
Communicating assertions in security protocols: formal

models and complexity*

R. Ramanujam, Vaishnavi Sundararajan†, and S. P. Suresh‡

 The Institute of Mathematical Sciences
Chennai, India
jam@imsc.res.in

 Chennai Mathematical Institute
Chennai, India
{vaishnavi, spsuresh}@cmi.ac.in

Abstract

Cryptographic protocols often have agents sending each other certain facts certifying partial truths
about terms – for example, an agent may wish to tell another that an encrypted secret was actually
chosen from a particular set of values. In protocols based on the Dolev-Yao model, such certification is
often modelled via sequences of communication, or by introducing new cryptographic primitives. We
suggest that a separation of terms and assertions helps towards simplifying the logical analysis of such
protocols. We work with a simple assertion language using disjunction (to model partial information
certificates), and a says modality (to model assertions forwarded by agents to others). We study the
complexity of the derivability problem, and also study the assertion language when augmented with
other reasonable constructs.

Keywords and phrases Security protocols, Dolev-Yao, assertions, intruder deduction

 Introduction

. Certificates in security protocols

A fairly common feature of cryptographic protocols is the communication of facts about terms
occurring in the protocol. Protocols involving interactive proofs, for example, often require agents
to certify that the terms they send to other agents possess certain properties []. Yet another
scenario that illustrates the use of such certification, or assertions is in e-voting protocols [, ,
, ]. Consider the following situation, which is quite common in voting. AgentA encrypts her
vote v and sends it to B, along with an assertion that the vote is valid, i.e. v takes on one of a few
(pre-specified) values. It should not be possible for B to forward this encrypted vote to someone
else, and convince the receiver of its being valid, since a proof of validity might (and almost always
will) requireB to have access to the vote v (refer to [] formore examples of this kind). Commonly
used protocols which employ certificates whichmay only be verified but not forwarded include TLS
and HTTPS, and therefore a robust and effective way of formally modelling such certification is
necessary.

There are many well-established ways to model security protocols in an abstract manner. Pos-
sibly the most famous among these is the Dolev-Yao model []. This model views terms as ele-
ments in a term algebra, and allows encryption and pairing as basic operations to create new terms
via a standard set of derivation rules (given in Figure ). The intruder can see any messages that

* This work is a revised and expanded version of [].
† Supported by a TCS Research Fellowship, and partially by a grant from the Infosys Foundation.
‡ Partially supported by a grant from the Infosys Foundation.



 Communicating assertions in security protocols: formal models and complexity

are sent on the channel, and pass along messages it can generate in any agent’s name, but cannot
break encryption – this is the perfect encryption assumption. In the real world, where encryption is
often randomized or based on public-key infrastructure, but private channels are cost-intensive,
this is a reasonable assumption of the intruder’s abilities. In the thirty years since it was proposed,
the Dolev-Yao model has been extended with various cryptographic operations like homomorphic
encryption, blind signatures etc. [, , ] which are relevant to the protocol’s application area –
and therefore it does not require a great stretch of imagination to believe that there might be a way
to imbue this model with the power of certification.

However, one important aspect of the Dolev-Yao model (which is preserved across all these
extensions with cryptographic operations) is that agents ‘own’ any messages which they have re-
ceived. Suppose agent A sends to B a term {t}k where k is not known to B. The Dolev-Yao model
allows B to forward this term to C in its own name, even though B has no idea what t is. Thus,
the model treats terms as tokens that can be copied and passed along by the recipients in their
own names. Clearly this model will not work with certificates, where we wish to preserve origin
information.

ax
X ∪ {t} ⊢ t

X ⊢ t1 X ⊢ t2
pair

X ⊢ (t1, t2)

X ⊢ (t1, t2)
split

X ⊢ ti

X ⊢ t X ⊢ k
enc

X ⊢ {t}k

X ⊢ {t}k X ⊢ inv(k)
dec

X ⊢ t

Figure The Dolev-Yao derivation system

Here are a few ways in which the Dolev-Yao model is modified to handle certification.
In some simple cases, one need not explicitlymodel assertions in the protocol at all, and instead
rely on the conventions and features of the framework itself. Examples would be to certify the
goodness of keys, freshness of nonces etc [].
In other cases, one uses cryptographic devices like zero knowledge proofs [], bit-commitment
schemes [, , ] etc. to make partial secrecy assertions. For example, a voter V might post
an encrypted vote {v}k along with a zero knowledge proof that v is either  or . This allows
an authority to check that the voter and the vote are legitimate, without needing to know the
actual value of the vote.
For some assertions, one could use ad hoc conventions specific to a protocol. For instance, a
term that models an assertion αmight be paired (or tagged) with the agent name S to signify
that S generated (and therefore owns) the assertion α [].

However, it often proves to be the case that ad hocmethods do not hold up well under composi-
tion of protocols. Zero knowledge proofs or bit-commitment schemes are implemented asmultiple
sequences of communicatedmessages, and are therefore hard to ‘see’ as assertions of the facts that
they are certifying. Neither of these methods, therefore, allows us to structure the protocol in a
readable manner.



R. Ramanujam, V. Sundararajan and S. P. Suresh 

. Our model

We propose a new extension to the Dolev-Yaomodel in which agents have the ability to communic-
ate assertions explicitly, rather than via any encoding. The fact that certification can be expressed
in the Dolev-Yao model via various methods of translation suggests that this ability does not add
any expressive power. However, treating data and assertions as different abstract objects gives sig-
nificant flexibility for formal specification and reasoning about such protocols. In fact, the need
for formal methods in security protocols goes beyond verification and includes ways of structur-
ing protocols [, ], and a syntactic separation of the term algebra and an associated language of
assertions should be seen in this light.

Note that our assertions are in the spirit of [], where the zk primitive encapsulates a zero-
knowledge proof, in that the implementation for the assertion might have a zero-knowledge proof
of the fact. However, the abstraction in [] treats a zk term as part of the term algebra, whereas our
model introduces a different algebra altogether whose elements are the assertions. Our assertion
language is inspired by the language of patterns used in [], which considers a model where each
term is tagged with an abstract pattern to which the term conforms.

Much as the Dolev-Yao model is a minimal term algebra with its derivation rules, we consider
the extension with assertions also as a minimal logic with its associated derivation rules. We sug-
gest a propositionalmodal language, with highly restricted use of negation andmodalities, inspired
by infon logic [, ] (which reasons about access control). The fundamental assertion is one about
term structure, which claims that a particular atomic term is part of a larger term, and has the form
a occurs in t (for a the atomic term occurring in the larger term t). A priori, certification in crypto-
graphic protocols reveals partial information about terms. Therefore, we use disjunction to make
the revelations partial. For instance, (0 occurs in t)∨(1 occurs in t) can be seen as a partial secrecy as-
sertion. Note that background knowledge of the Dolev-Yao model offers implicit atomic negation:
0 occurs in {m}k wherem is atomic will exclude the assertion 1 occurs in {m}k. With conjunctions
to bundle assertions together, we have a restricted propositional language. Communications are
term-assertion pairs where the term or the assertion field could potentially be empty.

Themodality we study is one that refers to agents passing assertions along, and has the flavour
of delegation: A sending α to B does not allow B to directly send α to other agents, but instead
allowsB to send the assertionA saysα to other agents. Manypaperswhich view assertions as terms
work with assertions similar to the ones used here. For instance, [] presents a new cryptographic
primitive for partial information transmission, while [] deals with delegation and signatures,
although there the focus is more on anonymity and group signatures.

