expanded version of [19]. In related work,
we prove the secrecy problem to be decidable when considering runs based
on a fixed finite set of atomic terms but with non-atomic substitutions ([20]).
In [21] we extend the results of this paper to show that the secrecy problem is
decidable for context-explicit protocols in the presence of both unboundedly
many nonces and unboundedly long messages. A detailed presentation of
all these results as also the undecidability results can be found in the thesis
[24].

4

2 Security protocol modelling

In this section we present the model in which we formulate and prove the
main result of the paper. The treatment of cryptography and messages in
the model closely follows Dolev and Yao [10].

Basic terms

We assume a (potentially infinite) set of agents Ag with a special intruder
I ∈ Ag. The set of honest agents, denoted Ho, is defined to be Ag \{I}. The
intruder model which we develop in this section is one which is widely used
in the literature. We assume an all-powerful intruder, who can copy every
communication in the system, can block any message and can pretend to
be any agent. It is assumed that the intruder has unlimited computational
resources and can keep a record of every public system event and utilize it at
an arbitrarily later time. However, the intruder cannot generate an honest
agent’s secret autonomously, nor can it break encryption.

Some variations to the above model have been tried but they do not
significantly extend the intruder’s powers. For example, we might consider
a group of colluding intruders rather than a single intruder. But it has been
shown in the work [6] that many Dolev-Yao intruders colluding with one
another cannot cause more attacks than a single intruder acting alone.

We assume that the set of keys K is given by K0 ∪ K1 where K0 is

a countable set and K1
def
= {kAB , pubkA, privkA | A,B ∈ Ag , A 6= B}.

pubkA is A’s public key and privkA is its private key. kAB is the (long-
term) shared key of A and B. For k ∈ K, k, the inverse key of k, is
defined as follows: pubkA = privkA and privkA = pubkA for all A ∈ Ag ,
and k = k for all the other keys. For every agent A, the set of keys
which are assumed to be always known to A, denoted KA, is defined to
be {kAB , kBA, pubkA, privkA, pubkB | B ∈ Ag, B 6= A}. We also assume a
countable set of nonces N . (‘Nonce’ stands for “number once used”). We
also assume a perfect nonce generation mechanism which can generate a
nonguessable, unique nonce on each invocation. T0, the set of basic terms,
is defined to be K ∪ N ∪ Ag . The set K0 ∪ N ∪ Ag will also play a special
role in the subsequent development. We use the notation T0 to denote it.

Further we fix the nonce n0 and the key k0 ∈ K0 for the whole discourse.

They will essentially play the role of the intruder’s initial knowledge, as will be

explained later.

5

Terms

The set of information terms is defined to be

T ::= m | (t1, t2) | {t}k

where m ranges over T0 and k ranges over K. These are the terms used in the
message exchanges below. The term {t}k is an abstract notation where we
make no cryptographic assumptions about the algorithm used to form {t}k

from t and k. It could stand for t encrypted with the key k, or it could also
stand for t appended with a signature using the key k. Following the lead of
Dolev and Yao [10] we make the perfect encryption assumption. This means
that a message encrypted with key k can be decrypted only by an agent
who has the corresponding inverse k. We thus abstract away cryptographic
concerns and can treat encryption and decryption as symbolic operators.
We also abstract away the real-life phenomenon in which some honest agents
lose their long-term keys, unlike [18] which models this explicitly using the
notion of an Oops event.

We have also assumed, in keeping with [10], that the terms which are
communicated in message exchanges come from a free algebra of terms with
tupling and encryption operators. This means that we are operating on a
space of symbolic terms. This view of terms abstracts away the fact that in
the underlying system all messages are bit strings. Thus we sometimes refer
to some terms as being of bounded length, even in systems which work with
an infinite set of nonces and keys.

Another key point to note is that we work only with atomic keys. Work-
ing with constructed keys instead would allow us to model more real-life
protocols, but some of our results on message generation would fail to hold
in a framework which allows constructed keys.

The notion of subterm of a term is the standard one — ST (m) = {m}
for m ∈ T0; ST ((t1, t2)) = {(t1, t2)} ∪ ST (t1) ∪ ST (t2); and ST ({t}k) =
{{t}k, k} ∪ ST (t). t′ is an encrypted subterm of t if t′ ∈ ST (t) and t′ is
of the form {t′′}k. EST (t) denotes the set of encrypted subterms of t.
The size of terms is inductively defined as follows: |m| = 1 for m ∈ T0;
|(t1, t2)| = |t1| + |t2| + 1; and |{t}k| = |t| + 2.

Actions

An action is either a send action of the form A!B: (M)t or a receive action
of the form A?B:t where: A ∈ Ho, B ∈ Ag and A 6= B; t ∈ T ; and
M ⊆ ST (t) ∩ (N ∪ K0). For simplicity of notation, we write A!B:t instead
of A!B: (∅) t. The set of all actions is denoted by Ac, the set of all send

6

actions is denoted by Send , and the set of all receive actions is denoted by
Rec.

The agent B is (merely) the intended receiver in A!B: (M)t and the pur-

ported sender in A?B:t. As we will see later when the semantics of protocols
is elaborated, every send action is an instantaneous receive by the intruder,
and similarly, every receive action is an instantaneous send by the intruder.

For a = A!B: (M)t, term(a)
def
= t and NT (a)

def
= M and for a = A?B:t,

term(a)
def
= t and NT (a)

def
= ∅. NT (a) stands for the new terms generated

during action a. The notation is appropriately extended so that we can talk
of terms(η), NT (η) and Actions(η), for η ∈ Ac∗. We also use the notations
ST (a) and EST (a) with the obvious meanings.

AcA, the set of A-actions is given by {C!D: (M)t, C?D:t ∈ Ac | C = A}.
For any η ∈ Ac∗ and A ∈ Ag , η�A, A’s view of η, is defined to be the
subsequence obtained by projecting η to actions in AcA.

Protocol specifications

Definition 2.1 A protocol is a pair Pr = (C,R) where

• C, the set of constants of Pr, denoted CT(Pr), is a subset of T0,

• R, the set of roles of Pr, denoted Roles(Pr), is a finite nonempty subset
of Ac+ such that for all η ∈ R, there is some A ∈ Ho such that
η ∈ Ac+

A, and

• C ∩ NT (R) = ∅.

Definition 2.2 An information state s is a tuple (sA)A∈Ag where sA ⊆ T
for each agent A. S denotes the set of all information states. For a state s,

we define ST (s) to be
⋃

A∈Ag

ST (sA).

Definition 2.3 Given a protocol Pr = (C,R), init(Pr), the initial state of
Pr is defined to be (TA)A∈Ag where for all A ∈ Ho, TA = C ∪ KA and
TI = C ∪ KI ∪ {n0, k0}.

We do not explicitly model intruder actions in our model. Therefore we
also do not explicitly model the phenomenon of the intruder generating new
nonces in the course of a run, as is done in some other models (for instance,
[11]). An alternative would be to provide an arbitrary set of nonces and keys
to the intruder in the initial state. We follow the approach of just providing
the intruder with the fixed nonce n0 and the fixed key k0 in the initial state.

7

They serve as symbolic names for the set of new data the intruder might
generate in the course of a run. This suffices for the analysis we perform in
our proofs later. We will ensure as we develop the model that n0 and k0 are
not generated as a fresh term by any honest agent in the course of a run of
Pr.

Example 2.4 A version of the Needham-Schroeder protocol ([17]) is pre-
sented in this example. The protocol PrNS is given by (C,R) where C = ∅,
and R = {η1, η2} where η1 is the following sequence of actions:

1. A ! B : (x) {A,x}pubkB

2. A ? B : {x, y}pubkA

3. A ! B : {y}pubkB

and η2 is the following sequence of actions:

1. B ? A : {A,x}pubkB

2. B ! A : (y) {x, y}pubkA

3. B ? A : {y}pubkB

The protocol has two roles: we call η1 the initiator role and η2 the re-

sponder role. A sends the new nonce x to B as a challenge to prove his
(B’s) identity. She then receives a response to it as also a challenge from B

in the form of a nonce y. She finally responds to B’s challenge by sending
back y. Since only B can decrypt the contents of the first message, A is at
least convinced that B is alive. Similarly, B first receives a challenge from
A and responds to it while issuing his own challenge. He finally receives the
response to his challenge. Since only A could have decrypted the contents
of the message sent by B, the latter is at least convinced that A is alive.
�

The protocol is abstractly presented as a finite set of roles which uses
names from an abstract name space. But it is intended to represent the po-
tentially infinite set of its runs which use an infinite set of concrete names.
Runs are obtained by combining several instantiations of the roles of the pro-
tocols, where each instantiation is got by substituting appropriate concrete
names for the abstract names.

Example 2.5 An example run of PrNS is ξ1, given below:

8

(η1, σ1, 1) C ! I : (m) {C,m}pubk I

(η2, σ2, 1) D ? C : {C,m}pubkD

(η2, σ2, 2) D ! C : (n) {m,n}pubkC

(η1, σ1, 2) C ? I : {m,n}pubkC

(η1, σ1, 3) C ! I : {n}pubkI

(η2, σ2, 3) D ? C : {n}pubkD

Here m and n are distinct concrete nonces, and C and D are concrete
agent names. I is the intruder. σ1 is a substitution such that σ1(x) = m,
σ1(y) = n, σ1(A) = C and σ1(B) = I. σ2 is a substitution such that
σ2(x) = m, σ2(y) = n, σ2(A) = C and σ2(B) = D. (ηi, σj , k) is the
occurrence of the kth action of the role ηi under the instantiation σj .

