
Extending Dolev-Yao with assertions?

R. Ramanujam1, Vaishnavi Sundararajan2, and S.P. Suresh2

1 Institute of Mathematical Sciences Chennai, India.
jam@imsc.res.in

2 Chennai Mathematical Institute, Chennai, India.
{vaishnavi, spsuresh}@cmi.ac.in

Abstract. Cryptographic protocols often require principals to send certifications
asserting partial knowledge of terms (for instance, that an encrypted secret is 0
or 1). Such certificates are themselves modelled by cryptographic primitives or
sequences of communications. For logical analysis of such protocols based on the
Dolev-Yao model [12], we suggest that it is useful to separate terms and asser-
tions about them in communications. We propose a perfect assertion assumption
by which the underlying model ensures the correctness of the assertion when it
is generated. The recipient may then rely on the certificate but may only forward
it as second-hand information. We use a simple propositional modal assertion
language involving disjunction (for partial knowledge) and formulas of the form
A says α (for delegation). We study the complexity of the term derivability prob-
lem and safety checking in the presence of an active intruder (for bounded pro-
tocols). We show that assertions add complexity to verification, but when they
involve only boundedly many disjunctions, the complexity is the same as that of
the standard Dolev-Yao model.

1 Motivation

1.1 Assertions as certification

Formal verification of cryptographic protocols requires an abstract model of agents’
capabilities and communications, and the Dolev-Yao model [12] has been the bulwark
of such modelling. Its central elements are a message abstraction that views the message
space as a term algebra and term derivation rules that specify how an agent derives new
terms from old.

This model and its various extensions have been the object of study for the last 30
years. Typical extensions cater to more complex cryptographic operations like homo-
morphic encryption, blind signatures etc., that are useful in applications like e-voting
and contract signing [15, 6, 11]. The interaction between the operators can have signifi-
cant impact on term derivability, and forms an important line of theoretical research [9,
15, 10].

An important feature of the Dolev-Yao model is that it treats terms as tokens that
can be copied and passed along. A recipient of a term “owns” it and can send it to others

? We thank A. Baskar for discussions and comments on many ideas in the paper. We also thank
the reviewers for many suggestions that improved the paper.

in its own name. On the other hand, cryptographic protocols often use certificates that
can be verified but not “owned”, i.e., an agent B which receives a certificate from A
cannot later send the same certificate to C in its own name. Zero-knowledge protocols,
for example, often involve agents certifying (via zero-knowledge proofs) that the terms
they send to other agents possess certain properties, without revealing the entire terms.
The recipient, if malicious, might try to forward this term to some other agent in its own
name – however, the fact that the agent is required to have access to the entire term in
order to construct the requisite certificate disallows it from being forwarded. Here are a
few scenarios that illustrate the use of such certification, or assertions.

– A server S generates a session key k for A and B, and also certifies that the key is
“good” for use by them.

– An agent A sends a vote v (encrypted) to B, along with a certificate that the vote
is valid, i.e. v takes on only a few (pre-specified) values. It is not possible for B to
forward this encrypted vote to someone else, and convince the receiver of its being
valid, since a proof of validity might – and almost always will – require B to have
access to the vote v. (Refer to [17] for more examples of this kind.)

– A passes on to B an assertion α made by S about a key k, but stating explicitly that
S says α. (Assertions of this kind are used in [7].)

Such certification is expressed in the Dolev-Yao model in a variety of ways.

– In some cases, one relies on conventions and features of the framework, and does
not explicitly model assertions in the protocol at all. Examples would be assertions
about the goodness of keys, freshness of nonces etc.

– In other cases, one uses cryptographic devices like zero knowledge proofs, bit-
commitment schemes etc. to make partial secrecy assertions. For example, a voter
V might post an encrypted vote v along with a zero knowledge proof that v is either
0 or 1. This allows an authority to check that the voter and the vote are legitimate,
without knowing the value of the vote.

– Sometimes one uses ad hoc conventions specific to a protocol to model some asser-
tions. For instance, a term that models an assertion α might be paired (or tagged)
with the agent name S to signify S says α.

In this paper, we propose an extension to the Dolev-Yao model in which agents
have the ability to communicate assertions explicitly, rather than via an encoding. The
fact that the above examples can be expressed in the Dolev-Yao model via various
methods of translation seems to suggest that this ability does not add any expressive
power. However, communicating both data and assertions gives significant flexibility
for formal specification and reasoning about such protocols. In fact, the need for formal
methods in security protocols goes beyond verification and includes ways of structuring
protocols [1, 2], and a syntactic separation of the term algebra and an associated logical
language of assertions should be seen in this light.

A natural question would be: how are such assertions to be verified? Should the
agent generating the assertion construct a proof and pass it along as well? This is the
approach followed in protocols using zero-knowledge proofs [4]. In which case, should
the proof thus sent be verified by the recipient?

2

While such an approach is adopted in models that view assertions as terms, in this
work, the syntactic separation of terms and assertions allows us an abstraction similar
to the perfect encryption assumption in the Dolev-Yao model. We call it the perfect
assertion assumption: the model ensures the correctness of assertions at the point of
generation, and honest principals assume such correctness and proceed. Thus the onus
of verification shifts from the receiver of the assertion to the underlying system. This can
be realized as a trusted third party (TTP) model, which verifies any proof that is sent out
by any agent into the system. Note that since the adversary monitors the network, it can
also see the proof sent by any agent to the TTP and replay assertions in agents’ names,
and therefore, adversary capabilities are not restricted much. Also note that the TTP is
not a principal but an operational realisation of the network’s capability to verify every
proof that is sent out by agents. Thus we model assertions as signed by the sender, but
not encrypted with any key (including that of the TTP). This will be explained further
after we define the operational semantics of protocols, in Section 2.4.

How are assertions in our model contrasted with those with zero-knowledge prim-
itives as in [3] or with those in which terms encode zero-knowledge proofs? Consider
a simple example of an encrypted vote {v}k, where v is either 0 or 1, and the recipient
does not know k (or its inverse). In order to assert this using terms, one would present
a one-out-of-2-encryption proof for v belonging to {0, 1}, as presented in [17]. In the
model in [3], this would be coded up as zk2,1,β1=enc(α1,α2)∧(α1=0∨α1=1)(v, k; {v}k). In our
model, it is simply represented by the assertion {0 ≺ {v}k ∨ 1 ≺ {v}k}.

1.2 Assertions in protocols, and possible attacks

We now present a few example protocols illustrating how our model can be used. We
also present some attacks where the malicious intruder targets the fact that assertions
are transmitted, and tries to gain more information than she is entitled to. This motivates
the need for studying the verification problem for protocols with assertions.