A natural question would be: how are such assertions to be verified? Should the agent gener-
ating the assertion construct a proof and pass it along as well? This is the approach followed in
protocols using zero-knowledge proofs []. While such an approach is natural in models that view
assertions as terms, treating them as distinct allows us an abstraction similar toDolev-Yao’s perfect
encryption assumptionmentioned earlier. We call it the reliable assertion assumption: themodel en-
sures the correctness of assertions at the point of generation, and honest principals assume such
correctness of any assertions they might receive and proceed. This paradigm also ensures that in
order to ‘prove’ the correctness of any assertion sent out by it, an agent needs to have access to all
the terms the assertion talks about, thereby ruling out situations where B tries to forward in its
own name an assertion α sent to it by A. As a design choice, in our model, all assertions sent out
by agents are signed by them, and signatures cannot be forged. The intruder, therefore, can replay
earlier messages, but not forge new messages in other agents’ names.

Which brings us to our next question: is there any difference between the terms appearing in
our protocol specification/formalization, and the ones communicated at runtime? In the Dolev-
Yao model, the terms appearing in the protocol specification (‘abstract’ terms) are instantiated at



 Communicating assertions in security protocols: formal models and complexity

runtime by means of substitution functions, to yield ‘concrete’ terms. Therefore, agents have ab-
stract terms that serve as templates, which aremapped to actual terms by substitutions. We extend
this idea in our model. The assertions are part of the protocol specification itself, and refer to ab-
stract terms appearing in the protocol. All assertions are therefore instantiated at runtime, and the
concrete form of an abstract assertion depends on the concrete terms it references. For example,
if we have an assertion of the form a occurs in t, and the substitution function for the terms maps
a to the atomic term 1, and maps t to the encrypted term {1, 2}k, then the concrete assertion we
obtain at runtime would be be 1 occurs in {1, 2}k.

Note that this allows agents to send totally unrelated terms and assertions together (as long as
the terms mentioned in the assertions have been communicated earlier) – for example, an agent
could send a communication of the form {1}k(A,B), {2 occurs in {(2, 3)}k(A,S)} where the assertion
has no connection to the term that is sent with it. The interaction between an assertion and the
term sent along with it can be varied, in order to obtain better abstractions for the model (and
potentially increase expressivity). One way to augment our existing model, thereby increasing
term-assertion interaction, is to introduce a placeholder♢, and a new ‘open’ assertion of the form
a occurs in♢, which is always accompanied by a term. In order to obtain the concrete form of this
assertion at runtime, the placeholder is replaced by the accompanying term, and then the uniform
substitution function applied to all terms.

. Examples of certificates

We now informally present a few examples illustrating how certification is used in security proto-
cols and how our basic model will capture this. We also present some attacks where the malicious
intruder uses the fact that assertions are transmitted, and tries to gain more information than she
is entitled to.

▶ Example . Consider a very simple scenario whereA sends toB a termm encrypted inA’s public
key, about which he only wants B to know that the encrypted term is one of two possible values a
and b. Since B cannot decrypt the term, the assertion is the only way B learns anything about the
term that is encrypted.

A→ B : {m}pk(A), {(m is a)∨ (m is b)}

▶ Example . This example is a slight variation on the earlier scenario. Now A sends to B a pair
(m,n) encrypted in A’s public key, about which he only wants B to know that somewhere in the
encrypted term occurs a nonce which is either a or b. Again, since B cannot decrypt the term, the
assertion is the only way B learns anything about the term that is encrypted. But note that this is
a weaker assertion than earlier, since B does not learn exactly where in the term a or b appears.

A→ B : {(m,n)}pk(A),
{
(a occurs in {(m,n)}pk(A))∨ (b occurs in {(m,n)}pk(A))

}
▶ Example . Here we present a toy e-voting protocol. AgentA is a voter, talking to an authority T .
T needs to be convinced by A that A is indeed who he says he is (i.e. A), and that his vote is valid
(i.e. one of the two acceptable choices a and b). Based on A’s vote, T will also update the tally for
the candidateA votes for. A therefore sends to T a pair composed ofA’s identity, and his vote vA,
encrypted in the keyA shares with T . T decrypts the message, checks the vote to see if it is one of
the acceptable values, and returns a confirmation cA toA if it is true, otherwise sends .

A→ T : (A, vA)}k(A,T)

If T confirms {(vA = a)∨ (vA = b)} T → A : cA . Otherwise T → A : 0.



R. Ramanujam, V. Sundararajan and S. P. Suresh 

▶ Example . Now consider a slightly more involved voting protocol. A is a voter, but now we have
an administrator T and a counterC. T needs to be convinced byA thatA is indeedA, and that his
vote is for either a or b. However, T should not be able to seeA’s exact vote, which should be seen
only by the counter C, who will update the tally for the person A votes for, based on A’s vote. In
this example,A sends to the admin a pair encrypted in the key he shares with T . The pair contains
A’s identity, andA’s vote encrypted in the keyA shares withC (which T cannot decrypt, andmust
pass on as is toC). A also sends an accompanying assertion to state that his vote is indeed for one
of the preset candidates. T decrypts the message, ensures that the identity is indeed that of A,
and sends the encrypted vote to C, along with the assertion that came fromA. C checks the vote,
updates the tally, and issues a confirmation to A if the vote has been received, and the assertion
validated. Otherwise C sends a . Note that T needs to send this assertion to Cmentioning that
A sent it to T earlier (as opposed to T having generated this assertion), and therefore must use an
A says prefix.

A→ T : {(A, {vA}k(A,C))}k(A,T), {(vA is a)∨ (vA is b)}

T → C : {vA}k(A,C), {A says (vA is a)∨ (vA is b)}

If C confirms that vA is a or b , C→ A : cA . Otherwise C→ A : 0.

 Model

In this section, we present the various features of our model in detail.

. The termmodel

Fix countable sets Ag, N and K , denoting the set of agents, nonces and keys, respectively. The
set of basic terms is B = Ag ∪ N ∪ K . For each A,B ∈ Ag, assume that sk(A) and pk(A) are
private-public key pairs, and k(A,B) are shared keys. Further, each k ∈ K has an inverse defined
as follows: inv(pk(A)) = sk(A), inv(sk(A)) = pk(A) and inv(k) = k for the other keys. The set T

of Dolev-Yao terms is given by the following syntax (wherem ∈ B and k ∈ K )¹:

t := m | (t1, t2) | {t}k

The most important aspect of the Dolev-Yao model is the system of rules that govern what new
terms can be constructed from the set of terms already known to an agent. This is usually presented
in the form of a proof system involving sequents of the form X ⊢ t, where X ⊆fin T and t ∈ T .
The proof system is given in Figure . We use the notation X ⊢dy t to denote that there is a proof
of X ⊢ t according to the Dolev-Yao proof rules, and X ⊢dy T (for a set of terms T ) to denote that
X ⊢dy t for all t ∈ T .

We use st(t) to denote the set of subterms of t and st(X) =
∪
t∈X

st(t) in Proposition , which is

a well-known fact about the basic Dolev-Yao model [].

▶ Proposition . Given X ⊆fin T and t ∈ T , it can be decided whether X ⊢dy t in time linear in
|st(X ∪ {t})|.

¹ We keep our term model simple by allowing only atomic keys. One can enrich the syntax by allowing constructed
keys, which would admit terms of the form {m}(n,p), {m}{n}p

, etc. Our work can adapted to the case of
constructed keys without much difficulty.