Incidentally, the above run illustrates Lowe’s famous attack ([14]) on
the Needham-Schroeder protocol. The intruder fools D into thinking she
is talking to C, and uses a parallel session with C in his (intruder’s) own
identity to help him respond properly to D. �

The rest of the section is devoted to defining the semantics of protocols,
as outlined above. But we work only with abstract names for ease of presen-
tation. We use renamings of abstract names instead of substitutions from
abstract names to concrete names. It can be checked that all the results go
through even if we change the formalism to introduce concrete names etc.

Substitutions and events of a protocol

A substitution σ is a partial map from T0 to T0 such that:

• for all A ∈ Ag , if σ(A) is defined then it belongs to Ag ,

• for all k ∈ K0, if σ(k) is defined then it belongs to K0, and

• for all n ∈ N , if σ(n) is defined then it belongs to N .

Substitutions are extended to terms, sets of terms, actions and sequences
of actions in a straightforward manner. We present the interesting cases:

• σ(pubkA) and σ(privkA) are defined only if σ(A) is defined, in which
case they are defined to be pubkσ(A) and privkσ(A), respectively.

• σ(kAB) is defined only if σ(A) and σ(B) are defined and different from
each other, in which case it is defined to be kσ(A)σ(B).

9

• σ(A!B: (M)t) is defined only if σ(A), σ(B) and σ(t) are defined, σ(A)
is different from σ(B), and σ(A) ∈ Ho, in which case it is defined to
be σ(A)!σ(B):(σ(M))σ(t).

• σ(A?B:t) is defined only if σ(A), σ(B) and σ(t) are defined, σ(A) is
different from σ(B), and σ(A) ∈ Ho, in which case it is defined to be
σ(A)?σ(B):σ(t).

A substitution σ is said to be suitable for an action a iff σ(a) is defined,
and suitable for a sequence of actions η iff σ(η) is defined. σ is said to be
suitable for a protocol Pr if σ(t) is defined and equal to t for all constants
t ∈ CT(Pr). For any T ⊆ T0, σ is said to be a T -substitution iff for all
x ∈ T0, if σ(x) is defined then σ(x) ∈ T .

Note that substitutions are partial maps rather than total maps. This
makes sense because when we define instantiations of roles, we only need to
provide instantiations for the set of names mentioned in the role.

An event is a triple (η, σ, lp) such that η ∈ Ac+, σ is a substitution
suitable for η, and 1 ≤ lp ≤ |η|. The set of all events is denoted Events. An
event (η, σ, lp) is said to be well-typed iff σ is well-typed. For a set T ⊆ T0,
an event (η, σ, lp) is said to be a T -event iff σ is a T -substitution. An event
e = (η, σ, lp) is said to be an event of a protocol Pr if η ∈ Roles(Pr) and σ

is suitable for Pr. The set of all events of Pr is denoted Events(Pr).

For an event e = (η, σ, lp) with η = a1 · · · a`, act(e)
def
= σ(alp). If

lp < |η| then (η, σ, lp) →` (η, σ, lp + 1). For any event e, LP(e), the

local past of e, is defined to be the set of all events e′ such that e′
+
→`e.

For any event e, term(e) will be used to denote term(act(e)) and similarly
for NT (e), ST (e), EST (e), etc. For any sequence ξ = e1 · · · ek of events,

terms(ξ)
def
=

⋃

1≤i≤k

term(ei). NT (ξ), ST (ξ), EST (ξ) etc. are similarly de-

fined. For any sequence of events ξ = e1 · · · ek, Events(ξ)
def
= {e1, . . . , ek}.

Message generation rules

Definition 2.6 A sequent is of the form T ` t where T ⊆ T and t ∈ T .
An analz-proof (synth-proof) π of T ` t is an inverted tree whose nodes

are labelled by sequents and connected by one of the analz-rules (synth-rules)
in Figure 1, whose root is labelled T ` t, and whose leaves are labelled
by instances of the Axa rule (Axs rule). For a set of terms T , analz(T)
(synth(T)) is the set of terms t such that there is an analz-proof (synth-
proof) of T ` t.

For ease of notation, synth(analz(T)) is denoted by T .

10

Axa
T ∪ {t} ` t

T ` (t1, t2)
spliti(i = 1, 2)

T ` ti

T ` {t}k T ` k
decrypt

T ` t

T ` {{t}k}k
reduce

T ` t

analz-rules

Axs
T ∪ {t} ` t

T ` t1 T ` t2 pair
T ` (t1, t2)

T ` t T ` k encrypt
T ` {t}k

synth-rules

Figure 1: analz and synth rules.

The analz-rule decrypt says that if the abstract term {t}k and k can be
derived from T , then t can also be derived. This could either mean decrypt-
ing the encrypted term {t}k using the inverse key k. It could also mean
the verification of a signed term {t}k using the corresponding sign verifier
k. Thus this is an abstract rule in which depending on the status of k,
the concrete algorithm which leads to the derivation of t differs. Similarly,
the synth-rule encrypt could denote either encryption or signing. The rule
reduce really says that {{t}k}k is a different abstract notation which denotes
the same term as t. This is again a consequence of the fact that {t}k de-
notes different cryptographic algorithms — encryption, decryption, signing,
verifying signatures, etc.

Example 2.7 Let T = {t} where t = ({{(m,n)}k}k′ , (k, k′)). The analz-
proof given in Figure 2 shows that m ∈ analz(T). For readability, we denote
{{(m,n)}k}k′ by t1, (k, k′) by t2, {(m,n)}k by t3 and (m,n) by t4. �

Example 2.8 Let T = {m,n, k, k′} and t = {{(m,n)}k}k′ . The synth-
proof given in Figure 3 shows that t ∈ synth(T). For readability, we denote
{(m,n)}k by t1 and (m,n) by t2. �

We state some basic properties of the synth and analz operators in the
following proposition (see also [18]). The proofs are by a routine induction

11

Axa
T ` t split1
T ` t1

Axa
T ` t split2
T ` t2 split2
T ` k′

decrypt
T ` t3

Axa
T ` t split2
T ` t2 split1
T ` k

decrypt
T ` t4 split1
T ` m

Figure 2: An example analz-proof.

Axs
T ` m

Axs
T ` n pair

T ` t2
Axs

T ` k
encrypt

T ` t1
Axs

T ` k′

encrypt
T ` t

Figure 3: An example synth-proof.

on proof trees.

Proposition 2.9 Let T, T ′ ⊆ T , t ∈ T and σ be a substitution. Then the
following properties hold:

T ⊆ analz(T) and T ⊆ synth(T).
if T ⊆ T ′ then analz(T) ⊆ analz(T ′) and synth(T) ⊆ synth(T ′).
analz(analz(T)) = analz(T) and synth(synth(T)) = synth(T).
t ∈ synth(T) iff t ∈ synth(T ∩ ST (t)).
σ(analz(T)) ⊆ analz(σ(T)) and σ(synth(T)) ⊆ synth(σ(T)).

It immediately follows from the above proposition that T is closed under
synth. The following proposition says that it is closed under analz as well,

thus immediately implying the important statement that T = T for all sets
of terms T . It is worth noting that this result depends on the fact that only
atomic keys are allowed in the framework.

Proposition 2.10 For all T ⊆ T , analz(T) = T .

Proof: The inclusion from right to left is trivial. We prove the other
inclusion now. Suppose t ∈ analz(T). Suppose π is an analz-proof of T ` t.

12

We prove by structural induction that for every subproof $ of π with root
labelled T ` r, r ∈ T . From this it follows that t ∈ T as well.

Suppose $ is a subproof of π with root labelled T ` r such that for all
proper subproofs $1 of $ with root labelled T ` r1, r1 ∈ T . Then we prove
that r ∈ T as well. We only consider the case when the rule applied at the
root of $ is Axa or decrypt. The other cases can be similarly handled.

• Suppose $ is the following proof:

Axa
T ` r

Then r ∈ T by definition and we are through.

• Suppose $ is the following proof:

($1)

...

T ` {r}k

($2)

...

T ` k
decrypt

T ` r

By induction hypothesis {{r}k, k} ⊆ T . From the definition of synth-
proofs it follows that for all atomic terms m in T = synth(analz(T)),
m ∈ analz(T). Since k is an atomic term, it follows that k ∈ analz(T).
From the fact that {r}k ∈ synth(analz(T)), it easily follows that either
{r}k ∈ analz(T) or {r, k} ⊆ synth(analz(T)). In the first case, since
k ∈ analz(T), it follows that r ∈ analz(T) ⊆ T . In the second case also
r ∈ T and we are through. �

Information states and updates

Definition 2.11 The notions of an action enabled at a state and update of
a state on an action are defined as follows:

• A!B: (M)t is enabled at s iff t ∈ sA ∪ M .

• A?B:t is enabled at s iff t ∈ sI .

• update(s,A!B: (M)t)
def
= s′ where s′A = sA ∪ M , s′I = sI ∪ {t}, and

for all agents C distinct from A and I, s′C = sC .