Example 1. An agent A sends two encrypted votes to a tallier T , one choice for each
of two ‘positions’, and accompanies each vote with a disjunctive assertion about it. The
disjunction may be thought of as expressing that the vote is for one of two possible can-
didates interested in the position. The tallier checks these assertions, and on confirming
that they are indeed true, sends a confirmation cA to A. Otherwise it sends a 0.

– A→ T : {v1}kA , {(a occurs in {v1}k) ∨ (b occurs in {v1}k)}
– A→ T : {v2}kA , {(c occurs in {v2}k) ∨ (d occurs in {v2}k)}
– If T confirms these two assertions, T → A : cA. Otherwise, T → A : 0.

Now consider the situation where a particular candidate, say candidate a, is inter-
ested in both positions, i.e., c = a in the above protocol. Now, if agent A votes for
candidate a (i.e. v1 = v2 = a) for both positions, he/she sends the same term {a}kA twice,
with two disjunctive assertions about it. The intruder can now perform disjunction elim-
ination on these assertions to know the fact that A’s vote is for candidate a.

Example 2. An agent B sends an assertion as a response to a communication by another
agent A.

3

– A→ B : {m}pk(B)

– B→ C : {m}pk(B),
{
(a occurs in {m}pk(B)) ∨ (b occurs in {m}pk(B))

}
A sends B a term which is an encrypted nonce, about which B generates an assertion,

and then passes on both the term and the assertion to agent C. B, while generating this
disjunction, takes the actual assertion (say a occurs in {m}pk(B)), and adds a disjunct of
the form r occurs in {m}pk(B), where r , a is chosen at random from the constants of
the protocol. This allows the intruder an attack, whereby she begins a new session with
B by replaying the same term {m}pk(B) from the session of A with B. Now B sends to
C the same term with a new assertion

{
(a occurs in {m}pk(B)) ∨ (r′ occurs in {m}pk(B))

}
,

where r′ is another random constant of the protocol. In the earlier session, B sent C{
(a occurs in {m}pk(B)) ∨ (r occurs in {m}pk(B))

}
. By disjunction elimination, the intruder

(and C) can infer that a occurs in {m}pk(B).

Example 3. Here is a scenario that might occur in contract signing protocols. Agents
A and S are interested in buying and selling an object, respectively. A commits to a
value a, by sending S a term {va}k(A,S) and an accompanying assertion of the form
a occurs in {va}k(A,S), where a is his bid for the object. S , however, is not interested in
honouring A’s commitment, and, without responding to A, sends agent B the assertion
A says {a occurs in {va}k(A,S)}. B, who is interested in buying this object at any cost,
now quotes a price higher than what A quotes, and the seller S thereby gets an unfair
advantage.

1.3 Logicization and challenges

The above examples motivate the formal study of Dolev-Yao with assertions. But there
are several questions that need to be addressed in building a formal model, and several
consequences of the choices we make. We discuss some of them here.

Much as the Dolev-Yao model is a minimal term algebra with its derivation rules,
we consider the extension with assertions also as a minimal logic with its associated
derivation rules. We suggest a propositional modal language, with highly restricted use
of negation and modalities, inspired by infon logic [14, 5] (which reasons about access
control). A priori, certification in cryptographic protocols reveals partial information
about hidden (encrypted) terms, and hence we need assertions that achieve this. We use
atomic assertions about term structure and disjunctions to make the revelations partial.
For instance, (0 occurs in t) ∨ (1 occurs in t) can be seen as a partial secrecy assertion.
Note that background knowledge of the Dolev-Yao model offers implicit atomic nega-
tion: 0 occurs in {m}k where m is atomic may exclude the assertion 1 occurs in {m}k.
With conjunctions to bundle assertions together, we have a restricted propositional lan-
guage.

The modality we study is one that refers to agents passing assertions along, and
has the flavour of delegation: A sending α to B allows B to send A says α to other
agents, without requiring B to be able to derive α. Many papers which view assertions
as terms work with assertions similar to the ones used here. For instance, [8] presents a
new cryptographic primitive for partial information transmission, while [13] deals with

4

delegation and signatures, although there the focus is more on anonymity and group
signatures.

We conduct a proof theoretic investigation of passive intruder capabilities, and we
also illustrate the use of these assertions for exploring active intruder attacks. The pas-
sive intruder deduction problem (or the term derivability problem) is co-NP-hard even
for the simple language that we work with, and has a PSPACE upper bound. The high
complexity is mainly due to the presence of disjunctions, but we rarely need an un-
bounded number of disjunctions. When we bound the number of disjunctions, the term
derivability problem is in polynomial time. We also explore the complexity of security
verification for the active intruder case, and provide a PSPACE upper bound for pro-
tocols with boundedly many sessions, with an NP upper bound when the number of
disjunctions is bounded as well.

2 Model

2.1 The term model

Fix countable sets Ag, N and K , denoting the set of agents, nonces and keys, respec-
tively. The set of basic terms is B = Ag ∪N ∪K . For each A, B ∈ Ag, assume that
sk(A), pk(A) and k(A, B) are keys. Further, each k ∈ K has an inverse defined as fol-
lows: inv(pk(A)) = sk(A), inv(sk(A)) = pk(A) and inv(k) = k for the other keys. The set
T of Dolev-Yao terms is given by the following syntax (where m ∈ B and k ∈ K):

t := m | (t1, t2) | {t}k

For X ⊆fin T , we define X, the closure of X, to be the smallest Y ⊆ T such that
(i) X ⊆ Y , (ii) (t, t′) ∈ Y iff {t, t′} ⊆ Y , (iii) if {t, k} ⊆ Y then {t}k ∈ Y , and (iv) if
{{t}k, inv(k)} ⊆ Y then t ∈ Y . We use the notation X `dy t to denote that t ∈ X, and
X `dy T to denote that T ⊆ X, for a set of terms T .

We use st(t) to denote the set of subterms of t and st(X) =
⋃

t∈X st(t) in Proposition 4,
which is a well-known fact about the basic Dolev-Yao model [18].

Proposition 4. Given X ⊆ T and t ∈ T , it can be decided whether X `dy t in time
linear in |st(X ∪ {t})|.

2.2 The assertion language

The set of assertions, A , is given by the following syntax:

α := m ≺ t | t = t′ | α1 ∨ α2 | α1 ∧ α2

where m ∈ B and t, t′ ∈ T . The assertion m ≺ t is to be read as m occurs in t. The set
of subformulas of a formula α is denoted sf(α).