 Communicating assertions in security protocols: formal models and complexity

. The assertion language

The set of assertions, A , is given by the following syntax:

α := m ≺ t | α1 ∨ α2 | α1 ∧ α2 | A says α

where m ∈ B, A ∈ Ag and t ∈ T . The set of subformulas of a formula α is denoted sf(α).
The assertionm ≺ t is to be read as “m occurs in t”. Note that when the term communicated is
an encrypted nonce {a}k, the assertion m ≺ t states that m is a (as in our examples presented
earlier).

The says modality captures the flavour of delegation. An agent B, upon sending agent C the
assertionA says α, conveys to C that he has obtained this assertion α from the agentA, and that
while he has no proof of α, A hopefully does. A has, in essence, allowed him to transmit this
assertion to other agents.

Our syntax is very modest – there is no negation or implication, and the modalities are□-like.
While general negation and implication is important in the context of access control anddelegation,
and it is interesting to explore their use in the context of our work, those operators also brings
with them increased complexity. While the says modality is natural in the context of delegation
and is naturally □-like, it is hard to come up with a natural modality dual to says in our context.
Integrating more operators to our syntax in an appropriate manner is work for the future.

Theproof rules for assertions are presented using sequents of the formX,Φ ⊢ α, whereX andΦ
are finite sets of terms and assertions respectively, and α is an assertion. For ease of presentation,
we present the rules in three parts.

ax1
X,Φ ∪ {α} ⊢ α

X,Φ ⊢ m ≺ {b}k X,Φ ⊢ n ≺ {b}k
⊥ (m ̸= n; b ∈ B)

X,Φ ⊢ α

X,Φ ⊢ α1 X,Φ ⊢ α2

∧i
X,Φ ⊢ α1 ∧ α2

X,Φ ⊢ α1 ∧ α2

∧e
X,Φ ⊢ αi

X,Φ ⊢ αi

∨i
X,Φ ⊢ α1 ∨ α2

X,Φ ⊢ α1 ∨ α2 X,Φ ∪ {α1} ⊢ β X,Φ ∪ {α2} ⊢ β
∨e

X,Φ ⊢ β

Figure The rules for deriving assertions: propositional fragment

The proof system has appropriate rules for conjunction and disjunction, as presented in Fig-
ure . The contradiction rule merits some discussion. We employ a restricted contradiction rule⊥
which captures contradiction at the atomic level (whereby two assertions claiming that different
nonces appear in an encrypted nonce are deemed contradictory), and from a contradiction one can
derive anything. Some care is needed in deciding which pairs of assertions we deem to be contra-
dictory. For instance, if t is a pair, we cannot say thatm ≺ t and n ≺ t are contradictory, since
t could very well be (m,n). So the term t should either be atomic, or be built using encryptions
only.

We next present the rules for atomic assertions of the form m ≺ t in Figure . We wish to
construct assertions about compound terms using assertions for (some of) the constituent terms.
To this end, we consider assertions corresponding to compound terms formed using the operations



R. Ramanujam, V. Sundararajan and S. P. Suresh 

allowed by the Dolev-Yao theory, namely encryption, decryption, split and pairing. Note that all
these rules require X to be nonempty, and refer to derivations in the Dolev-Yao theory. For an
agent to derive an assertion about a term t, it should be capable of constructing t from the ground
up, which is modelled by saying that fromX one can learn (in the Dolev-Yao theory) all basic terms
occurring in t (including all the encryption keys occurring in t). For example, in the split rule,
suppose the agent can derive from X all of st(ti ∩ B), and thatm is not a basic term in ti. The
agent can now derivem ≺ t1−i fromm ≺ (t0, t1).

X ⊢dy m
ax2

X,Φ ⊢ m ≺ m

X ⊢dy {t}k X ⊢dy k X,Φ ⊢ m ≺ t
enc

X,Φ ⊢ m ≺ {t}k

X ⊢dy inv(k) X,Φ ⊢ m ≺ {t}k
dec

X,Φ ⊢ m ≺ t

X ⊢dy (t0, t1) X,Φ ⊢ m ≺ ti X ⊢dy st(t1−i) ∩B
pair

X,Φ ⊢ m ≺ (t0, t1)

X,Φ ⊢ m ≺ (t0, t1) X ⊢dy st(ti) ∩B m ̸∈ st(ti)
split

X,Φ ⊢ m ≺ t1−i

Figure The rules for atomic assertions

X,Φ ⊢ σ : (m ≺ {b}k) X,Φ ⊢ σ : (n ≺ {b}k)
⊥ (m ̸= n)

X,Φ ⊢ σ : α

X,Φ ⊢ σ : α1 X,Φ ⊢ σ : α2

∧i
X,Φ ⊢ σ : (α1 ∧ α2)

X,Φ ⊢ σ : (α1 ∧ α2)
∧e

X,Φ ⊢ σ : αi

X,Φ ⊢ σ : αi

∨i
X,Φ ⊢ σ : (α1 ∨ α2)

X,Φ ⊢ σ : (α1 ∨ α2) X,Φ ∪ {σ : α1} ⊢ σ : β X,Φ ∪ {σ : α2} ⊢ σ : β
∨e

X,Φ ⊢ σ : β

Figure The rules for says assertions

Figure  gives rules for assertions of the form A says α. For σ = A1A2 · · ·An, σ : α denotes
A1 says (A2 says · · · (An says α) · · · ), and σ : Φ = {σ : α | α ∈ Φ}. These rules are direct
generalizations of the propositional rules in Figure , and permit propositional reasoning in a fixed
modal context. This is captured by the fact that the same σ occurs in the premises and conclusion
of the rules.

We denote by X,Φ ⊢alp α (resp. X,Φ ⊢alat α; X,Φ ⊢als α; X,Φ ⊢al α) the fact that there is a



 Communicating assertions in security protocols: formal models and complexity

derivation of X,Φ ⊢ α using the rules in Figure  (resp. ax1 and the rules in Figure ; ax1 and the
rules in Figure ; the rules in Figures ,  and ).

Note that our rules for assertions allows only propositional reasoning in the context of a (fixed)
σ. We can obtain an equivalent proof system by replacing all the rules in Figure  by the following
rule.

∅, Φ ⊢ α
∅, σ : Φ ⊢ σ : α

But the system in Figure  has the structural advantage that the set of formulas to the left of⊢ is the
same in the premises and conclusion in all the rules other than∨e. This helps in the presentation
of some of the algorithms in Section .

. Active intruder model

Protocols are usually specified as multiple sequences of communication between agents. Given
below is a typical specification of a simple protocol, whereA wants to check if B is online. A sends
out a fresh nonce m encrypted in B’s public key, and waits for B to tell her that he is online by
responding with the same nonce encrypted inA’s public key. Let us call this protocolP.

A→ B : {m}pk(B)

B→ A : {m}pk(A)

}
ProtocolP

However, towards simplifying the task of formal analysis, we shall consider a different spe-
cification of protocols. Note that this new specification can be generated from the above kind of
specification.

All protocols admit send and receive actions. Consider the first communication in P. This is
broken into two actions – a send and a receive.

A!B : (M){m}pk(B) (A sends out to intended recipient B)

B?A : {m}pk(B) (B receives from purported senderA)

M is the set of nonces of the term {m}pk(B) that ought to be fresh, i.e. regenerated for each new
session (in our caseM = {m}, butwewill writeA!B : (m){m}pk(B) instead ofA!B : ({m}){m}pk(B)).
Note that the intrudermight interceptmessages, so not all sends need have corresponding receives
(which is why this break-up of a single communication into two actions at the two agents’ ends is
necessary). Any receive by any agent is implicitly a send by the intruder, since the intruder always
snoops on the channel.