13

• update(s,A?B:t)
def
= s′ where s′A = sA ∪ {t} and for all agents C

distinct from A, s′C = sC .

update(s, ε) = s, update(s, η · a) = update(update(s, η), a).

An aspect worth noting here is that the intruder is acting as an un-
bounded buffer which synchronises with each send and receive event of the
honest agents. In effect the intruder is playing the role of the network as
well, but there are some vital differences. The intruder is assumed not to
lose any message (even though it might not be passed on to the intended
recepient). This simplifies much of our analysis since at any point in time,
the intruder has all the messages exchanged thus far. In a real-life situa-
tion the network (having finite memory) might lose some information and
hence our analysis might get more complicated due to consideration of past
information.

Definition 2.12 Given an information state s and ξ = e1 · · · ek, a sequence
of events, infstate(s, e1 · · · ek) is defined to be update(s, act(e1) · · · act(ek)).
An event e is said to be enabled at (s, ξ) iff LP(e) ⊆ {e1, . . . , ek} and act(e)
is enabled at infstate(s, ξ).

Given a protocol Pr and a sequence ξ = e1 · · · ek of events of Pr, we
define infstatePr(ξ) to be infstate(init(Pr), e1 · · · ek). We omit the subscript
Pr if the context is clear. An event e of Pr is said to be enabled at a sequence
ξ of events of Pr iff e is enabled at (init(Pr), ξ).

The following two propositions, which state that if an agent A is not “in-
volved” in an action a then a does not affect A’s state, are easy consequences
of the definition of update.

Proposition 2.13 Suppose s is an information state, η is a finite sequence
of actions, A ∈ Ho and a 6∈ AcA. Then (update(s, η))A = (update(s, η ·a))A.
As a consequence, for all information states s, all finite sequences of actions
η and for all honest agents A, (update(s, η))A = (update(s, η�A))A.

Proposition 2.14 Suppose s is an information state, η is a finite sequence
of actions, and a is a receive action. Then (update(s, η))I = (update(s, η ·
a))I .

Runs of a protocol

We isolate the sequences of events which can possibly occur as runs of pro-
tocols in the following definition. In the next definition, we define the set of
runs of a given protocol.

14

Definition 2.15 A sequence of events e1 · · · ek is said to be a run with re-
spect to an information state s iff:

• for all i : 1 ≤ i ≤ k, ei is enabled at (s, e1 · · · ei−1),

• for all i : 1 ≤ i ≤ k, NT (ei) ∩ ST (s) = ∅, and for all i < j ≤ k,
NT (ei)∩NT (ej) = ∅. (This is the unique origination property of runs.)

For any T ⊆ T0, a run ξ is said to be a T -run if it is composed only of
T -events.

Definition 2.16 Given a protocol Pr, a sequence ξ of events of Pr is said
to be a run of Pr iff it is a run with respect to init(Pr). We let R(Pr) denote
the set of all runs of Pr.

The following is an easy consequence of the definition of runs.

Proposition 2.17 Suppose ξ = e1 · · · ek is a run with respect to a state s.
Then for all i ≤ k, NT (ei) ∩ ST (infstate(s, e1 · · · ei−1)) = ∅.

Essentially, the admissibility conditions on runs of protocols achieve the
same effect as a presentation in which each agent maintains information
about the set of sessions he/she is participating in. In the latter, more
operational approach, on receiving a message (which belongs to a particular
session), some variables associated with that session would get updated.

Our approach is more denotational than operational in that we abstract
away from the specifics of the update of agents’ information. For us, a run is
not just a sequence of actions but a sequence of events. An event is a record
of an action occurrence in a particular context. Thus the substitutions
which form part of the events uniquely identify the session of which a given
action is part of. They also identify the actual terms substituted for all the
variables mentioned in the role. Thus the effect of the more operational
models is achieved by imposing conditions on runs. The agents’ information
state represents only the messages the agent possesses and can synthesize,
and not any other control information. Thus when an agent receives a
message t, it just adds t to its state. There is no need to update any control
information.

The secrecy problem

Definition 2.18 A basic term m ∈ T0 is said to be secret at state s iff there
exists A ∈ Ho such that m ∈ analz(sA) \ analz(sI). Given a protocol Pr and
ξ ∈ R(Pr), m is said to be secret at ξ if it is secret at infstate(ξ). ξ is leaky

15

iff there exists a basic term m and a prefix ξ′ of ξ such that m is secret at
ξ′ and not secret at ξ.

The secrecy problem is the problem of determining for a given protocol
Pr whether some run of Pr is leaky.

Thus we say that a run is leaky if some atomic term is secret at some
intermediate state of the run but is revealed to the intruder at the end of
the run. It is possible that there are protocols for which leaks of the above
form do not constitute a breach of security. A more general notion would
be to allow the user to specify certain secrets which should not be leaked and
check for such leaks. In this paper, we prove the decidability of the secrecy
problem (defined above) for a subclass of protocols. It is still not known
whether there is a “reasonable” syntactic subclass of protocols for which
the more general secrecy problem (which checks for leaks of user-specified
secrets) is decidable.

Example 2.19 The run ξ1 of Example 2.5 is leaky. This is because n is
secret at the prefix ξ′1 = (η1, σ1, 1) · (η2, σ2, 1) · (η2, σ2, 2) of ξ1, whereas it is
not secret at ξ1. �

3 Well-formed protocols

In the literature, protocols are informally presented as a sequence of commu-
nications of the form A→B :t. There are also some other “well-formedness”
conditions which are implicitly assumed. In this section, we formalise these
criteria and explore their consequences. The main property of well-formed
protocols is that for each of their roles and plays, every send action in it is
enabled by the previous actions. As a result, when we analyse well-formed
protocols, checking enabledness of send actions by honest agents is relatively
straightforward. If ξ is a run of a well-formed protocol and e is a send event
such that LP(e) ⊆ Events(ξ), then as a consequence of the propositions
proved in this section, e is enabled at ξ and hence ξ · e is also a run of the
protocol. Thus it suffices to consider mainly the changes in the intruder
state while analysing such protocols. This has also been the standard prac-
tice in the analysis of security protocols. It can be seen that it is the implicit
assumption of well-formedness that justifies this practice.

16

Well-formed protocols

Definition 3.1 A sequence of actions η = a1 · · · a` is said to be send-
admissible with respect to a state s if for all i ≤ `, if ai ∈ Send then ai

is enabled at update(s, a1 · · · ai−1). η is said to be send-admissible with re-
spect to a protocol Pr iff it is send-admissible with respect to init(Pr).

For any send action A!B: (M)t with B ∈ Ho, we say that B?A:t is its
matching receive action.

Definition 3.2 A well-formed protocol is a pair Pr = (C, η) where:

• C, the set of constants of Pr, denoted CT(Pr), is a subset of T0, and

• η = a1b1 · · · a`b` ∈ Ac+ such that:

– for all 1 ≤ i ≤ `, ai is a send action and bi is its matching receive,

– η is send-admissible with respect to (KA ∪ C)A∈Ag , and

– NT (η) ∩ C = ∅.

For a well-formed protocol Pr = (C, η), Roles(Pr), the set of roles of Pr,
is defined to be the set {η�A | A ∈ Ag and η�A 6= ε}.

Despite different styles of presentation, in fact well-formed protocols are
closely related to protocols as defined in Definition 2.1.

Proposition 3.3 For every well-formed protocol Pr = (C, η), (C,Roles(Pr))
is a protocol.

Proposition 3.4 All roles of a well-formed protocol Pr = (C, η) are send-
admissible with respect to Pr.

Proof: For simplicity of notation, let s0 denote init(Pr). Suppose η =
a1 · · · a` and suppose ζ = ai1 · · · air is a role of Pr, i.e., ζ = η�A for some
A ∈ Ho. By Proposition 2.13, it is clear that for all j : 1 ≤ j ≤ r,
(update(s0, a1 · · · aij))A = (update(s0, ai1 · · · aij))A. The send-admissibility
of ζ follows from the above equality, and the fact that η is send-admissible
with respect to Pr (the last fact is because Pr is a well-formed protocol).
�

Proposition 3.5 Suppose Pr = (C, η) is a well-formed protocol, ζ is a role
of Pr and σ is a substitution suitable for Pr and ζ. Then σ(ζ) is send-
admissible with respect to Pr.

17

Proof: For simplicity of notation, let s0 denote init(Pr). Note that ζ = η�A

for some A ∈ Ho. Since σ is suitable for Pr and ζ, σ is defined on all actions
occurring in ζ, and σ(m) = m for all m ∈ CT(Pr). We first prove for all
prefixes ζ ′ of ζ that σ(s′A) ⊆ (s′1)σ(A) by induction on |ζ ′| (where we denote
update(s0, ζ

′) by s′ and update(s0, σ(ζ ′)) by s′1):

ζ ′ = ε: In this case s′ = s′1 = s0. Now it is clear that σ(C) = C and
σ(KA) = Kσ(A). Since A ∈ Ho, σ((s0)A) = C ∪ σ(KA). Further
(s0)σ(A) ⊇ C∪Kσ(A) (with inequality when σ(A) = I). It immediately
follows that σ(s′A) ⊆ (s′1)σ(A) in this case.