The proof rules for assertions are presented as sequents of the form X, Φ ` α,
where X and Φ are finite sets of terms and assertions respectively, and α is an assertion.
For ease of presentation, we present the rules in two parts. Figure 1 gives the rules

5

ax1
X, Φ ∪ {α} ` α

X, Φ ` m ≺ {b}k X, Φ ` n ≺ {b}k
⊥ (m , n; b ∈ B)

X, Φ ` α

X, Φ ` α1 X, Φ ` α2
∧i

X, Φ ` α1 ∧ α2

X, Φ ` α1 ∧ α2
∧e

X, Φ ` αi

X, Φ ` αi
∨i

X, Φ ` α1 ∨ α2

X, Φ ` α1 ∨ α2 X, Φ ∪ {α1} ` β X, Φ ∪ {α2} ` β
∨e

X, Φ ` β

Fig. 1: The rules for deriving assertions: propositional fragment

pertaining to propositional reasoning with assertions. The rules capture basic reasoning
with conjunction and disjunction, and ⊥ is a restricted contradiction rule.

We next present the rules for atomic assertions of the form m ≺ t and t = t in
Figure 2. Note that all these rules require X to be nonempty, and some of the rules refer
to derivations in the Dolev-Yao theory. For an agent to derive an assertion about a term
t, it should know the entire structure of t, which is modelled by saying that from X one
can learn (in the Dolev-Yao theory) all basic terms occurring in t. For example, in the
split rule, suppose the agent can derive from X all of st(ti)∩B, and that m is not a basic
term in t. The agent can now derive m ≺ t1−i from m ≺ (t0, t1).

X `dy m
ax2

X, Φ ` m ≺ m

X `dy st(t) ∩B
eq

X, Φ ` t = t

X `dy {t}k X `dy k X, Φ ` m ≺ t
enc

X, Φ ` m ≺ {t}k

X `dy inv(k) X, Φ ` m ≺ {t}k
dec

X, Φ ` m ≺ t

X `dy (t0, t1) X, Φ ` m ≺ ti X `dy st(t1−i) ∩B
pair

X, Φ ` m ≺ (t0, t1)

X, Φ ` m ≺ (t0, t1) X `dy st(ti) ∩B m < st(ti)
split

X, Φ ` m ≺ t1−i

Fig. 2: The rules for atomic assertions

We denote by X, Φ `alp α (resp. X, Φ `alat α; X, Φ `al α) the fact that there is a
derivation of X, Φ ` α using the rules in Figure 1 (resp. ax1 and the rules in Figure 2;
the rules in Figures 1 and 2).

6

2.3 The protocol model

Protocols are typically specified as sequences of communications, but in formal anal-
ysis, it is convenient to consider a protocol Pr as a pair (const,R) where const ⊆ B
is a set of constants of Pr and R is a finite set of roles. For an agent A, an A-role is a
sequence of A-actions. A-actions include send actions of the form A!B : [(M)t, {α}sd(A)],
and receive actions of the form A?B : [t, {α}sd(B)]. Here B ∈ Ag, t ∈ T , M ⊆ N , α ∈ A ,
and {α}sd(A) denotes the assertion α signed by A. In the send action above, B is merely
the intended recipient, and in the receive action, B is merely the purported sender, since
we assume the presence of an intruder who can block or forge messages, and can see ev-
ery communication on the network. For simplicity, we assume that all send and receive
actions deal with one term and one assertion. (M)t denotes that the set M contains the
nonces used in t, in the context of a protocol run, which are fresh, i.e., not used till that
point in the run. An additional detail is that assertions in sends are always signed by the
actual sender, and assertions in receives are signed by the purported sender. Thus, when
the intruder I sends an assertion {α}sd(A) to someone, it is either replaying an earlier
communication from A, or A = I and it can construct α.

We admit two other types of actions in our model, confirm and deny, to capture
conditional branching in protocol specifications. An agent A might, at some stage in a
protocol, perform action a1 if a condition is verified to be true, and a2 otherwise. For
simplicity, we let any assertion be a condition. The behaviour of A in a protocol, in
the presence of a branch on condition α, is represented by two sequences of actions,
one in which A confirms α and one in which it denies α. These actions are denoted by
A : confirm α and A : deny α.

A knowledge state ks is of the form ((XA)A∈Ag, Φ, SD). Here, XA ⊆ T is the set of
terms accumulated by A in the course of a protocol run till the point under consideration.
Φ ⊆ A is the set of assertions that have been communicated by any agent (and stored by
the intruder). Similarly, SD ⊆ {{α}sd(B) | B ∈ Ag, α ∈ A } is the set of signed assertions
communicated by any agent and stored by the intruder.

The initial knowledge state of a protocol Pr is ((XA)A∈Ag,∅,∅) where, for each A,
XA = const(Pr) ∪ Ag ∪ {sk(A)} ∪ {pk(B), k(A, B) | B ∈ Ag}.

Let ks = ((XA)A∈Ag, Φ, SD) and ks′ = ((X′A)A∈Ag, Φ
′, SD′) be two knowledge states

and a be a send or a receive action. We now describe the conditions under which the
execution of a changes ks to ks′, denoted ks

a
−→ ks′.

– a = A!B : [(M)t, {α}sd(A)]
• a is enabled at ks iff
∗ M ∩ XC = ∅ for all C,
∗ XA ∪ M `dy t, and
∗ XA ∪ M,∅ `al α.

• ks
a
−→ ks′ iff
∗ X′A = XA ∪ M, X′I = XI ∪ {t},
∗ Φ′ = Φ ∪ {α}, and
∗ SD′ = SD ∪ {{α}sd(A)}.

– a = A?B : [t, {α}sd(B)]
• a is enabled at ks iff

7

∗ {α}sd(B) is verified as signed by B,
∗ XI `dy t, and
∗ either B = I and XI , Φ `al α, or {α}sd(B) ∈ SD.

• ks
a
−→ ks′ iff
∗ X′A = XA ∪ {t}.

– a = A : confirm α is enabled at ks iff XA,∅ `al α, and ks
a
−→ ks′ iff ks = ks′.

– a = A : deny α is enabled at ks iff XA,∅ 0al α, and ks
a
−→ ks′ iff ks = ks′.

We see that when an agent A sends an assertion α, the intruder stores α in its set of
assertions, as well as storing {α}sd(A) for possible replay, but honest agents only get to
send assertions that they themselves generate from scratch.

A substitution σ is a homomorphism on T such that σ(Ag) ⊆ Ag, σ(N) ⊆ N and
σ(K) ⊆ K . σ is said to be suitable for a protocol Pr = (const,R) if σ(m) = m for all
m ∈ const.