▶ Definition  (Role). A role forA ∈ Ag (denoted byA-role) is a finite sequence of actions a1 · · ·ak
where each ai is a send (sender A), receive (receiver A), confirm or deny action by A. A role is
therefore anA-role for some agentA.

Breaking up all communications into actions, we getA’s role inP to be the following sequence.

A!B : (m){m}pk(B)

A?B : {m}pk(A)

The corresponding B-role is the following.

B?A : {m}pk(B)

B!A : {m}pk(A)

Observe that the m in the message sent by B is the one it received in the earlier message (pur-
portedly) fromA, and not fresh. Thus the set of fresh nonces,M, is empty. This is more accurately
depicted as B!A : (∅){m}pk(A), but we stick to our simpler notation in this case.



R. Ramanujam, V. Sundararajan and S. P. Suresh 

Actions

In addition to the send and receive actions in our model (all assertions involved in these actions
are signed by the senders), we also admit two more types of actions, namely confirm and deny.
These capture conditional branching. An agent might, depending on whether he/she can verify
some says free assertion, perform action a1 if the condition is true, and action a2 otherwise. The
behaviour of an agentA in a protocol, in the presence of a branch on assertionα, is represented by
two different branches, one in which the action at that stage is A : confirm α (i.e. α is true, andA
confirms α) and the other in which it isA : deny α. These actions are illustrated below.

Action type Notation

Send fromA to B A!B : [(M)t, {α}sd(A)]

Receive byA from B A?B : [t, {α}sd(B)]

Confirm byA A : confirm α
α says free

Deny byA A : deny α

Figure Actions in our system

In the send action,M is the set of fresh nonces used byA in the construction of t. Agents are
allowed to send terms and assertions separately (i.e. in the send and receive actions, either the term
or the assertion could be omitted, but not both). Note that in our model, we consider branching
based only on the assertions that the agent can locally verify, and we do not consider assertions
that might have been communicated to the agent by other agents. For confirm and deny actions,
therefore, α is says free. Examples  and  illustrate the use of these actions.

▶ Definition  (Protocol). A protocol Pr is a pair (const, R), where const ⊆ B is the set of constants
of Pr, and R is a finite set of roles.

Substitution

Observe that so far everything we have talked about is abstract – agent names, terms, assertions
etc. In order to take these abstract objects to concrete entities which are actually communicated
during runtime, we use a substitution. A substitution σ is a homomorphism on T ssatisfying
σ(Ag) ⊆ Ag and σ(K ) ⊆ K (i.e. abstract terms referring to agents’ names and keys are al-
ways mapped into the set of agents’ names and the set of keys respectively). Note that we allow
non-atomic substitutions, i.e. a nonce can be instantiated with a complex term at run time, but
keys are always mapped to keys (we do not allow constructed keys). σ is said to be suitable for a
protocol Pr = (const, R) if σ(m) = m for allm ∈ const. For an abstract assertion α, σ(α) is the
concrete assertion obtained by applying σ to all the abstract terms appearing in α.

Role Instance

A role instance of a protocol Pr is a tuple ri = (η, σ, lp), where η is a role of Pr, σ is a substitution
suitable for Pr, and 0 ⩽ lp ⩽ |η|. ri = (η, σ, 0) is said to be an initial role instance. The set of
role instances of Pr is denoted by RI(Pr). IRI(Pr) is the set of initial role instances of Pr. For a
role instance ri = (η, σ, lp), ri + 1 = (η, σ, lp + 1). If ri = (η, σ, lp), lp ⩾ 1 and η = a1 · · ·aℓ,
act(ri) = σ(alp). For S, S ′ ⊆ RI(Pr) and ri ∈ RI(Pr), we say that S ri−→ S ′ iff ri ∈ S, ri + 1 ∈ RI(Pr)
and S ′ = (S \ {ri}) ∪ {ri+ 1}.



 Communicating assertions in security protocols: formal models and complexity

An important detail to observe here is that ri refers to abstract terms appearing in the role η.
However, act(ri) is obtained by applying the substitutionσ to the appropriate action, and therefore
refers to concrete terms. Consequently, our actions on which transitions occur are also concrete
actions.

Transition system states

A knowledge state ks is a tuple of the form ((XA, ΦA)A∈Ag, h), where XA ⊆ T (resp. ΦA ⊆ A ) is
the set of terms (resp. assertions)A has accumulated by then. h is a finite set of signed assertions
of the form {α}sd(A). It is intended to model the relevant history – the set of all signed assertions
communicated in the run so far. The initial knowledge state of a protocol Pr = (const, R) is given by
((X0

A,∅)A∈Ag,∅), where

X0
A = const ∪ Ag ∪ {sk(A)} ∪ {pk(B), k(A,B) | B ∈ Ag}

is the set of terms any agentA has access to at the very beginning of a protocol. Actions cause the
update of knowledge states – a changes the system state from ks to ks ′ (denoted by ks a−→ ks ′),
which will be defined shortly.

A protocol state of Pr is a pair s = (ks, S) where ks is a knowledge state of Pr and S ⊆fin RI(Pr).
s = (ks, S) is an initial protocol state if ks is initial and S ⊆ IRI(Pr). For any two protocol states
s = (ks, S) and s ′ = (ks ′, S ′), and an action a, we say that s a−→ s ′ iff there is ri ∈ S such that
act(ri+ 1) = a, S ri−→ S ′, a is enabled at ks, and ks a−→ ks ′. The states, initial states, and transitions
defined above induce a transition system on protocol states, denoted TS(Pr). A run of a protocol Pr
is any run of TS(Pr).

Transition system updates

We now need to examine how actions affect the information the agents gain about the terms and
assertions communicated during the execution of the protocol. Consider two knowledge states
ks = ((XA,ΦA)A∈Ag, h) and ks ′ = ((X ′

A, Φ
′
A)A∈Ag, h ′), and a belonging to one of the four action

types shown in Figure . We describe in Figure  the conditions underwhich the actiona (mention-
ing concrete terms) is enabled at a knowledge state ks, and then in Figure  the conditions under
which it will update the system from ks to ks ′ (denoted ks a−→ ks ′).

Action Enabling conditions

a = A!B : [(M)t, {α}sd(A)]

M ∩ XC = ∅ for all C

XA ∪M ⊢dy t

XA ∪M,ΦA ⊢al α.

a = A?B : [t, {α}sd(B)]

XI ⊢dy t

XI,ΦI ⊢al α

If B ̸= I, {α}sd(B) ∈ h.

a = A : confirm α XA,∅ ⊢al α

a = A : deny α XA,∅ ⊬al α

Figure  Enabling conditions for a at ks

In the above definitions, the relevant history h is crucially used in the enabledness check for an
honest agent receive. In the case where an honest agentA receives an assertionαwhose purported



R. Ramanujam, V. Sundararajan and S. P. Suresh 

Action Updates

a = A!B : [(M)t, {α}sd(A)]

X ′
A = XA ∪M

X ′
I = XI ∪ {t}

Φ ′
P = ΦP ∪ {α,A says α} for P = A, I

h ′ = h ∪ {{α}sd(A)}.

a = A?B : [t, {α}sd(B)]
X ′
A = XA ∪ {t}

Φ ′
A = ΦA ∪ {B says α}.

a = A : confirm α

a = A : deny α
No change

Figure Updates when ks a−→ ks ′

sender is B ̸= I, we actually require that B indeed communicated {α}sd(B) sometime in the past.
This ensures that the intruder cannot send out assertions in the name of another agent B, unless
B sent it out in the past.