ζ ′ = ζ ′′ · a: Note that σ(ζ ′) = σ(ζ ′′) · σ(a). For simplicity let us denote
update(s0, ζ

′′) by s′′ and update(s0, σ(ζ ′′)) by s′′1. We need to prove
that σ(s′A) ⊆ (s′1)σ(A) assuming that σ(s′′A) ⊆ (s′′1)σ(A).

Now if a = A!B: (M)t then s′A = s′′A ∪ M . Since σ(s′′A) ⊆ (s′′1)σA
, and

since σ(s′A) = σ(s′′A) ∪ σ(M) and (s′1)σ(A) = (s′′1)σA
∪ σ(M) (because

σ(a) = σ(A)!σ(B):(σ(M))σ(t)),it follows that σ(s′A) ⊆ (s′1)σ(A).

The case when a = A?B:t is identically handled. This proves the
induction case.

From Proposition 3.4 it follows that ζ is send-admissible. Now consider any
prefix ζ ′ ·a of ζ with a ∈ Send . For simplicity let us denote update(s0, ζ

′) by
s′ and update(s0, σ(ζ ′)) by s′1. We know that term(a) ∈ s′A ∪ NT (a). There-

fore term(σ(a)) is the same as σ(term(a)), which belongs to σ(s′A ∪ NT (a)).

But it follows from Proposition 2.9 that σ(T) ⊆ σ(T) for any σ and T . Fur-
ther σ(s′A∪NT (a)) = σ(s′A)∪NT (σ(a)) and by what has been proved above
σ(s′A) ⊆ (s′1)σ(A). Putting all this together we see that term(σ(a)) belongs

to (s′1)σ(A) ∪ NT (σ(a)). This shows that σ(ζ) is also send-admissible. �

Context-explicit protocols

Definition 3.6 A well-formed protocol Pr = (C, η) with η = a1b1 · · · a`b` is
called a context-explicit protocol iff:

• for all substitutions σ, σ′ suitable for Pr, for all i < j ≤ `, and for all
t ∈ EST (ai) and t′ ∈ EST (aj), if σ(t) = σ′(t′) then t = t′ and i = j.

• for all i ≤ `, there exists some n ∈ NT (ai) such that for all t belonging
to EST (ai) there exists t′ and k′ such that t = {(n, t′)}k′ .

18

The syntactic restrictions imposed in the above definition are in keeping
with the prudent engineering practices for cryptographic protocols advo-
cated in [1]. In particular, Principle 1 of [1] says the following:

Every message should say what it means: the interpretation of
the message should depend only on its content. It should be pos-
sible to write down a straightforward English sentence describing
the content — though if there is a suitable formalism available
that is good too.

Quoting [1] further:

All the elements of [the] meaning [of a message] should be explic-
itly represented in the message, so that a recipient can recover
the meaning without any context.

We would like to view the restrictions imposed in Definition 3.6 as achieving
the above effect by making the context explicit in the message itself. This
earns these protocols the name context-explicit protocols.

A particular instance of the above principle is that for every encrypted
term t′ an agent receives in the course of a run, it knows precisely the term
t occurring in the protocol specification of which t′ is an instance. This
is ensured by the first clause in the definition of context-explicit protocols.
We might also want that instantiations of t belonging to different events
are somehow distinguishable. This is ensured by the second clause in the
definition, which attaches a new nonce to every instantiation of a term. A
discussion of the reasonableness of these restrictions is provided at the end
of the paper.

The following is an important technical consequence of the fact that
distinct nonces are appended to the encrypted terms occurring in each send
message. It is used in proving bounds on the length of runs which we need
to consider when analysing a context-explicit protocol for secrecy.

Proposition 3.7 Let Pr = (C, a1b1 · · · a`b`) be a context-explicit protocol
and let e1 · · · er be a run of Pr. Then for all receive events ek(k ≤ r), there
is at most one send event ei such that EST (ei) ∩ EST (ek) 6= ∅.

Proof: Suppose e1 · · · er is a run of Pr and suppose there is a receive event
ek and two send events ei and ej (with i 6= j) such that neither EST (ei)
nor EST (ej) is disjoint from EST (ek). Suppose ti ∈ EST (ei) ∩ EST (ek)
and tj ∈ EST (ej) ∩ EST (ek). From the definition of context-explicit pro-
tocols it is clear that for all events e of ξ, there exists a nonce n such that

19

for all t ∈ EST (e), t = {(n, u)}k for some u and k. Further if e is a send
event, n ∈ NT (e). Thus there exist ni ∈ NT (ei) and nj ∈ NT (ej) such that
ti = {(ni, ui)}ki

and tj = {(nj , uj)}kj
for some ui, uj , ki and kj . Now both

ti and tj belong to EST (ek), therefore it follows that ni = nj. But then
ni ∈ NT (ei) ∩ NT (ej), which violates the property of unique origination of
nonces. This contradicts the fact that ξ is a run. This contradiction leads us
to conclude that there is at most one i such that EST (ei)∩EST (ek) 6= ∅. �

The main result of this paper is that the problem of determining for a
given context-explicit protocol Pr whether it has a leaky run is decidable. The
proof of this theorem constitutes the following sections.

4 Decidability for bounded length runs

In this section, we prove the decidability of a restricted secrecy problem —
that of checking for a given protocol Pr and a number r whether there is
some leaky run of Pr of length bounded by r. The trouble is that the set
of such runs is still infinite. We show that we can always suitably rename
nonces and keys occurring in runs with nonces and keys from a fixed finite
set. Since there can only be finitely many runs which can be thus formed,
we get the desired decidability result.

Fix a context-explicit protocol Pr = (C, η) with η = a1b1 · · · a`b` for the

rest of the section. For any number r, Rr(Pr)
def
= {ξ is a run of Pr | |ξ| ≤ r}.

For any T ⊆ T0 and any number r, we define RT
r (Pr) to be {ξ | ξ is a T -run

of Pr of length at most r}.
Suppose we fix a finite T ⊆ T0 and a number r. It is clear that there

are only finitely many T -substitutions suitable for Pr. Let there be b1 such
T -substitutions. It now follows that there are at most b2 = 2 ·` ·b1 T -events.
This bound easily follows from the fact that the set of distinct (η, i) pairs
where η is a role of Pr and 1 ≤ |i| ≤ |η| is 2 · `. This coupled with the
number of T -substitutions gives us b2. From this it easily follows that there
are at most (b2 + 1)r runs in RT

r (Pr). Thus we see that RT
r (Pr) is a finite,

effectively constructible set, and therefore the problem of checking whether
there is a leaky run in RT

r (Pr) is decidable.
Below we explain how to define a finite set T (r) for any given number

r such that Rr(Pr) has a leaky run iff R
T (r)
r (Pr) has a leaky run. Suppose

w is the maximum size of any term occurring in the specification of Pr, and
suppose p is the maximum length of any role of Pr. Given r, fix three sets

NT (r) ⊆ N \ C, K0(r) ⊆ K0 \ C and Ag(r) ⊆ Ag \ C such that |N(r)| =

20

|K0(r)| = |Ag(r)| = r · p · (w + 2). (The reason for choosing this specific
number will become clear as we develop the proof of the following lemma.)
T (r) is defined to be N(r) ∪ K0(r) ∪ Ag(r) ∪ CT(Pr).

Lemma 4.1 For any r ∈ N, if Rr(Pr) has a leaky run then R
T (r)
r (Pr) also

has a leaky run.

Proof: We first set up some notation which we use locally in this proof:
for any action a of the form A!B: (M)t or A?B:t, parties(a) (the set of
apparent (not actual) participants in the action a), is defined to be {A,B}.

For any sequence of actions η = a1 · · · a`, parties(η) =
⋃

1≤i≤`

parties(ai). Let

us define the domain of η for any η ∈ R to be (ST (η) ∪ parties(η)) ∩ T0.
Note that for all η ∈ R, the domain of η contains at most p · (w + 2) terms.
It clearly suffices to consider events of Pr of the form (η, σ, lp) where the
domain of σ is restricted to the domain of η. Let us call such events as
domain-restricted events. A run composed only of domain-restricted events
is called a domain-restricted run.

Let us define the range of a run ξ to be the union of the ranges of all
substitutions σ such that (η, σ, lp) ∈ Events(ξ) for some η and lp. (Note
that by range of a substitution σ, we mean the set {σ(x) | x ∈ T0 and σ(x)
is defined}.) If we consider a domain-restricted run ξ of length at most r,
then it is clear that the range of ξ has at most r ·p · (w+2) terms. Now T (r)
contains r ·p · (w+2) nonces and the same number of keys and agent names.
Therefore there exists at least one injective substitution from the range of ξ

to T (r).
Fix one such substitution τξ for each such bounded-domain run ξ in

Rr(Pr). (It is the renaming map associated with ξ.) For any such run
ξ = e1 · · · ek with ei = (ηi, σi, lpi) for each i ≤ k, define τξ(ξ) to be the
run τξ(e1) · · · τξ(ek) where τξ(ei) = (ηi, τξ ◦ σi, lpi) for each i ≤ k (for each
x ∈ T0, (τξ ◦ σi)(x) is defined to be τξ(σi(x))).