A role instance of a protocol Pr is a tuple ri = (η, σ, lp), where η is a role of Pr, σ
is a substitution suitable for Pr, and 0 ≤ lp ≤ |η|. ri = (η, σ, 0) is said to be an initial
role instance. The set of role instances of Pr is denoted by RI(Pr). IRI(Pr) is the set of
initial role instances of Pr. For ri = (η, σ, lp), ri + 1 = (η, σ, lp + 1). If ri = (η, σ, lp),
lp ≥ 1 and η = a1 · · · a`, act(ri) = σ(alp). For S , S ′ ⊆ RI(Pr) and ri ∈ RI(Pr), we say

that S
ri
−→ S ′ iff ri ∈ S , ri + 1 ∈ RI(Pr) and S ′ = (S \ {ri}) ∪ {ri + 1}.

A protocol state of Pr is a pair s = (ks, S) where ks is a knowledge state of Pr
and S ⊆ RI(Pr). s = (ks, S) is an initial protocol state if ks is initial and S ⊆ IRI(Pr).
For two protocol states s = (ks, S) and s′ = (ks′, S ′), and an action a, we say that

s
a
−→ s′ iff there is ri ∈ S such that act(ri + 1) = a and S

ri
−→ S ′, and ks

a
−→ ks′. The states,

initial states, and transitions defined above induce a transition system on protocol states,
denoted TS(Pr). A run of a protocol Pr is any run of TS(Pr).

2.4 Comments on the transition rules

The rules for transitioning from a knowledge state, ks, to another, ks′, on an action a,
deserve some explanation. The change pertaining to the XA is easily justified by an
operational model in which the intruder can snoop on the entire network, but agents
are allowed to send only messages they generate. We have extended the same logic
to assertions as well, but there is the extra complication of signing the assertions. The
intruder typically has access only to its own signature. Thus we posit that the intruder
can replay assertions signed by another agent A (in case it is passing something in A’s
name), or that it can generate assertions and sign them in its own name.

As an operational justification for why the honest agents cannot use assertions sent
by other agents, we can imagine the following concrete model. There is a trusted third
party verifier (TTP) that allows assertions to be transmitted at large only after the sender
provides a justification to the TTP. This means that an honest agent B who receives
an assertion α from A cannot pass it on to others, because the TTP will demand a
justification for this, which B cannot provide. The intruder, though, can snoop on the
network, so it has the bits that A sent as justification for α to the TTP, and can thus
produce it whenever demanded. Thus the intruder gets to store α in its local database.

8

2.5 Example protocol

Recall Example 2 and the attack on it from Section 1.2, reproduced below. We formalize
the attack using the transition rules given in Section 2.3.

– A→ B : {m}pk(B)

– B→ C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (b ≺ {m}pk(B))}sd(B)

The attack is informally presented below and is formalized in Figure 3.

1. A→ B : {m}pk(B)

2. B→ C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

3. I → B : {m}pk(B)

4. B→ C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r′ ≺ {m}pk(B))}sd(B)

η1 : A-role, σ1(m) = 1
a11 : A!B : {m}pk(B)

η2 : B-role, σ2(m) = 1, σ2(a) = 1, σ2(r) = 3
a21 : B?A : {m}pk(B)

a22 : B!C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

η3 : C-role, σ3(m) = 1, σ3(a) = 1, σ3(r) = 3
a31 : C?B : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

η4 : A-role, σ4(m) = 1, σ4(A) = I
a41 : A!B : {m}pk(B)

η5 : B-role, σ5(m) = 1, σ5(a) = 1, σ5(r) = 2, σ5(A) = I
a51 : B?A : {m}pk(B)

a52 : B!C : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

η6 : C-role, σ6(m) = 1, σ6(a) = 1, σ6(r) = 2
a61 : C?B : {m}pk(B), {(a ≺ {m}pk(B)) ∨ (r ≺ {m}pk(B))}sd(B)

Fig. 3: The attack, formalized

In the formalized attack, note that only the actions a22 and a52 send assertions. It can
be seen by applying the given substitutions to these actions, and using the appropriate
update actions from the criteria for the change of the knowledge states (as stated earlier),
that at the end of this sequence of actions, Φ = {α ∨ β, α ∨ γ}, where α = 1 ≺ {1}pk(B),
β = 2 ≺ {1}pk(B) and γ = 3 ≺ {1}pk(B).

The intruder can now use these assertions in Φ to perform disjunction elimination,
as illustrated in the following proof, and thereby gain the information that the term
sent by A is actually {1}pk(B), which was supposed to be ‘secret’. Thus we see that this
protocol admits a run in which there is a reachable state where the intruder is able to
learn a secret. This can be thought of as a violation of safety. We elaborate on this idea
of safety checking in Section 4.

9

ax1

Φ ` α ∨ β

ax1

Φ, α ` α

ax1

Φ, β ` α ∨ γ

ax1

Φ, β, α ` α

ax1

Φ, β, , γ ` β

ax1

Φ, β, γ ` γ

⊥

Φ, β, γ ` α

∨e
Φ, β ` α

∨e
Φ ` α

3 The derivability problem and its complexity

The derivability problem (or the passive intruder deduction problem) is the follow-
ing: given X ⊆ T , Φ ⊆ A and α ∈ A , determine if X, Φ `al α. In this section, we
provide a lower bound and an upper bound for this problem, and also some optimiza-
tions to the derivability algorithm.

3.1 Properties of the proof system

The following is a useful property that will be crucially used in the lower bound proof.
The proof can be found in [16].

Proposition 5. X, Φ ∪ {α ∨ β} `al δ iff X, Φ ∪ {α} `al δ and X, Φ ∪ {β} `al δ.

Among the rules, split, dec, ∧e and ∨e are the elimination rules. The rules ax1,
ax2, eq, split, dec and ∧e are the safe rules, and the rest are the unsafe rules. A normal
derivation is one where no elimination rule has as its major premise the conclusion of
an unsafe rule. The following fundamental theorem is on standard lines, and is provided
in [16].

Theorem 6. If there is a derivation of X, Φ ` α then there is a normal derivation of
X, Φ ` α.

The following corollaries easily follow by a simple case analysis on derivations.

Corollary 7. If π is a normal derivation of X, Φ ` α and if the formula β occurs in π,
then β ∈ sf(Φ ∪ {α}).

Corollary 8. If ∅, Φ `al α and Φ consists only of atomic assertions, then there is a
derivation of the sequent ∅, Φ ` α consisting of only the ax, ∧i, ∨i and ⊥ rules.

A set of atomic assertions Φ is said to be contradictory if there exist distinct nonces
m, n, and a nonce b and key k such that both m ≺ {b}k and n ≺ {b}k are in Φ. Otherwise
Φ is non-contradictory.