The change in the X sets is easily justified by an operational model in which the intruder can
snoop on the entire network, but agents are allowed to send only terms which they can generate.
We have extended the same idea to assertions as well, but there is the extra complication of signing
the assertions. The intruder typically has access only to its own signature, and we do not consider
corruption of agents by the intruder here. Thuswe posit that the intruder can only replay assertions
signed by other agents, or that it can generate assertions and sign them in its own name.

As an operational justification for why the honest agents cannot send assertions sent by other
agents without attaching the says prefix, we can imagine the following concrete model. There is a
trusted third party verifier (TTP) that allows assertions to be transmitted at large only after the
sender provides a justification to the TTP. This means that an honest agent B who receives an as-
sertion α fromA cannot pass it on to others, because the TTP will demand a justification for this,
which B cannot provide. The intruder, though, can snoop on the network, so it has the bits thatA
sent as justification for α to the TTP, and thus gets to store α in its local database.

▶ Example . Towards illustrating how the transition system works, let us add an assertion to our
earlier protocol P (our running example in the beginning of this section). Let us call this new
protocolP ′.

A→ B : {m}pk(B), {m1 ≺ {m}pk(B) ∨m2 ≺ {m}pk(B)}

B→ A : {m}pk(A)

}
ProtocolP ′

As earlier, we can split this up into anA-role (a1a2) and a B-role (b1b2) as follows.
a1: A!B : [(m){m}pk(B), {m1 ≺ {m}pk(B) ∨m2 ≺ {m}pk(B)}sd(A)] a2: A?B : {m}pk(A)

b1: B?A : [{m}pk(B), {m1 ≺ {m}pk(B) ∨m2 ≺ {m}pk(B)}sd(A)] b2: B!A : {m}pk(A)

Now consider the system where the only constants of the protocol are  and . A run of the
transition system forP ′ = ({1, 2}, {a1a2, b1b2}) is illustrated in Figure . The actual action taken
for the transition is shown to the left of the transition arrow, while the criteria that enabled said
action are shown to the right. The substitution is the same for all agents, i.e. σ = σA = σB = σI,
with σ(m) = σ(m1) = 1 and σ(m2) = 2. Note that only the entities that change are shown in
the states – for example, in the transition from s0 to s1, the XB and ΦB sets undergo no change
and therefore are not mentioned.



 Communicating assertions in security protocols: formal models and complexity

X0
A = {1, 2} ∪ {A,B, I} ∪ {sk(A), pk(B), pk(I), k(A,B), k(A, I)}
X0
B = {1, 2} ∪ {A,B, I} ∪ {sk(B), pk(A), pk(I), k(A,B), k(B, I)}
X0
I = {1, 2} ∪ {A,B, I} ∪ {sk(I), pk(A), pk(B), k(A, I), k(B, I)}
Φ0

A = Φ0
B = Φ0

I = ∅
S0 = {(a1a2, σ, 0), (b1b2, σ, 0)}

h0 = ∅

s0 = (ks0, S0, h0)

X1
A = X0

A ∪ {1}

X1
I = X0

I ∪ {{1}pk(B)}

Φ1
A = {1 ≺ {1}pk(B) ∨ 2 ≺ {1}pk(B), A says {1 ≺ {1}pk(B) ∨ 2 ≺ {1}pk(B)}}

Φ1
I = Φ1

A

S1 = {(a1a2, σ, 1), (b1b2, σ, 0)}

h1 = {{1 ≺ {1}pk(B) ∨ 2 ≺ {1}pk(B)}sd(A)}

s1 = (ks1, S1, h1)

X2
B = X1

B ∪ {{1}pk(B)}

Φ2
B = Φ1

B ∪ {A says {1 ≺ {1}pk(B) ∨ 2 ≺ {1}pk(B)}}

S2 = {(a1a2, σ, 1), (b1b2, σ, 1)}

h2 = h1

s2 = (ks2, S2, h2)

X3
I = X2

I ∪ {{1}pk(A)}

S3 = {(a1a2, σ, 1), (b1b2, σ, 2)}

h3 = h1
s3 = (ks3, S3, h3)

X4
A = X3

A ∪ {{1}pk(A)}

S4 = {(a1a2, σ, 2), (b1b2, σ, 2)}

h4 = h1
s4 = (ks4, S4, h4)

σ (a1)
X0
A ∪ {1} ⊢dy {1}pk(B)

X0
A,Φ

0
A ⊢al 1 ≺ {1}pk(B) ∨ 2 ≺ {1}pk(B)

σ (b1)
X0
I ⊢dy {1}pk(B)

{1 ≺ {1}pk(B) ∨ 2 ≺ {1}pk(B)}sd(A) ∈ h1

σ (b2) X2
B ⊢dy {1}pk(A)

σ (a2) X3
I ⊢dy {1}pk(A)

Figure  Transition system for Example  withP ′ = ({1, 2}, {a1a2, b1b2})



R. Ramanujam, V. Sundararajan and S. P. Suresh 

. Derivability Problem

One key aspect of this model is that all the enabling checks are done on concrete sets of terms and
assertions, and are questions of the form - “Givenα,X andΦ, isα derivable fromX andΦ?”. Since
the system needs to appeal to enabling criteria every time a send/receive action occurs, it would be
advantageous if such checks could be done efficiently. In Section , the complexity of this question
will be explored, but first, we present a few examples to illustrate why this problem might be hard
(at least in some cases).

▶Definition (Derivability Problem). Thederivability problem (or the passive intruder deductionprob-
lem) is the following: given X ⊆ T ,Φ ⊆ A and α ∈ A , determine if X,Φ ⊢al α.

▶ Example . Suppose we have a protocol where an agent wishes to convince another agent that
an atomic term is one of two possible values, without revealing the exact value of said term (recall
Example  from Section .). So the agent encrypts the termm, and sends out an assertion of the
form (p ≺ {m}pk(A) ∨ q ≺ {m}pk(A)).

A→ B : {m}pk(A), {(p ≺ {m}pk(A) ∨ q ≺ {m}pk(A))}sd(A)

Now, consider a situation where two parallel sessions of this protocol are being carried out by
the same agent (sayA), where the term is the same across the two sessions. Suppose the term is a,
and the sets of values used for the disjunction are {1, 2} and {1, 3} across the sessions. The intruder
then has access to two assertions: (1 ≺ {a}k ∨ 2 ≺ {a}k), and (1 ≺ {a}k ∨ 3 ≺ {a}k). LetΦ be
the set consisting these two assertions. We show that the intruder can learn 1 ≺ {a}k fromΦ, and
the derivation for the same is non-trivial. We use the notationφi for i ≺ {a}k, for i ∈ {1, 2, 3}. We
also useφ12 andφ13 to denote 1 ≺ {a}k ∨ 2 ≺ {a}k and 1 ≺ {a}k ∨ 3 ≺ {a}k, respectively.

The intruder’s derivation of Φ ⊢ φ1 is shown in Figure . The contradiction rule is used cru-
cially in this proof, to obtain φ1 from a set containing both φ2 and φ3, which in turn is obtained
by performing case analysis on both disjunctions. In this proof it was enough to consider one com-
bination of disjuncts from both assertions. In the next example we shall see a situation where we
shall need to consider multiple combinations, which suggests a blow up in terms of proof size.