Now for every domain-restricted run ξ ∈ Rr(Pr), it is a simple mat-
ter to check that for any prefix ξ′ of ξ, A ∈ Ag and t ∈ T , t belongs to
(infstate(ξ′))A iff τξ(t) belongs to (infstate(τξ(ξ

′)))A. Also t is leaked in ξ

iff τξ(t) is leaked in τξ(ξ). From this it easily follows that τξ(ξ) is in fact a

run of Pr (and so belongs to R
T (r)
r (Pr)) and that it is leaky if and only if ξ

is leaky.
Thus we have shown that if there is a leaky run in Rr(Pr), then there is

also a leaky run in R
T (r)
r (Pr). �

21

From the above discussion we conclude the following:

Theorem 4.2 The problem of checking for a given protocol Pr and a given
bound r whether there is a well-typed leaky run of Pr of length bounded by r,
is decidable.

5 Decidability for good runs

In this section, we define the notion of a good run and prove some basic
properties of good runs. We also prove that the problem of checking whether
there is a good leaky run of a given context-explicit protocol is decidable.

Good runs formalise a notion of “well-behavedness” of runs. The essen-
tial property of good runs is the following:

• Given a context-explicit protocol Pr = (C, η) and a good run e1 · · · ek

of Pr, none of the ei’s is enabled by another event which is an instance
of a later communication in η.

Definition 5.1 Suppose Pr = (C, η) is a context-explicit protocol and ξ =
e1 · · · ek is a run of Pr. For i, j ≤ k, ej is called a good successor of ei (and
ei a good predecessor of ej) in ξ iff i < j and at least one of the following
conditions holds:

• ei →` ej .

• ei is a send event, ej is a receive event, and EST (ei) ∩ EST (ej) 6= ∅.

For i ≤ k, ei is called a good event in ξ iff either i = k or there is some
j > i such that ej is a good successor of ei. ei is called a bad event iff it is
not a good event. A run ξ is called a good run iff all its events are good.
A subsequence e1 · · · er of ξ is called a good path iff for all j < r, ej+1 is a
good successor of ej .

The following propositions list some useful properties of good runs.

Proposition 5.2 Suppose Pr = (C, a1b1 · · · a`b`) is a context-explicit pro-
tocol and ξ is a run of Pr. Then all good paths in ξ are of length at most
2 · `.

Proof: For convenience, define the following notation: for all i : 1 ≤ i ≤ `,

c2·i−1
def
= ai and c2·i

def
= bi. Suppose e1 · · · er is a good path in ξ with

22

ei = (ζi, σi, lpi) for all i ≤ r. Since for all j ≤ r, ej is an event of Pr, it is
clear that there exists some ij ≤ 2 · ` such that ζj(lpj) = cij .

We now show that for all j < r, ij < ij+1, using the fact that ej+1 is a
good successor of ej . There are two cases to consider:

ej →` ej+1: In this case it is clear that ζj = ζj+1, σj = σj+1 and lpj+1 =
lpj + 1. Now ζj is a role of Pr and hence a subsequence of c1 · · · c2·`.
Thus cij occurs earlier in c1 · · · c2·` than cij+1

and hence ij < ij+1.

act(ej) ∈ Send, act(ej+1) ∈ Rec and EST (ej) ∩ EST (ej+1) 6= ∅: It is clear
now that cij is a send action and cij+1

is a receive action, and also that
cij+1−1 is a send action with term(cij+1−1) = term(cij+1

). Thus it fol-
lows that there exist t and t′ belonging to EST (cij) and EST (cij+1−1)
respectively, such that σj(t) = σj+1(t

′). But from the definition of
context-explicit protocols, it follows that t = t′ and ij = ij+1−1. This
shows that ij < ij+1.

From this it follows that there is a sequence i1 < · · · < ir ≤ 2 · ` such
that for all j ≤ r, ζj(lpj) = cij . This suffices to prove that r ≤ 2 · `. �

Lemma 5.3 Suppose Pr = (C, a1b1 · · · a`b`) is a context-explicit protocol
and ξ is a good run of Pr. Then |ξ| ≤ 22·`+1 − 1.

Proof: Suppose ξ = e1 · · · ek. Since ξ is a good run of Pr, all the events
ei (i ≤ k) are good. This means that for all i < k, there is some j : i < j ≤ k

such that ej is a good successor of ei. It easily follows that for all i < k, there
is a good path from ei to ek. For all i : 0 ≤ i ≤ 2 · `, define the set Ei to be
the set of events e occurring in ξ such that the shortest good path from e to
ek is of length i. From Proposition 5.2 we know that all good paths of ξ are
of length at most 2 · `. Thus the set of events occurring in ξ is partitioned
by the sets E0, . . . , E2·`. From Proposition 3.7, we can conclude that for
every receive event e occurring in ξ there is at most one send event e′ in ξ

such that EST (e)∩EST (e′) 6= ∅. Further for every event e there is at most
one e′ such that e′ →` e. Thus every event occurring in ξ has at most two
good predecessors, and thus for all i < 2 · `, |Ei+1| ≤ 2 · |Ei|. Thus it is easy
to see by induction that for all i ≤ 2·`, |Ei| ≤ 2i, and that |ξ| ≤ 22·`+1−1. �

Lemma 5.3 and Theorem 4.2 immediately imply the following theorem.

Theorem 5.4 The problem of checking for a given context-explicit protocol
Pr whether there is a good leaky run of Pr is decidable.

23

6 Reduction to good runs

In this section we prove the main result of this paper — if a context-explicit
protocol has a leaky run then it has a good leaky run. Thus the secrecy
problem for context-explicit protocols is reduced to searching whether there
is a good leaky run, and an appeal to Theorem 5.4 yields Theorem 6.4, the
main result of the paper.

6.1 How to eliminate terms

Suppose T is a set of terms and u is a term such that u ∈ T . Can we remove
a term t (with the property that EST (t) ∩ EST (u) = ∅) from T but add a
set of atomic terms T ′ such that it is still the case that u ∈ (T \ {t}) ∪ T ′?
The following lemmas show that under some additional assumptions this is
possible. They will be crucially used later in the reduction to good runs.
We split the task mentioned above into two parts, first handling the case
when u ∈ analz(T) and then considering what happens when u ∈ T .

Lemma 6.1 Suppose T = (analz(S1 ∪{t})\ analz(S1))∩T0 for some sets of
terms S1 and S2 and some term t.

1. Let u be a term and let π be an analz-proof of S1 ∪ S2 ∪ {t} ` u such
that for all keys k ∈ ST (S1 ∪ {t}) such that k labels a non-root node
of π, k ∈ analz(S1 ∪ {t}).

Then u ∈ (analz(S1 ∪ {t}) ∩ ST (t)) ∪ analz(S1 ∪ S2 ∪ T).

2. Let u ∈ synth((analz(S1 ∪ {t})∩ ST (t))∪ analz(S1 ∪S2 ∪ T)) such that
EST (u) ∩ EST (t) = ∅. Then u ∈ S1 ∪ S2 ∪ T .

Proof:

1. Suppose π is an analz-proof of S1∪S2∪{t} ` u. We prove by structural
induction that for every subproof $ of π with root labelled S1 ∪ S2 ∪
{t} ` w, w belongs to (analz(S1 ∪ {t}) ∩ ST (t)) ∪ analz(S1 ∪ S2 ∪ T).
Suppose $ is a subproof of π with root labelled S1 ∪ S2 ∪ {t} ` w

such that for all proper subproofs $1 of $ the statement of the lemma
holds. Then we prove that it holds for $ as well. We only consider
the cases when the rule applied at the root of $ is Axa or decrypt. The
other cases can be handled by a routine application of the induction
hypothesis.

• Suppose $ is the following proof:

24

Axa
S1 ∪ S2 ∪ {t} ` w

Then w ∈ S1∪S2∪{t}. If w = t then w ∈ analz(S1∪{t})∩ST (t).
If w ∈ S1 ∪ S2 then w ∈ analz(S1 ∪ S2 ∪ T).

• Suppose $ is the following proof:

($1)

...
S1 ∪ S2 ∪ {t} ` {w}k

($2)

...

S1 ∪ S2 ∪ {t} ` k
decrypt

S1 ∪ S2 ∪ {t} ` w

By induction hypothesis {w}k ∈ analz(S1∪{t})∪analz(S1∪S2∪T)
and k ∈ analz(S1 ∪ {t}) ∪ analz(S1 ∪ S2 ∪ T).

{w}k ∈ analz(S1 ∪ S2 ∪ T): If k ∈ analz(S1 ∪S2 ∪ T) then w is in
the same set as well and we are done. If on the other hand
k ∈ analz(S1 ∪ {t}), then k ∈ K ∩ (analz(S1) ∪ (analz(S1 ∪
{t}) \ analz(S1))). But this implies that k ∈ analz(S1 ∪ T) ⊆
analz(S1 ∪ S2 ∪ T) and hence w is also in the same set.

{w}k ∈ analz(S1 ∪ {t}) ∩ ST (t): It is evident that k ∈ ST (S1 ∪
{t}). Thus by assumption k ∈ analz(S1 ∪ {t}) and hence w

is also in the same set. Clearly w ∈ ST (t) as well.