Corollary 9. If ∅, Φ `al α and Φ is a non-contradictory set of atomic assertions, then
there is a derivation of ∅, Φ ` α consisting of only the ax, ∧i and ∨i rules.

Definition 10 (Derivability problem). Given X ⊆fin T , Φ ⊆fin A , α ∈ A , is it the
case that X, Φ `al α?

We first show that the problem is co-NP-hard, and then go on to provide a PSPACE
decision procedure. In fact, the hardness result holds even for the propositional fragment
of the proof system (consisting of the rules in Figure 1).

10

3.2 Lower bound

The hardness result is obtained by reducing the validity problem for propositional logic
to the derivability problem. In fact, it suffices to consider the validity problem for propo-
sitional formulas in disjunctive normal form for our reduction. We show how to define
for each formula ϕ in disjunctive normal form a set of assertions S ϕ and an assertion ϕ
such that ∅, S ϕ ` ϕ iff ϕ is a tautology.

Let {p1, p2, . . .} be the set of all propositional variables. Fix infinitely many nonces
n1, n2, . . . and a key k. We define ϕ as follows, by induction.

– pi = (1 ≺ {ni}k)
– ¬pi = (0 ≺ {ni}k)
– ϕ ∨ ψ = ϕ ∨ ψ

– ϕ ∧ ψ = ϕ ∧ ψ

Suppose {p1, . . . , pn} is the set of all propositional variables occurring in ϕ. Then
S ϕ = {p1 ∨ ¬p1, . . . , pn ∨ ¬pn}.

Lemma 11. ∅, S ϕ `al ϕ iff ϕ is a tautology.

Proof For v ⊆ {p1, . . . , pn}, define S v = {pi | pi ∈ v} ∪ {¬pi | pi < v}. Note that S v is
a non-contradictory set of atomic assertions.

By repeated appeal to Proposition 5, it is easy to see that ∅, S ϕ `al ϕ iff for all
valuations v over {p1, . . . , pn}, ∅, S v `al ϕ. We now show that ∅, S v `al ϕ iff v |= ϕ. The
statement of the lemma follows immediately from this.

– We first show by induction on ψ ∈ sf(ϕ) that ∅, S v `al ψ whenever v |= ψ.
• If ψ = pi or ψ = ¬pi, then ∅, S v `al ψ follows from the ax1 rule.
• If ψ = ψ1∧ψ2, then it is the case that v |= ψ1 and v |= ψ2. But then, by induction

hypothesis, ∅, S v `al ψ1 and ∅, S v `al ψ2. Hence, by using ∧i, it follows that
∅, S v `al ψ1 ∧ ψ2.

• If ψ = ψ1 ∨ ψ2, then it is the case that either v |= ψ1 or v |= ψ2. But then, by
induction hypothesis, ∅, S v `al ψ1 or ∅, S v `al ψ2. In either case, by using ∨i,
it follows that ∅, S v `al ψ1 ∨ ψ2.

– We now show that if ∅, S v `al ϕ, then v |= ϕ. Suppose ∅, S v `al ϕ. Since S v is a
non-contradictory set of atomic assertions, by Corollary 8, there is a derivation π of
∅, S v ` ϕ that consists of only the ax, ∧i and ∨i rules. We now show by induction
that for all subproofs π′ of π with conclusion ∅, S v ` ψ that v |= ψ.
• Suppose the last rule of π′ is ax1. Then ψ ∈ S v, and for some i ≤ n, ψ = pi or
ψ = ¬pi. It can be easily seen by definition of S v that v |= ψ.

• Suppose the last rule of π′ is ∧i. Then ψ = ψ1 ∧ ψ2, and ∅, S v `al ψ1 and
∅, S v `al ψ2. Thus, by induction hypothesis, v |= ψ1 and v |= ψ2. Therefore
v |= ψ.

• Suppose the last rule of π′ is ∨i. Then ψ = ψ1 ∨ ψ2, and either ∅, S v `al ψ1 or
∅, S v `al ψ2. Thus, by induction hypothesis, either v |= ψ1 or v |= ψ2. Therefore
v |= ψ. a

11

Theorem 12. The derivability problem is co-NP-hard.

3.3 Upper bound

Fix X0, Φ0 and α0. Let sf = sf(Φ0 ∪ {α0}), |sf| = N, and st be the set of all terms
occurring in all assertions in sf. To check whether X0, Φ0 ` α0, we check whether α0 is
in the set deriv(X0, Φ0) = {α ∈ sf | X0, Φ0 ` α}. Below we describe a general procedure
to compute deriv(X, Φ) for any X ⊆ st and Φ ⊆ sf.

For X ⊆ st and Φ ⊆ sf, define

deriv′(X, Φ) = {α ∈ sf | X, Φ ` α has a derivation which does not use the ∨ e rule }

Lemma 13. deriv′(X, Φ) is computable in time polynomial in N.

Proof Let Y = {t ∈ st | X `dy t}. Start with S = Φ and repeatedly add α ∈ sf to S
whenever α is the conclusion of a rule other than ∨e all of whose premises are in S ∪Y .
Since there are at most N formulas to add to S , and at each step it takes at most N2 time
to check to add a formula, the procedure runs in time polynomial in N. a

We now present the algorithm to compute deriv(X, Φ). It is presented as two mutu-
ally recursive functions f and g, where g(X, Φ) captures the effect of one application of
∨e for each formula α1 ∨ α2 ∈ Φ, and f iterates g appropriately.

1: function f (X, Φ)
2: S ← Φ

3: while S , g(X, S) do
4: S ← g(X, S)
5: end while
6: return S
7: end function

1: function g(X, Φ)
2: S ← Φ

3: for all α1 ∨ α2 ∈ S do
4: if α1 < S and α2 < S then
5: T ← {β ∈ f (X, S ∪ {α1})}
6: U ← {β ∈ f (X, S ∪ {α2})}
7: S ← S ∪ (T ∩ U)
8: end if
9: end for

10: return deriv′(X, S)
11: end function

The following theorem asserts the correctness of the algorithm, and its proof follows
from Propositions 20 (Soundness) and 21 (Completeness), presented in Appendix A.

Theorem 14. For X ⊆ st and Φ ⊆ sf, f (X, Φ) = deriv(X, Φ).

3.4 Analysis of the algorithm

The nesting depth of recursion in the function f is at most 2N. We can therefore show
that f (X, Φ) can be computed in O(N2) space; the proof idea is presented below.