φ12 ∈ Φ

ax
Φ ⊢ φ12

ax
Φ,φ1 ⊢ φ1

φ13 ∈ Φ

ax
Φ,φ2 ⊢ φ13

ax
Φ,φ2,φ1 ⊢ φ1

ax
Φ,φ2,φ3 ⊢ φ2

ax
Φ,φ2,φ3 ⊢ φ3

⊥
Φ,φ2,φ3 ⊢ φ1

∨e

Φ,φ2 ⊢ φ1

∨e

Φ ⊢ φ1

Figure The intruder’s derivation (for Example )

▶ Example . Consider a slight extension of the previous example – now the agent wishes to con-
vince another agent that an atomic term is one of three possible values. So the assertion sent out
is of the form (p ≺ {m}k ∨ q ≺ {m}k ∨ r ≺ {m}k). Again consider two sessions of this protocol
with the same term a, and the sets of values are {1, 2, 3} and {1, 4, 5}. The intruder now has access
to assertions (1 ≺ {a}k ∨ 2 ≺ {a}k ∨ 3 ≺ {a}k) and (1 ≺ {a}k ∨ 4 ≺ {a}k ∨ 5 ≺ {a}k). Again, as
earlier, we show that the intruder can derive 1 ≺ {a}k from these two assertions.

To save space in displaying the derivation, we adopt the following notation:
φi = i ≺ {a}k, for i ∈ {1, . . . , 5}.



 Communicating assertions in security protocols: formal models and complexity

φ145 ∈ Φ

ax
Φ′ ⊢ φ145

ax
Φ′,φ1 ⊢ φ1

φ45 ∈ Φ′′

ax
Φ′′ ⊢ φ45

φ2 ∈ Φ′′

ax
Φ′′,φ4 ⊢ φ2

ax
Φ′′,φ4 ⊢ φ4

⊥
Φ′′,φ4 ⊢ φ1

Similar toΦ′′,φ4 ⊢ φ1
·
·
·

Φ′′,φ5 ⊢ φ1

∨e

Φ′,φ45 ⊢ φ1

∨e

Φ′ ⊢ φ1

Figure  Proofϖ1

φ123 ∈ Φ
ax

Φ ⊢ φ123

ax
Φ,φ1 ⊢ φ1

ax
Φ,φ23 ⊢ φ23

ϖ1···
Φ,φ23, φ2 ⊢ φ1

ϖ2···
Φ,φ23, φ3 ⊢ φ1

∨e
Φ,φ23 ⊢ φ1

∨e
Φ ⊢ φ1

Figure The intruder’s derivation (for Example )

φij = i ≺ {a}k ∨ j ≺ {a}k, for i, j ∈ {1, . . . , 5} and i < j.
φijl = i ≺ {a}k ∨ j ≺ {a}k ∨ l ≺ {a}k, for i, j, l ∈ {1, . . . , 5} and i < j < l.
Φ = {φ123, φ145}

Φ ′ = Φ ∪φ23 ∪ {φ2}

Φ ′′ = Φ ′ ∪φ45 = Φ ∪φ23 ∪φ45 ∪ {φ2}

Note that whenever we can deriveφi andφj from a set Ψ, for i ̸= j, we can derive any α using
the ⊥ rule. We will use it to derive a φl of our choice. The intruder’s derivation (rendered in the
above notation) is displayed in Figure . This refers to two subproofs,ϖ1 derivingΦ,φ23, φ2 ⊢
φ1, andϖ2 derivingΦ,φ23, φ2 ⊢ φ1, respectively. The derivationϖ1 is shown in Figure , and
ϖ2 can be obtained by replacingφ3 in place ofφ2 inϖ1. Note thatϖ2 is the same size asϖ1.

Inserting these subproofs into the appropriate places in the intruder’s derivation, the blow up
incurred due to considering all possible combinations of disjuncts on the left hand side is apparent.

 An extension to the assertion language

In Section ., we presented a basic assertion language. In this section, we proceed to add a dif-
ferent (potentially useful) construct to this existing language, to see how these affect the kinds of
certificates agents can provide and the deductive power of the intruder.

In our model so far, even if an agent sends a term t and an assertion α together, it need not
be that the assertion αmentions t (α could even be an assertion about a totally different term t ′).
Sometimes it might be better to have the assertion to be contextually bound to the term sent along
with it. For example, suppose we have two terms – {(1, 2)}k and {1}k. The same assertion, namely
1 ≺ t (for t being either of these terms), can be made of both these terms. In our existing model,
we would have to regenerate the assertion using the term we are talking about, and end up with
two different assertions, even though both essentially claim the same thing (albeit about different
terms). The assertion being contextually bound to the term would let us use part of the assertion
as a black box, and plug in any term about which the assertion holds into that place. We therefore
amend the assertion language slightly to allow the use of such a black box or a placeholder – denoted
♢. Assertions of this form shall be referred to as ♢-open assertions, from now on. Conversely,
assertions which do not contain♢ will be referred to as♢-closed assertions.



R. Ramanujam, V. Sundararajan and S. P. Suresh 

The set of assertions with♢, A♢, is given by the following syntax:

α := m ≺ t | m ≺ ♢ | t = t ′ | α1 ∨ α2 | α1 ∧ α2 | A says α

wherem ∈ B,A ∈ Ag and t, t ′ ∈ T .
The assertionm ≺ ♢ may be read as “m occurs in this”, ‘this’ being the accompanying term.

The assertion may now refer to different terms in different instantiations. For a♢-open assertion
α accompanied by a term t, α[♢/t] is the♢-closed assertion obtained by plugging t in place of the
♢ in α (α[♢/t] still refers to abstract terms – t in particular – and is concretized at runtime).

As we have seen before, protocol specifications refer to abstract nonces, which are instantiated
with different concrete terms in different sessions of a protocol run. Formally, the actions that
constitute a run are of the form σ(a), where σ is a substitution and a is an action in the protocol
specification. So we need to define σ(α) for an α ∈ A♢. The definition is the same whether α
is ♢-open or ♢-closed – each abstract term r occurring in α is replaced by σ(r) (and ♢ is left
untouched). This means that we communicate pairs of the form (t, α) in a protocol run, whereα is
a♢-open assertion. containing♢ in a protocol run. However, to checkwhether the communication
is enabled at that point in the run, we check whether α[♢/t] is derived by the sender.

Protocol and role descriptions stay the same as earlier. A knowledge state is now of the form
ks = ((XA,ΦA)A∈Ag, h), where XA is a set of terms,ΦA is a set of ♢-closed assertions, h is a set
of pairs of the form (t, {α}sd(A)), where α is an assertion from A♢ and t is its corresponding term.

Protocol and role descriptions, knowledge states, role instances, and protocol states are defined
as earlier. act(ri) for a role instance is also defined as before (except for the communicated assertion
having occurrences of♢). As before, for two protocol states s = (ks, S) and s ′ = (ks ′, S ′), and an
action a, we say that s a−→ s ′ iff there is ri ∈ S such that act(ri+ 1) = a, S ri−→ S ′, a is enabled at ks,
and ks a−→ ks ′. We now describe the conditions under which a is enabled at ks and ks a−→ ks ′.

Action Enabling conditions

a = A!B : [(M)t, {α}sd(A)]

M ∩ XC = ∅ for all C

XA ∪M ⊢dy t

XA ∪M,ΦA ⊢al α[♢/t].

a = A?B : [t, {α}sd(B)]

XI ⊢dy t

XI,ΦI ⊢ α[♢/t]

If B ̸= I, (t, {α}sd(B)) ∈ h.

Figure  Enabling conditions for a at ks

▶ Example . Recall Example  discussed in Section .. We present the same again here, but
the assertion now uses the♢ quantifier.