2. Let us denote by W the set ((analz(S1 ∪ {t}) ∩ ST (t)) ∪ analz(S1 ∪
S2 ∪ T)) ∩ ST (u). It is clear that u ∈ synth(W). Now w ∈ ST (u)
for every w ∈ W , and since EST (u) and EST (t) are disjoint it is also
the case that EST (w) and EST (t) are disjoint. We prove below that
W ⊆ S1 ∪ S2 ∪ T ; this suffices to prove that u ∈ S1 ∪ S2 ∪ T .

So suppose w ∈ W . Then w ∈ analz(S1 ∪ S2 ∪ T) ∪ (analz(S1 ∪
{t}) ∩ ST (t)). If w ∈ analz(S1 ∪ S2 ∪ T) we are done. Suppose
w ∈ analz(S1∪{t})∩ST (t). In this case, as observed above EST (w)∩
EST (t) = ∅, and hence from w ∈ ST (t) it follows that EST (w) = ∅.
This means that w is just a tuple of atomic terms. In this case it
is clear that w ∈ synth(analz({w}) ∩ T0). But then analz({w}) ∩ T0 ⊆
analz(S1∪{t})∩T0 ⊆ analz(S1∪T). This implies that w ∈ S1 ∪ S2 ∪ T

and the proof is done. �

The following lemma is vital in proving that if m is secret at a run ξ of a
protocol Pr, then m is also secret at ξ′, where ξ′ is got by eliminating some
events and renaming some atomic terms of ξ.

25

Lemma 6.2 Suppose S is a set of terms and T ⊆ analz(S)∩T0. Suppose τ

is a substitution with the property that for all x ∈ T0 \ T , τ(x) = x and for
all x ∈ T , τ(x) ∈ S. Then for all t ∈ analz(τ(S)), there exists r ∈ analz(S)
such that τ(r) = t.

Proof: Suppose π is an analz-proof of τ(S) ` t. We prove by structural
induction that for every subproof $ of π with root labelled τ(S) ` w, there
exists r ∈ analz(S) such that τ(r) = w. Suppose $ is a subproof of π

with root labelled τ(S) ` w such that for all proper subproofs $1 of $ the
statement of the lemma holds. Then we prove that it holds for $ as well.
We only consider the cases when the rule applied at the root of $ is Axa

or decrypt. The other cases can be handled by a routine application of the
induction hypothesis.

• Suppose $ is the following proof:

Axa
τ(S) ` w

Then w ∈ τ(S) which means that there exists r ∈ S ⊆ analz(S) such
that τ(r) = w.

• Suppose $ is the following proof:

($1)

...
τ(S) ` {w}k

($2)

...

τ(S) ` k
decrypt

τ(S) ` w

By induction hypothesis there exist r′, r′′ ∈ analz(S) such that τ(r′) =
{w}k and τ(r′′) = k. It is clear that r′ is of the form {r}k′ with
τ(r) = w and τ(k′) = k, and r′′ is of the form k′′. We need to prove
that r ∈ analz(S).

– Suppose k′ ∈ T . It then follows that k′ ∈ K0 and hence it
follows that k′ = k′ and that k′ ∈ analz(S) (since T ⊆ analz(S)).
Coupled with the fact that {r}k′ belongs to analz(S), we have
that r ∈ analz(S).

26

– Suppose k′ 6∈ T . From the definition of τ we see that k′ = k.
Thus {r}k belongs to analz(S).

If k′′ ∈ T , then since τ(T) ⊆ S ⊆ analz(S) it follows that k is in
analz(S). If k′′ 6∈ T , from the definition of τ it follows that k′′ = k,
and thus it is again clear that k ∈ analz(S) (since T ⊆ analz(S)
and k = k′′ ∈ T).

Coupled with {r}k ∈ analz(S), this implies that r ∈ analz(S), as
desired. �

6.2 Reduction to good runs

In this subsection we proceed to prove the reduction to good runs using the
properties proved in the previous subsection. We briefly present the key
ideas in the proof before proceeding to the formal presentation. Suppose
a given context-explicit protocol has a leaky run ξ. If it is not good, we
define a new run by eliminating the latest bad event of ξ. This loses some
information — more specifically, the messages occurring later than this event
may no longer be constructible. Here is where the results of the previous
subsection come in handy. We know that the eliminated event is a bad
event and hence does not have encrypted subterms in common with the
later events. With some effort we can apply Lemma 6.1 to this case, so
all the later messages do not need all of t but just the set T of new terms
occurring in t learnt by the intruder during the latest bad event. If the
intruder is provided with this information in his initial state then we can
show that even after eliminating the latest bad event we have a run. Recall
that we let n0 and k0 stand for the intruder’s knowledge, so adding T to the
intruder’s state is formally achieved by mapping all of T to {n0, k0}. This
new run is then shown to be leaky by applying the results of the previous
subsection. After the latest bad event is eliminated, it is easy to see that
none of the later events become bad. Some of the good events occurring
before this bad event might become bad after its elimination. But clearly
the index of the latest bad event of this new run decreases. We can now
repeat the above process till we get a good run.

Lemma 6.3 Suppose Pr = (C, a1b1 · · · a`b`) is a context-explicit protocol
which has a leaky run. Then it also has a good leaky run.

Proof: We fix the following notation for the rest of the proof. Fix a
leaky run ξ = e1 · · · ek of Pr, none of whose proper prefixes is leaky. Let

27

ej = (ηj , σj , lpj) for j ≤ k. For any j ≤ k, tj = term(ej). For any j : 1 ≤
j ≤ k, ξj denotes e1 · · · ej , sj denotes infstate(ξj) and Tj denotes (sj)I . For
i, j : 1 ≤ i ≤ j ≤ k, ξ−i

j denotes e1 · · · ei−1ei+1 · · · ej if i < j and ξi−1 if i = j,

s−i
j denotes infstate(ξ−i

j) and T−i
j denotes (s−i

j)I . We also denote init(Pr)
by s0 and (s0)I by T0.

Suppose ξ is not a good run. This means that there is a bad event in ξ.
Let r be the index of the latest bad event in ξ (i.e. r = max ({i ≤ k | ei is
a bad event of ξ})). Notice that by definition ek is a good event, and hence
r < k. Define T to be (analz(Tr) \ analz(Tr−1)) ∩ T0. Since ξr is not leaky,
it follows that no m ∈ T is secret at ξr−1. Thus it has to be the case that
T ⊆ NT (er) ⊆ N ∪ K0.

Let τ be a substitution which maps every n in T ∩ N to n0, every k in
T ∩ K0 to k0 and is identity on all the other terms in T0. (Recall that n0

and k0 are fixed constants in the intruder’s initial state.) For all j ≤ k, we
define e′j to be (ηj , τ ◦ σj, lpj), where (τ ◦ σj)(t) = τ(σj(t)) for all t. We
define ξ′ = e′1 · · · e

′
k. Analogous to the notations based on ξ, we define the

notations t′j, ξ′j , s′j, T ′
j , (ξ′)−i

j , (s′)−i
j and (T ′)−i

j based on ξ′. Note that
t′j = τ(tj), ξ′j = τ(ξj), T ′

j = τ(Tj) and so on.

We now show that (ξ′)−r
k) is a run of Pr and that it is leaky; but the

index of the latest bad event (if any) in (ξ′)−r
k is less than r, and hence we

can repeat the process on the new run, eventually obtaining a good run.
We now prove that (ξ′)−r

k is a run of Pr and that it is leaky, thus con-
cluding the proof of the theorem.
Claim: (ξ′)−r

k is a run of Pr.
Proof of Claim: Since ξ is a run, it follows that NT (ei) ∩ ST (s0) = ∅
for all i ≤ k, and that NT (ei) ∩ NT (ej) = ∅ for all i < j ≤ k. Since
T ⊆ NT (er) it follows that T ∩ NT (eq) = ∅ for all q 6= r. It thus follows
that NT (e′q) = NT (eq) for all q 6= r. It is now easy to see that for all
i ≤ k, i 6= r, NT (e′i) ∩ ST (s0) = ∅ and that for all i < j ≤ k, i, j 6= r,
NT (e′i)∩NT (e′j) = ∅. Thus (ξ′)−r

k satisfies the unique origination property.
We concentrate on proving that all its events are enabled at the end of the
preceding events.

By definition of bad events it follows that er 6= ek and for all q : r <

q ≤ k, eq is not a good successor of er. This implies in particular that
for all q : r < q ≤ k, ¬(er →` eq). From this it also follows that for all

q : r < q ≤ k, ¬(er
+
→`eq), i.e., er 6∈ LP(eq).

• We first consider the case when er is a receive event. Then by Propo-
sition 2.14, Tr = Tr−1 and thus T = ∅. Then it is clear that τ is the

28

identity map on terms. Hence ξ′ = ξ. It suffices to prove that ξ−r
k is

a run of Pr. Firstly it is clear that ξr−1 is a run of Pr. Consider a
q such that r < q ≤ k. Since all events in LP(eq) occur in ξq−1 and
er 6∈ LP(eq), it follows that all events in LP(eq) occur in ξ−r

q−1.

Now if eq is a receive event, then since Tr = Tr−1 it is clear that
T−r

q−1 = Tq−1 and hence tq ∈ T−r
q−1. This suffices to show that eq is

enabled at ξ−r
q−1. If eq is a send event, then since instantiations of roles

of Pr are send-admissible, eq is enabled at ξ−r
q−1.