Modify the algorithm for deriv(X, Φ) using 3N global variables S i,Ti,Ui (i ranging
from 0 to N − 1), each a bit vector of length N. The procedures f and g take a third
argument i, representing the depth of the call in the call tree of f (X, Φ, 0). f (·, ·, i) and

12

g(·, ·, i) use the variables S i,Ti,Ui. Further, f (·, ·, i) makes calls to g(·, ·, i) and g(·, ·, i)
makes calls to f (·, ·, i + 1). Since the nesting depth is at most 2N, the implicit variables
on the call stack for arguments and return values are also O(N) in number, so the overall
space used is O(N2).

Theorem 15. The derivability problem is in PSPACE.

3.5 Optimization: bounded number of disjunctions

Since the complexity in the algorithm resides mainly in handling ∨e, it is worth con-
sidering the problem restricted to p disjunctions (independent of N). In this case, the
height of the call tree is bounded by 2p, and since each f (·, ·, i) makes at most N calls
to g(·, ·, i) and each g(·, ·, i) makes at most N calls to f (·, ·, i + 1), it follows that the total
number of calls to f and g is at most N2p. Since deriv′ (used by g) can be computed in
polynomial time, we have the following theorem.

Theorem 16. The derivability problem with bounded number of disjunctions is solv-
able in PTIME.

As a finer optimization, deriv′(X, Φ) can be computed in time O(N) by a graph
marking algorithm of the kind presented in [14]. This gives an even better running time
for the derivability problem in general.

4 Safety checking

The previous section concentrated on the derivability problem, which pertains to a pas-
sive intruder that only derives new terms and assertions from its store of terms and
assertions, without engaging with other agents actively. But the important verification
problem to study is to determine the presence of attacks in a protocol. An attack is
typically a sequence of actions conforming to a protocol, with the intruder actively or-
chestrating communications of the other principals. Formally, an attack on Pr is a run
of TS(Pr) that leads to an undesirable system state. The concept is formalized below.

Definition 17 (Safety checking and bounded safety checking). Let Safe be an arbi-
trary, but fixed safety predicate (i.e. a set of protocol states).

Safety checking: Given a protocol Pr, is some protocol state s < Safe reachable in
TS(Pr) from an initial protocol state?

k-bounded safety checking: Given Pr, is some protocol state s < Safe with at most
k-role instances reachable in TS(Pr) from an initial protocol state?

Theorem 18. 1. If membership in Safe is decidable in PSPACE, the k-bounded safety
checking w.r.t. Safe is solved in PSPACE.

2. If membership in Safe is decidable in NP, the k-bounded safety checking w.r.t. Safe
is in NP if we restrict our attention to protocols with at most p disjunctions, for a
fixed p.

13

Proof

1. A run of Pr starting from an initial state with at most k role instances is of length
linear in the sum of the lengths of all roles in Pr. A PSPACE algorithm can go
through all such runs to see if an unsafe protocol state is reachable. To check that
each action is enabled at the appropriate protocol state along a run, we need to solve
linearly many instances of the derivability problem, which runs in PSPACE. Thus
the problem is in PSPACE.

2. One can guess a sequence of protocol states and actions of length linear in the size
of Pr and verify that all the actions are enabled at the appropriate states. Since we
are considering a protocol with at most p disjunctions for a fixed p, along each run
we consider, there will be at most k ∗ p disjunctions, which is still independent of
the size of the input. To check that actions are enabled at the appropriate states, we
need to solve linearly many instances of the derivability problem (with bounded
number of disjunctions this time) which can be done in polynomial time. Thus the
problem is in NP. a

5 Extending the assertion language

The assertion language presented in 2.2 used disjunction to achieve transmission of
partial knowledge. It should be noted that the assertion language used is not constrained
to be the same as that one, and various operators and modalities may be added to achieve
other desirable properties. In this section, we demonstrate one such addition, namely the
says modality.

5.1 Assertion language with says

The set of assertions, A , is now given by the following syntax:

α := m ≺ t | t = t′ | α1 ∨ α2 | α1 ∧ α2 | A says α

The says modality captures the flavour of delegation. An agent B, upon sending
agent C the assertion A says α, conveys to C that he has obtained this assertion α from
the agent A, and that while he himself has no proof of α, A does. A has, in essence,
allowed him to transmit this assertion to other agents.

Figure 4 gives rules for assertions of the form A says α. For σ = A1A2 · · · An, σ : α
denotes A1 says (A2 says · · · (An says α) · · ·), and σ : Φ = {σ : α | α ∈ Φ}. These rules
are direct generalizations of the propositional rules in Figure 1, and permit propositional
reasoning in a modal context.

Like earlier, we denote by X, Φ `als α the fact that there is a derivation of X, Φ ` α
using ax1 and the rules in Figure 4. We now amend the notation X, Φ `al α to denote
the fact that there is a derivation of X, Φ ` α using the rules in Figures 1, 2 and 4).

14

X, Φ ` σ : (m ≺ {b}k) X, Φ ` σ : (n ≺ {b}k)
⊥ (m , n)

X, Φ ` σ : α

X, Φ ` σ : α1 X, Φ ` σ : α2
∧i

X, Φ ` σ : (α1 ∧ α2)

X, Φ ` σ : (α1 ∧ α2)
∧e

X, Φ ` σ : αi

X, Φ ` σ : αi
∨i

X, Φ ` σ : (α1 ∨ α2)

X, Φ ` σ : (α1 ∨ α2) X, Φ ∪ {σ : α1} ` σ : β X, Φ ∪ {σ : α2} ` σ : β
∨e

X, Φ ` σ : β

Fig. 4: The rules for says assertions

5.2 Protocol model

We now outline the modifications to the protocol model occasioned by the says modal-
ity. The definitions of actions is extended to accommodate the new assertions. However,
only non-modal assertions are allowed as testable conditions in the confirm and deny
actions.

As regards the transition rules, the addition of the says modality allows us one major
departure from the definitions specified earlier in 2.3 – agents can reason nontrivially
using received assertions. An agent B, on receiving an assertion α from A, can store
A says α in its state, and use it in further derivations. Thus a knowledge state ks is now
a tuple of the form ((XA, ΦA)A∈Ag, SD).

Let ks = ((XA, ΦA)A∈Ag, SD) and ks′ = ((X′A, Φ
′
A)A∈Ag, SD′) be two knowledge states

and a be a send or a receive action. We now describe the conditions under which the
execution of a changes ks to ks′, denoted ks

a
−→ ks′. (These are minor modifications of

the rules presented earlier, but presented in full for the convenience of the reader).

– a = A!B : [(M)t, {α}sd(A)]
• a is enabled at ks iff
∗ M ∩ XC = ∅ for all C,
∗ XA ∪ M `dy t, and
∗ XA ∪ M, ΦA `al α.