A→ B : {m}pk(A), {(p ≺ ♢)∨ (q ≺ ♢)}sd(A)

Theassertion is nowmore succinct. This does not eliminate the attack illustrated earlier, but it does
not introduce new attacks either.

While the extended assertion language with ♢ seems like a mere syntactic convenience, and
the transition rules are a straightforward adaptation from the earlier ones, there are some hidden
subtleties. For instance, it is possible thatA sends to B a communication of the form

{m}k, (0 ≺ ♢)∨ (1 ≺ {m ′}k),



 Communicating assertions in security protocols: formal models and complexity

Action Updates

a = A!B : [(M)t, {α}sd(A)]

X ′
A = XA ∪M

X ′
I = XI ∪ {t}

Φ ′
P = ΦP ∪ {α[♢/t], A says α[♢/t]} for P ∈ {A, I}

h ′ = h ∪ {(t, {α}sd(A))}.

a = A?B : [t, {α}sd(B)]
X ′
A = XA ∪ {t}

Φ ′
A = ΦA ∪ {B says α[♢/t]}.

Figure Updates when ks a−→ ks ′

which B can forward to C as follows:

{m ′}k, A says ((0 ≺ {m}k)∨ (1 ≺ ♢)).

While this assertion is not false per se, this is not the exact syntactic form in A’s original commu-
nication. We can complicate the definitions to prevent this phenomenon, but more work needs to
be done before deciding whether such effects should be allowed or not. Another interesting aspect
of the model is the relevant history which is part of the knowledge states. It is a set of pairs of the
form (t, {α}sd(A)). So we store some information about bindings (the associations between terms
and assertions). A consequence is that the intruder cannot send a communication t, {α}sd(B) in
the name of another agent B unless B has sent it in the past. Instead, if the history only stores
the communicated assertions {α}sd(A) without the accompanying terms, then it is possible for the
intruder to insert false assertions in a run, by pairing an term with an unrelated assertion commu-
nicated in the past. It is interesting to study in more detail the connection between the amount of
information about the bindings stored and the power of the intruder.

 Complexity of the derivability problem

We have spent a lot of effort detailing the elements of our model. Now we turn to some basic
algorithmic questions related to it. The fundamental problem of interest is the intruder deduction
problem: given a protocol Pr and a secretm ∈ N , is there a run of Pr in which the intruder learns
m? This involves a search for a sequence of actions admissible by the transition system of Pr. This
problem is known to be undecidable in its full generality, for even the basic Dolev-Yao model [,
]. Researchers have obtained decidability for a number of special cases over the years [, , ],
and many tools have also been built which tackle large classes of protocols successfully [, ].
The typical approach is to place bounds on various parameters which lead to undecidability. The
complexity of the intruder deduction problem has also receivedmuch attention in the past [, ,
].

A fundamental ingredient of the intruder deduction problem is the question of whether a given
sequence of (concrete) actions is an admissible run of a given protocol. The crucial part of this
question is to check whether a term or assertion is derivable from a set of terms and assertions.
The derivability of terms is part of the basic Dolev-Yao model itself, and the problem of whether
X ⊢dy t is known to be solvable in timeO(|X|+ |t|). Thus we focus on the following problem in this
section.

▶ Definition  (Derivability problem). Given X ⊆fin T ,Φ ⊆fin A , α ∈ A , does X,Φ ⊢al α hold?

We first show that the problem is co-NP-hard, and then provide a simple PSPACE decision pro-
cedure. We then provide some optimizations of the decision algorithm.



R. Ramanujam, V. Sundararajan and S. P. Suresh 

. Properties of the proof system

The following is a useful property that will be crucially used in the lower bound proof, and is proved
in Appendix A.

▶ Proposition . X,Φ ∪ {α∨ β} ⊢al δ iff X,Φ ∪ {α} ⊢al δ and X,Φ ∪ {β} ⊢al δ.

Among the rules, ax1, split, dec and ∧e are the pure elimination rules, ∨e and ⊥ are the hybrid
rules, and the rest (ax2, pair, enc, ∧i and ∨i) are the pure introduction rules. The premises of a
pure elimination rule or a hybrid rule are classified intomajor premises andminor premises. For the
split, dec and∧e rules, there is only one premise of the formX,Φ ⊢ α and that is itsmajor premise.
For the∨e rule, the themajor premise is the sequentX,Φ ⊢ σ : (α∨β), involving the disjunction
that is eliminated. For the⊥ rule, both premises are major.

A normal derivation is one satisfying the following conditions:
The major premise of every pure elimination rule or the∨e rule (occurring in the proof) is the
conclusion of a pure elimination rule.
The conclusion of any instance of the⊥ rule is not the premise of any introduction rule.
The conclusion of any instance of the⊥ rule is not the major premise of any hybrid or elimina-
tion rule.

The following fundamental theorem is on standard lines. The proof is found in Appendix A.

▶ Theorem . If there is a derivation of X,Φ ⊢ α then there is a normal derivation ofX,Φ ⊢ α.

The following theorem (whose proof is given in Appendix A) is crucial for our algorithms to
work because they provide a bound on the set of formulas we need to work with when we check
whether α is derivable from X,Φ. sf(X,Φ) is the set of all subformulas of formulas in Φ (in the
context of the set of terms X), and st(X,Φ) is the set of subterms of all terms in X and occurring
in any α ∈ Φ. The definitions will be made precise in the Appendix, where we prove the theorem.
All we need for the algorithms is that both sf(X,Φ) and st(X,Φ) are of sizeO(N3), whereN is the
size of X,Φ.

▶ Theorem (Subformula property). Letπ be a normal derivationwith conclusionX,Φ ⊢ α and last rule
r. LetX,Φ ′ ⊢ β andX ⊢dy u occur inπ. ThenΦ ′ ⊆ sf(Φ),β ∈ sf(X,Φ∪{α}) andu ∈ st(X,Φ∪{α}).
Furthermore, if r is a pure elimination rule, then β ∈ sf(X,Φ) and u ∈ st(X,Φ).

. Lower bound

The hardness result is obtained by reducing the validity problem for propositional logic to the de-
rivability problem. In fact, it suffices to consider the validity problem for propositional formulas in
disjunctive normal form for our reduction. We showhow to define for each formulaφ in disjunctive
normal form a set of assertions Sφ and an assertionφ such that∅, Sφ ⊢ φ iffφ is a tautology.

Let {p1, p2, . . .} be the set of all propositional variables. Fix infinitely many nonces n1, n2, . . .

and a key k. We defineφ as follows, by induction.
pi = (1 ≺ {ni}k)

¬pi = (0 ≺ {ni}k)

φ∨ψ = φ∨ψ

φ∧ψ = φ∧ψ

Suppose {p1, . . . , pn} is the set of all propositional variables occurring inφ. Then

Sφ = {p1 ∨ ¬p1, . . . , pn ∨ ¬pn}.

▶ Lemma . ∅, Sφ ⊢al φ iffφ is a tautology.



 Communicating assertions in security protocols: formal models and complexity

Proof. For v ⊆ {p1, . . . , pn}, define Sv = {pi | pi ∈ v} ∪ {¬pi | pi /∈ v}. Note that Sv is a
non-contradictory set of atomic assertions.

By repeated appeal to Proposition , it is easy to see that ∅, Sφ ⊢al φ iff for all valuations v
over {p1, . . . , pn}, ∅, Sv ⊢al φ. We now show that ∅, Sv ⊢al φ iff v |= φ. The statement of the
lemma follows immediately from this.