• Let us now consider the case when er is a send event. We first show that
ξ′r−1 is a run of Pr. Since T ⊆ NT (er) and since NT (er)∩ST (sr−1) =
∅, τ does not affect any term occurring in ξr−1. Hence it follows that
for all q < r, tq = t′q, sq = s′q, and Tq = T ′

q. Thus for all q < r, e′q is
enabled at ξ′q−1. This means that ξ′r−1 is a run of Pr.

We now show that for all q : r < q ≤ k, e′q is enabled at (ξ′)−r
q−1). We

first note that for any i < j ≤ k, ei →` ej iff e′i →` e′j , ei ∈ LP(ej) iff
e′i ∈ LP(e′j), and EST (ei) ∩ EST (ej) 6= ∅ iff EST (e′i) ∩ EST (e′j) 6= ∅.
These statements immediately follow from the definitions.

Fix a q such that r < q ≤ k. There are two cases to consider:

– If eq is a receive event, then it is clear that tq ∈ synth(U) where
U = analz(Tq−1) ∩ ST (tq). Consider some u ∈ U and an analz-
proof π of Tq−1 ` u. It is clear that for all keys k, if k ∈ (s0)A
for some A ∈ Ag then k ∈ (s0)B for some B ∈ Ag . Further for
any index i, if k ∈ NT (ei), then k ∈ K0 and hence k = k. So
we can say that for any k ∈ K, if k ∈ (si)A for some A ∈ Ag
then k ∈ (si)B for some B ∈ Ag . Further note that if k ∈ ST (si)
then k ∈ (si)A for some A ∈ Ag, and therefore k ∈ (si)B as well,
for some B ∈ Ag . Now since ξq−1 is not leaky, it follows that
whenever k ∈ ST (sr) for some r < q and k ∈ analz(Tq−1) then
k ∈ analz(Tr). Thus Tr−1, Tq−1 \ Tr, tr, T , u and π play the role
of S1, S2, t, T , u, and π respectively in item 1 of Lemma 6.1 and
it follows that analz(Tq−1) ⊆ (analz(Tr) ∩ ST (tr)) ∪ analz(T−r

q−1).

Thus tq ∈ synth((analz(Tr) ∩ ST (tr)) ∪ analz(T−r
q−1 ∪ T)). Now

since er is not a good predecessor of eq, EST (tq) ∩ EST (tr) = ∅.
Thus the conditions of item 2 of Lemma 6.1 are fulfilled, and

hence tq ∈ T−r
q−1 ∪ T . Applying Proposition 2.9 and using the fact

that τ(T) ⊆ T0, we conclude that t′q = τ(tq) ∈ τ(T−r
q−1) ∪ τ(T) =

(T ′)−r
q−1. Hence e′q is enabled at (ξ′)−r

q−1.

29

– If eq is a send event then e′q is also a send event. Now since the
instantiations of roles of Pr are send-admissible it immediately

follows that t′q ∈ (T ′)−r
q−1. Hence e′q is enabled at (ξ′)−r

q−1.

This proves that (ξ′)−r
k is a run of Pr.

Claim: (ξ′)−r
k is leaky.

Proof of Claim: We first prove that some m which is secret at ξk−1 belongs
to analz(T−r

k ∪T). If er is a receive event, then by Proposition 2.14 it follows
that Tk = T−r

k and hence there is some m which is secret at ξk−1 and which
belongs to analz(T−r

k). (This follows from the fact that ξ is itself leaky).
Suppose now that er is a send event. Consider an analz-proof of Tk ` m′ for
some m′ which is secret at ξk−1. Let π be a subproof of this proof with the
property that the root of π is labelled by some m which is secret at ξk−1

and none of the m′′ labelling the nonroot nodes of π is secret at ξk−1. Then
it is clear that Tr−1, Tk \ Tr, tr, T , m and π play the role of S1, S2, t, T ,
u and π respectively in item 1 of Lemma 6.1 (if k labels a node of π and if
k ∈ ST (sr) then since k is not secret at ξk−1 it follows that k ∈ analz(Tr))
and we get m ∈ (analz(Tr) ∩ ST (tr)) ∪ analz(T−r

k ∪ T). But since ξr is not
leaky, m 6∈ analz(Tr). Thus m ∈ analz(T−r

k ∪ T). From this it follows that
τ(m) ∈ analz((T ′)−r

k).
We now prove that τ(m) is secret at (ξ′)−r

k−1. Since m is secret at ξk−1 and
T ⊆ analz(Tr) ⊆ analz(Tk−1), it follows that m 6∈ T . Therefore τ(m) = m.
Since m is secret at ξk−1, it is clear that m 6∈ analz(Tk−1). Now we observe
that T ⊆ analz(Tr) ∩ T0 ⊆ analz(Tk−1) ∩ T0. Further, for all x ∈ T0 \ T ,
τ(x) = x and for all x ∈ T , τ(x) ∈ Tk−1. Thus Tk−1, T and τ satisfy
the conditions of Lemma 6.2, and we thus see that whenever t ∈ analz(T ′

k−1)
there exists r ∈ analz(Tk−1) with τ(r) = t. But the only r such that τ(r) = m

is m itself (since m 6∈ analz(Tk−1), it is also the case that m 6∈ Tk−1, but for
any x such that τ(x) 6= x, τ(x) ∈ Tk−1). This coupled with the fact that
m 6∈ analz(Tk−1) implies that m 6∈ analz(T ′

k−1). From this it follows that

m 6∈ analz((T ′)−r
k−1) as well, and thus that τ(m) = m is secret at (ξ′)−r

k−1.

This concludes the proof that (ξ′)−r
k is leaky.

We have thus proved the reduction to good runs. �

Lemma 6.3 and Theorem 5.4 immediately yield us the following theorem.

Theorem 6.4 The problem of checking for a given context-explicit protocol
Pr whether there is a leaky run of Pr is decidable.

30

7 Discussion

A naive algorithm to check secrecy based on the proofs presented here would
proceed by trying to guess a good leaky run of a given context-explicit pro-
tocol (presented as a sequence of actions). Since good runs are of bounded
length, and further the bound on their length also determines a bounded
universe of atomic terms from which to construct terms, we have a NEX-

PTIME algorithm. But we conjecture that this can be improved to get a
DEXPTIME algorithm. We believe that it would be an algorithm which
tries to incrementally build a good leaky run and use an appropriately intel-
ligent backtracking strategy so as not to explore more than an exponential
number of states.

Most well-formed protocols occurring in the literature ([7]) can be easily
transformed into “equivalent” context-explicit protocols by the use of simple
tagging schemes. For example, the Needham-Schroeder protocol presented
in Example 2.4 can be modified to the following form:

Message 1. A → B : {1, A, x}pubkB

Message 2. B → A : {2, x, y}pubkA

Message 3. A → B : {3,m, y}pubkB

The new nonce m has been added to Message 3 to make sure that the second
condition in the definition of context-explicit protocols, namely that every
message has a unique nonce occurring in all its encrypted components, is
met. We have also added number tags to ensure the the first condition,
which ensures that encrypted components across messages are not unifiable.

An alternative approach is to transform the semantics of protocols rather
than protocols themselves. Tagging schemes similar to those we have pro-
posed can be introduced in the run-generation mechanism to capture a no-
tion of “well behaved runs”. Here we should note that while non-unifiability
across communications can be ensured by the use of a finite number of tags
(which can be determined from the protocol specification), adding a new
nonce to each message is quite an expensive operation. The trouble with
maintaining nonces is that they need to be unguessable for most purposes.
But we claim that the results in this paper do not require this property of
the nonces that are added as tags. An analysis of our decidability proof
shows that the only argument which refers to the nonces added as tags is
the proof of Proposition 3.7, and there the only property used is the fact
that distinct events generate distinct new nonces. Thus it suffices to use
some other more efficient notion like sequence numbers or play identifiers,
which come with a guarantee of freshness but not necessarily nonguessabil-

31

ity, and achieve the effect needed for our decidability proof to go through.
This discussion makes it clear that we can efficiently associate a tagged event
with every event of a given well-formed protocol.

Such simple schemes do not always work, though. Consider for example
the Woo and Lam protocol π1 from [25]:

Message 1. A → B : A

Message 2. B → A : x

Message 3. A → B : {A,B, x}kAS

Message 4. B → S : {A,B, {A,B, x}kAS
}kBS

Message 5. S → B : {A,B, x}kBS

Here A passes {A,B, x}kAS
to B in message 3. B cannot decrypt the

message and read its contents but just passes it on to the server S in message
4. Now according to the requirement of context-explicit protocols distinct
tags have to be added to the component {A,B, x}kAS

occurring in message
3 and message 4. But such a tagging scheme cannot be implemented since B

cannot replace the tags before passing on the message to S. Here we see that
tagging conflicts with admissibility. It can be seen that this problem exists
also with respect to other protocols with “blind relay” — for instance the
Yahalom protocol, Denning-Sacco protocol, and Ottway-Rees protocol, as
presented in [7]. It has been noted however ([15]) that one can find protocols
“equivalent” to the Woo-Lam protocol which avoid the problem of “blind
relay” as above. For instance, A could send the message directly to the
server instead of through B. Another point to be noted is that the tagging
scheme used in [5] can be used to tag even protocols with blind relays.