• ks
a
−→ ks′ iff
∗ X′A = XA ∪ M, X′I = XI ∪ {t},
∗ Φ′I = ΦI ∪ {α, A says α}, and
∗ SD′ = SD ∪ {{α}sd(A)}.

– a = A?B : [t, {α}sd(B)]
• a is enabled at ks iff
∗ {α}sd(B) is verified as signed by B,
∗ XI `dy t, and
∗ either B = I and XI , ΦI `al α, or {α}sd(B) ∈ SD.

• ks
a
−→ ks′ iff
∗ X′A = XA ∪ {t}, and
∗ Φ′A = ΦA ∪ {B says α}.

– a = A : confirm α is enabled at ks iff XA,∅ `al α, and ks
a
−→ ks′ iff ks = ks′.

15

– a = A : deny α is enabled at ks iff XA,∅ 0al α, and ks
a
−→ ks′ iff ks = ks′.

We see that on receipt of an assertion α, honest agents always store A says α in their
state, whereas the intruder is allowed to store α itself (along with A says α).

The rest of the definitions extend without any modification.

5.3 Example protocol

A generates a vote, which it wants principals B and C to agree to, and then send to
the trusted third party T . However, A does not want B and C to know exactly what the
vote is. If a principal agrees to this vote, it prepends its identifier to the term sent to it,
encrypts the whole term with the key it shares with T , and sends it to the next agent.
Otherwise it merely sends the original term to the next agent. We show the specification
where everyone agrees to the vote. B : A : α denotes B says A says α, and t = {vT }k.

– A→ B : t, {(a ≺ t) ∨ (b ≺ t)}sd(A)

– B→ C : {(B, t)}k(B,T), {A : {(a ≺ t) ∨ (b ≺ t)}}sd(B)

– C → T : {(C, {(B, t)}k(B,T)}k(C,T), {B : A : {(a ≺ t) ∨ (b ≺ t)}}sd(C)

– If the nested term is signed by both B and C, and vT = a or vT = b, T → A : ack.
Otherwise, T → A : 0.

We now demonstrate an attack. Suppose there is a session S 1 where a and b take
values a1 and b1, where B agrees to the vote. Suppose now there is a later session S 2
with a taking value a1 (or b taking value b1) again. The intruder can now replay the
term from B’s message to C in S 2 from S 1, although B might not wish to agree in S 2.

5.4 Derivability problem

The basic properties of derivability, including normalization and subformula property,
still holds for the expanded language. The lower bound result also carried over without
modification, since the formulas featuring in the proof do not involve the says modality
at all. As regards the upper bound, the procedure g needs to be modified slightly. The
modified version is presented below. The proof of correctness is in the appendix.

1: function g(X, Φ)
2: S ← Φ

3: for all σ : (α1 ∨ α2) ∈ S do
4: if σ : α1 < S and σ : α2 < S then
5: T ← {σ : β ∈ f (X, S ∪ {σ : α1})}
6: U ← {σ : β ∈ f (X, S ∪ {σ : α2})}
7: S ← S ∪ (T ∩ U)
8: end if
9: end for

10: return deriv′(X, S)
11: end function

16

An optimization can also be considered, where the functions f and g are modified
to take another argument, σ, which provides the modal context. Since an application of
∨e on an assertion σ : (α1∨α2) yields only formulas of the form σ : β in the conclusion,
the function g(σ, ·, ·, i) need only make recursive calls to f (σ, ·, ·, i + 1), concentrating
only on assertions with prefix σ. Also f (σ, ·, ·, i) need only make recursive calls to
g(σ, ·, ·, i) whenever σ , ε. This has the advantage that the recursion depth is linearly
bounded by the maximum number of disjunctions with the same prefix. In summary, it
is possible to solve the derivability problem efficiently in practical cases.

6 Conclusions

We have argued that it is worthwhile to extend the Dolev-Yao model of security proto-
cols so that agents have the capability to communicate assertions about terms in addition
to terms. These assertions play the same role as certificates that may be verified but can-
not be generated by the recipient. We have suggested that such an abstraction allows us
to model a variety of such certificate mechanisms. As a contribution to the theory of
security protocols, we delineate the complexity of the derivability problem and provide
a decision procedure. We study the safety checking problem (which involves the active
intruder).

We would like to emphasize here that the main thrust of the paper is the overall
framework, rather than a specific assertion language. We use a minimal logic for asser-
tions, and many extensions by way of connectives or modalities are possible; however,
it is best to drive extensions by applications that require them.

What we would like to see is to arrive at a ‘programming methodology’ for the struc-
tured use of assertions in protocol specifications. As an instance, consider the fact that
in our model terms and assertions are bundled together: we communicate (t, α) where
binding them requires the same term t to be used in α. Better structuring would use
a quantifier this in assertions so that references to terms in assertions are contextually
bound to communications. This would ensure that in different instantiations (sessions),
the assertion would refer to different concrete terms. A more general approach would
involve variables in assertions and scoping rules for their instantiations. This raises in-
teresting technical issues and offers further scope for investigation.

References

1. M. Abadi and R. M. Needham. Prudent engineering practices for cryptographic protocols.
IEEE Transactions on Software Engineering, 22:6–15, 1996.

2. R. Anderson and R. M. Needham. Robustness principles for public-key protocols. In Pro-
ceedings of CRYPTO ’95, LNCS 963, pages 236–247, 1995.

3. M. Backes, C. Hriţcu and M. Maffei. Type-checking zero-knowledge. In ACM Conference
on Computer and Communications Security, pages 357–370, 2008.

4. M. Backes, M. Maffei and D. Unruh. Zero-Knowledge in the Applied Pi-calculus and Au-
tomated Verification of the Direct Anonymous Attestation Protocol. In IEEE Symposium on
Security and Privacy, pages 202–215, 2008.

5. A. Baskar, P. Naldurg, K. R. Raghavendra and S. P. Suresh. Primal Infon Logic: Derivability
in Polynomial Time. In Proceedings of FSTTCS 2013, LIPIcs 24, pages 163–174, 2013.

17

6. A. Baskar, R. Ramanujam and S.P. Suresh. A dexptime-complete Dolev-Yao theory with
distributive encryption. In Proceedings of MFCS 2010, LNCS 6281, pages 102–113, 2010.

7. M. Burrows, M. Abadi and R. M. Needham. A logic of authentication. ACM Transactions
on Computer Systems, 8(1):18–36, Feb 1990.

8. J. Benaloh. Cryptographic capsules: A disjunctive primitive for interactive protocols. In
Proceedings of CRYPTO ’86, LNCS 263, pages 213–222, 1987.

9. H. Comon and V. Shmatikov. Intruder Deductions, Constraint Solving and Insecurity De-
cisions in Presence of Exclusive or. In Proceedings of LICS 2003, pages 271–280, June
2003.

10. V. Cortier, S. Delaune and P. Lafourcade. A survey of algebraic properties used in crypto-
graphic protocols. Journal of Computer Security, 14(1):1–43, 2006.

11. S. Delaune, S. Kremer and M. D. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.

12. D. Dolev and A. Yao. On the Security of public-key protocols. IEEE Transactions on
Information Theory, 29:198–208, 1983.

13. G. Fuchsbauer and D. Pointcheval. Anonymous consecutive delegation of signing rights:
Unifying group and proxy signatures. In Formal to Practical Security, pages 95–115, 2009.

14. Y. Gurevich and I. Neeman. Infon logic: the propositional case. ACM Transactions on
Computational Logic, 12(2):9:1–9:28, 2011.

15. P. Lafourcade, D. Lugiez and R. Treinen. Intruder deduction for the equational theory of
abelian groups with distributive encryption. Information and Computation, 205(4):581–623,
April 2007.

16. R. Ramanujam, V. Sundararajan and S.P. Suresh. Extending Dolev-Yao with assertions.
Technical Report. 2014. URL: http://www.cmi.ac.in/∼spsuresh/dyassert.pdf.

17. Zuzana Rjaskova. Electronic voting schemes. Master’s Thesis, Comenius University. 2002.
18. M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Sessions and

Composed Keys is NP-complete. Theoretical Computer Science, 299:451–475, 2003.

Appendix

A Algorithm for derivability: correctness proof

For a fixed X, define fX : ℘(sf) → ℘(sf) to be the function that maps Φ to f (X, Φ).
Similarly, gX(Φ) is defined to be g(X, Φ).

Lemma 19. 1. Φ ⊆ deriv′(X, Φ) ⊆ deriv(X, Φ).
2. deriv′(X, deriv(X, Φ)) = deriv(X, deriv(X, Φ)) = deriv(X, Φ).
3. If Φ ⊆ Ψ then gX(Φ) ⊆ gX(Ψ) and fX(Φ) ⊆ fX(Ψ).
4. Φ ⊆ gX(Φ) ⊆ g2

X(Φ) ⊆ · · · ⊆ sf.
5. fX(Φ) = gm

X (Φ) for some m ≤ N.

The last fact is true because |sf| = N and the gi
X(Φ)s form a non-decreasing sequence.

Proposition 20 (Soundness). For X ⊆ st, Φ ⊆ sf and m ≥ 0, gm
X (Φ) ⊆ deriv(X, Φ).

Proof We shall assume that

gn
X(Ψ) ⊆ deriv(X, Ψ) for all Ψ ⊆ sf, n ≥ 0 s.t. (N − |Ψ |, n) <lex (N − |Φ|,m)

18

and prove that
gm

X (Φ) ⊆ deriv(X, Φ).

Now if m = 0, then gm
X (Φ) = Φ ⊆ deriv(X, Φ). Suppose m > 0, Let Z = gm−1

X (Φ) and let
S ⊆ sf be such that α ∈ S iff one of the following conditions hold:

– α ∈ Z
– α is of the form σ : β and there is some σ : (α1 ∨ α2) ∈ Z such that σ : αi < Z and
α ∈ fX(Z ∪ {σ : α1}) ∩ fX(Z ∪ {σ : α2}).

Observe that since (N − |Φ|,m − 1) <lex (N − |Φ|,m), by induction hypothesis, Z =

gm−1
X (Φ) ⊆ deriv(X, Φ). To conclude that gm

X (Φ) ⊆ deriv(X, Φ), it suffices to prove that
S ⊆ deriv(X, Φ), since then we have

gm
X (Φ) = deriv′(X, S) ⊆ deriv′(X, deriv(X, Φ)) = deriv(X, Φ).

Now if α ∈ S , then there are two cases:

– α ∈ Z. But Z ⊆ deriv(X, Φ), and so α ∈ deriv(X, Φ).
– α is of the form σ : β and α ∈ fX(Z ∪ {σ : α1}) ∩ fX(Z ∪ {σ : α2}) for some
σ : (α1 ∨ α2) ∈ Z. For any Ψ , fX(Ψ) = gn

X(Ψ) for some n ≤ N, and for any n,
(N − |Z ∪ {σ : αi}|, n) <lex (N − |Φ|,m). Thus, by induction hypothesis, fX(Z ∪ {σ :
αi}) ⊆ deriv(X,Z ∪ {σ : αi}). In other words, X,Z ∪ {σ : α1} `al σ : β and
X,Z ∪ {σ : α2} `al σ : β and X,Z `al σ : (α1 ∨ α2). By an application of the ∨e
rule, we conclude that X,Z `al σ : β. Thus

α ∈ deriv(X,Z) ⊆ deriv(X, deriv(X, Φ)) = deriv(X, Φ).

This proves that S ⊆ deriv(X, Φ), and we are done. a

Proposition 21 (Completeness). For X ⊆ st , Φ ⊆ sf and α ∈ deriv(X, Φ), there is
m ≥ 0 such that α ∈ gm

X (Φ).
Proof Suppose α ∈ deriv(X, Φ). Then there is a normal derivation π of X, Φ ` α. We
now prove the desired claim by induction on the structure of π.

– Suppose the last rule r of π is not ∨e. If r is ax1, α ∈ Φ = g0
X(Φ). If not, let

S = {β | X, Φ ` β is a premise of r}. Since each β ∈ S is the conclusion of
a subproof of π, by induction hypothesis, there is an m such that β ∈ gm

X (Φ). It
follows that there is n such that S ⊆ gn

X(Φ). Since for any Ψ , deriv′(X, Ψ) ⊆ gX(Ψ),
it follows that α ∈ deriv′(X, S) ⊆ deriv′(X, gn

X(Φ)) ⊆ gn+1
X (Φ).

– Suppose the last rule of π is ∨e. Then α is of the form σ : β (where σ could
also be ε) and there are subproofs of π with conclusions X, Φ ` σ : (α1 ∨ α2),
X, Φ ∪ {σ : α1} ` σ : β and X, Φ ∪ {σ : α2} ` σ : β. By induction hypothesis,
there are m, n, p such that σ : (α1 ∨ α2) ∈ gm

X (Φ), σ : β ∈ gn
X(Φ ∪ {α1}) and

σ : β ∈ gp
X(Φ ∪ {α2}). Since gq

X(Ψ) ⊆ fX(Ψ) for any Ψ and q ≥ 0, it follows that
σ : β ∈ fX(Φ ∪ α1}) ∩ fX(Φ ∪ α2}). Thus σ : β ∈ gm+1

X (Φ). a

19