In the informal discussion above we referred to an equivalence on proto-
cols. We present a few definitions which formalise this notion. This notion
has already been discussed in the literature in some form or other. (See [13],
for instance).

We first define when a run of a given protocol is equivalent to a run of
a different protocol.

Definition 7.1 Given two sets of events, E and E′, a one-one function
f : E → E′, and a set T of terms, we say that a run ξ is (f, T)-equivalent to
ξ′ if ξ′ = f(ξ) and for all prefixes ξ1 of ξ and A ∈ Ag, (infstate(ξ1))A ∩T =
(infstate(f(ξ1)))A ∩ T .

Definition 7.2 A run e1 · · · ek of a protocol is said to be honest iff for all
j ≤ k such that act(ej) is a receive action, there exists i < j such that
act(ei) is a send action and act(ej) is its matching receive.

32

Thus, the intruder plays a relatively passive role in honest runs. The most
it does is to block certain messages and deliver multiple copies of certain
messages to the intended recipient.

Definition 7.3 A protocol Pr′ is a safe transform of another protocol Pr

if there exists a one-one function f : Events(Pr) → Events(Pr′) and a set
C ⊆ CT(Pr′) such that (letting T = T \ C):

• every honest run of Pr has an (f, T)-equivalent honest run of Pr′, and

• every run of Pr′ is (f, T)-equivalent to some run of Pr. (In particular,
for every leaky run of Pr′ there is a corresponding leaky run in the
original protocol Pr.)

The set C is the set of special constant terms used as tags in the messages
of the original protocol. It is to be noted that for most of the tagging schemes
of the kind outlined above, for every leaky run of the tagged version there
is an equivalent leaky run in the original version. (Simply omitting the
tags usually gives us a leaky run of the original protocol.) But the problem
with protocols like the Woo-Lam protocol is that not all honest runs have
corresponding tagged runs.

The above definitions are presented in full generality without considering
the question of effectiveness. Hence the problem of checking whether a
given well-formed protocol has a safe transform, or even the simpler one of
checking whether a given protocol is a safe transform of another, might not
be effectively solvable. But it is an easy matter to define transformations as
functions from one protocol specification to another, and then we can handle
effectiveness issues. But if we want to construct efficient safe transforms of
well-formed protocols to context-explicit protocols, we might need to adapt
our model slightly depending on the situation. For instance, we might add
a new syntactic entity called sequence number, with the idea that we have
available a sequence number generator which provides a distinct (but not
necessarily nonguessable) number at each invocation, and use these entities
in the syntactic transformation of protocols. Such transformations have the
desired property of being easy to implement, while at the same time being
amenable to useful theoretical discussion.

As mentioned earlier, the secrecy problem is undecidable in general.
It can be seen that relaxing the conditions on well-formed protocols and
context-explicit protocols allows us to code the halting problem for two-
counter machines as a secrecy problem. The idea in the coding is to represent
transitions of two-counter machines as roles of the protocol. The terms used

33

in the protocol represent configurations of the two-counter machine, which
are of the form (q,m, n) for some natural numbers m and n. The roles of
the protocol look like the following:
A?B:{q, y, x}kAB

, {x′, x}kAB
; A!B: (y′) {q′, y′, x′}kAB

, {y, y′}kAB
.

Note that the syntax restriction is not respected by this protocol as
distinct communications have encrypted subterms which are unifiable —
{q, y, x}kAB

and {q′, y′, x′}kAB
, for instance. The ability to generate new

nonces allows us to code the natural numbers, and the unifiability of en-
crypted terms allows us to code the behavior of the machines which use
the output configuration of one transition as the input configuration of an-
other. This is the key to undecidability. (The report [22] has more details.)
Another point to note is that protocols like the above which code up ma-
chines are typically not even well-formed. In fact, it is still open whether
the secrecy problem for well-formed protocols is decidable.

While we have studied only the secrecy problem here, we can observe
that the technique may be used to prove the decidability of other security
problems as well. For instance, suppose we wish to check whether there is
a run of a protocol in which, at some event, the proposition A has m holds;
that is, in the information state of A after this event, A has the (atomic)
term m. If we come up with a suitable notion of good runs particular to
each such property, then the reduction to good runs can be performed as
described in the paper. This suggests that the exercise may well be carried
out for a simple modal logic with an eventuality modality.

Acknowledgements

We thank the anonymous referees whose comments and suggestions have
improved the presentation considerably.

References

[1] Martin Abadi and Roger M. Needham, “Prudent engineering practices
for cryptographic protocols”, IEEE Transactions on Software Engineer-
ing, 22:6–15, 1996.

[2] Roberto M. Amadio and Witold Charatonik, “On name generation and
set-based analysis in Dolev-Yao model”, In CONCUR 2002, volume
2421 of Lecture Notes in Computer Science, pages 499–514, 2002.

34

[3] Roberto M. Amadio, Denis Lugiez, and Vincent Vanackère, “On the
symbolic reduction of processes with cryptographic functions”, Theo-
retical Computer Science, 290(1):695–740, 2002.

[4] Ross Anderson and Roger M. Needham, “Programming Satan’s com-
puter”, In Computer Science Today, volume 1000 of Lecture Notes in
Computer Science, pages 426–441, 1995.

[5] Bruno Blanchet and Andreas Podelski, “Verification of Cryptographic
Protocols: Tagging Enforces Termination”, In Andrew D. Gordon, edi-
tor, Proceedings of FoSSaCS’03, volume 2620 of Lecture Notes in Com-
puter Science, pages 136–152, 2003.

[6] Iliano Cervesato, Catherine A. Meadows, and Paul F. Syverson, “Dolev-
Yao is no better than Machiavelli”, In P. Degano, editor, Proceedings
of WITS’00, July 2000.

[7] John Clark and Jeremy Jacob, “A survey of authentica-
tion protocol literature”, Electronic version available at
http://www.cs.york.ac.uk./∼jac, 1997.

[8] Hubert Comon, Véronique Cortier, and John C. Mitchell, “Tree au-
tomata with One Memory, Set Constraints, and Ping-Pong Protocols”,
In Proceedings of ICALP 2001, volume 2076 of Lecture Notes in Com-
puter Science, 2001.

[9] Danny Dolev, Shimon Even, and Richard M. Karp, “On the Security
of Ping-Pong Protocols”, Information and Control, 55:57–68, 1982.

[10] Danny Dolev and Andrew Yao, “On the Security of public-key proto-
cols”, IEEE Transactions on Information Theory, 29:198–208, 1983.

[11] Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre
Scedrov, “The undecidability of bounded security protocols”, In Pro-
ceedings of the Workshop on Formal Methods and Security Protocols
(FMSP’99), 1999.

[12] Nevin Heintze and Doug Tygar, “A model for secure protocols and their
composition”, IEEE Transactions on Software Engineering, 22:16–30,
1996.

[13] Men Lin Hui and Gavin Lowe, “Fault-preserving simplifying transfor-
mations for security protocols”, Journal of Computer Security, 9(1,2):3–
46, 2001.

35

[14] Gavin Lowe, “Breaking and fixing the Needham-Schroeder public key
protocol using FDR”, In Proceedings of TACAS’96, volume 1055 of
Lecture Notes in Computer Science, pages 147–166, 1996.

[15] Gavin Lowe, “Towards a completeness result for model checking of se-
curity protocols”, Journal of computer security, 7:89–146, 1999.

[16] Jonathan K. Millen and Vitaly Shmatikov, “Constraint solving for
bounded-process cryptographic protocol analysis”, In ACM Conference
on Computer and Communications Security, pages 166-175, 2001.

[17] Roger M. Needham and Michael D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers”, Communications of
the ACM, 21(12):993–999, 1978.

[18] Lawrence C. Paulson, “The inductive approach to verifying crypto-
graphic protocols”, Journal of Computer Security, 6:85–128, 1998.

[19] R. Ramanujam and S.P. Suresh, “A decidable subclass of unbounded se-
curity protocols”, In Roberto Gorrieri, editor, Proceedings of WITS’03,
pages 11–20, April 2003.

[20] R. Ramanujam and S.P. Suresh, “An equivalence on terms for secu-
rity protocols”, In Ramesh Bharadwaj, editor, Proceedings of AVIS’03,
pages 45–56, April 2003.

[21] R. Ramanujam and S.P. Suresh, “Tagging makes secrecy decidable for
unbounded nonces as well”, In Paritosh K. Pandya and Jaikumar Rad-
hakrishnan, editors, Proceedings of 23rd FST&TCS, volume 2914 of
Lecture Notes in Computer Science, pages 363–374, 2003.

[22] R. Ramanujam and S.P. Suresh, “Undecidability of se-
crecy for security protocols”, Electronic version available at
http://www.imsc.res.in/∼jam, 2003.

[23] Michaël Rusinowitch and Mathieu Turuani, “Protocol insecurity with
finite number of sessions is NP-complete”, Theoretical Computer Sci-
ence, 299:451–475, 2003.

[24] Suresh, S.P., “Foundations of Security Protocol Analysis”, PhD the-
sis, The Institute of Mathematical Sciences, Chennai, India, November
2003. Submitted to Madras University.

36

[25] Thomas Y.C. Woo and Simon S. Lam, “A lesson on authentication
protocol design”, Operating Systems Review, 28(3):24–37, 1994.

37