We first show by induction onψ ∈ sf(φ) that∅, Sv ⊢al ψ whenever v |= ψ.
Ifψ = pi orψ = ¬pi, then∅, Sv ⊢al ψ follows from the ax1 rule.
If ψ = ψ1 ∧ ψ2, then it is the case that v |= ψ1 and v |= ψ2. But then, by induction
hypothesis, ∅, Sv ⊢al ψ1 and ∅, Sv ⊢al ψ2. Hence it follows that ∅, Sv ⊢al ψ1 ∧ψ2, by
using∧i.
If ψ = ψ1 ∨ ψ2, then it is the case that either v |= ψ1 or v |= ψ2. But then, by induc-
tion hypothesis, ∅, Sv ⊢al ψ1 or ∅, Sv ⊢al ψ2. In either case, by using ∨i, it follows that
∅, Sv ⊢al ψ1 ∨ψ2.

We now show that if ∅, Sv ⊢al φ, then v |= φ. Suppose π is a normal proof of ∅, Sv ⊢ ϕ. It
follows from the Subformula Property (Theorem ) that the only rules that can be applied are
ax1,∧i,∨i,∧e,∨e and⊥.
Suppose that there is an occurrence of the∧e rule or∨e rule inπwithmajor premise∅, S ′ ⊢ γ.
We denote byϖ the subproof with conclusion S ′ ⊢ γ. Note thatϖ ends in a pure elimination
rule, since π is normal and every pure elimination rule and hybrid rule has as its major premise
the conclusion of a pure elimination rule. By Theorem , we see that S ′ ⊆ sf(Sv) = Sv and
γ ∈ sf(S ′) ⊆ sf(Sv). But γ is of the form α∨ β or α∧ β, and this contradicts the fact that Sv
is a set of atomic assertions. Hence the elimination rules cannot occur in π.
Suppose now that there is an occurrence of the⊥ rule in π. The premises of this rule are atomic
assertions, and hence not the conclusion of the ∧i or ∨i rules. Nor are they the conclusion
of the ∧e and ∨e rules, since elimination rules cannot occur in π. Thus they are the result
of the ax1 rule. This means that there are distinct nonces m, n and a term {b}k such that
m ≺ {b}k ∈ Sv and n ≺ {b}k ∈ Sv. This contradicts the definition of Sv. Thus we see that
the only rules occurring in π are ax1,∧i and∨i. We now show by induction that v |= ψ for all
subproofs π ′ of π with conclusion∅, Sv ⊢ ψ.

Suppose the last rule of π ′ is ax1. Thenψ ∈ Sv, and for some i ⩽ n,ψ = pi orψ = ¬pi. It
can be easily seen by definition of Sv that v |= ψ.
Suppose the last rule of π ′ is ∧i. Then ψ = ψ1 ∧ ψ2, and ∅, Sv ⊢al ψ1 and ∅, Sv ⊢al ψ2.
Thus, by induction hypothesis, v |= ψ1 and v |= ψ2. Therefore v |= ψ.
Suppose the last rule ofπ ′ is∨i. Thenψ = ψ1∨ψ2, and either∅, Sv ⊢al ψ1 or∅, Sv ⊢al ψ2.
Thus, by induction hypothesis, either v |= ψ1 or v |= ψ2. Therefore v |= ψ.

◀

▶ Theorem . The derivability problem is co-NP-hard.

. Algorithm for checking derivability

Fix X0, Φ0 and α0. In order to check whether X0, Φ0 ⊢ α0, we compute all assertions (from a
bounded set) that can be derived from X0 andΦ0, and check if α0 belongs to this set. On the face
of it, it looks like more work than necessary, but recall that many assertions need to be anyway
derived on the way to deriving α0. Thus we look at all the potential assertions that may be derived
in this manner.

Let sf = sf(Φ0 ∪ {α0}), |sf| = N, and st = st(X,Φ0 ∪ {α0). Clearly |st| <= N. To check whether
X0,Φ0 ⊢ α0, we check whether the set derive(X0,Φ0) = {α ∈ sf | X0, Φ0 ⊢ α} contains α0.
Below we describe a general procedure to compute derive(X,Φ) for any X ⊆ st andΦ ⊆ sf.



R. Ramanujam, V. Sundararajan and S. P. Suresh 

For X ⊆ st andΦ ⊆ sf, define

local(X,Φ) = {α ∈ sf | X,Φ ⊢ α has a derivation which does not use the ∨ e rule}

A few simple observations about derive and local.
Φ ⊆ local(X,Φ) ⊆ derive(X,Φ).
local(X, derive(X,Φ)) = derive(X, derive(X,Φ)) = derive(X,Φ).
IfΦ = local(X,Ψ) for some Ψ, then local(X,Φ) = Φ.

▶ Lemma . local(X,Φ) is computable in time polynomial inN.

Proof. Let Y = {t ∈ st | X ⊢dy t}. By Proposition , Y is computed inO(N) time.
In the absence of∨e, there is no branching during proof search. Hence we can compute local(Y)

bottom-up, as detailed below in Algorithm .
For Ψ ⊆ sf, we define onestep(Ψ) ⊆ sf to be the set

{α ∈ sf | α is the conclusion of a rule r (other than∨e) with premises S ⊆ Ψ ∪ Y}.

Two important observations about onestep(Ψ).
Ψ ⊆ onestep(Ψ), because of the rule ax.
onestep(Ψ) is computable in time O(N2). This is because in all the rules other than ∨e, the
antecedents (formulas occurring to the left of⊢) in the premises are the same as the antecedents
in the conclusion. Thus we need to consider only consequents (the formulas to the right of ⊢)
in a proof. This means that we only need to consider all pairs of formulas in Ψ to compute
onestep(Ψ).

Since |sf| = N and S increases monotonically in Algorithm , the while loop runs only for N
iterations. Thus local(Ψ) is computable in timeO(N3). ◀

ALGORITHM : Algorithm to compute local(X,Φ), for X ⊆ st andΦ ⊆ sf

S← ∅; S ′ ← Φ;
while (S ̸= S ′) do

S← S ′;
S ′ ← onestep(S);

end
return S.

Wenowpresent the algorithm to compute derive(X,Φ). It is presented as the recursive function
f in Algorithm .

▶ Proposition  (Soundness). For X ⊆ st andΦ ⊆ sf, f(X,Φ) ⊆ derive(X,Φ).

Proof. Theproof is by induction onN− |Φ|. If |Φ| = N, then it is easy to see that no recursive call to
fwould bemade, and f(X,Φ) = local(X,Φ) ⊆ derive(X,Φ). In general, f(X,Φ) = local(X,Φ∪S),
so it suffices to prove that S ⊆ derive(X,Φ).

So suppose σ : β ∈ S. Then there is a σ : (α1 ∨ α2) ∈ Φ such that σ : α1 ̸∈ Φ and
σ : α2 ̸∈ Φ, but σ : β ∈ f(X,Φ ∪ {σ : α1}) ∩ f(X,Φ ∪ {σ : α2}). But by induction hypothesis,
σ : β ∈ derive(X,Φ ∪ {σ : α1}) ∩ derive(X,Φ ∪ {σ : α2}). This means that there are derivations
of X,Φ ∪ {σ : α1} ⊢ σ : β and X,Φ ∪ {σ : α2} ⊢ σ : β. Since σ : (α1 ∨ α2) ∈ Φ, we also have
a derivation of X,Φ ⊢ σ : (α1 ∨ α2). Combining all this using the∨e rule, we get a derivation of
X,Φ ⊢ σ : β and thus σ : β ∈ derive(X,Φ).

This proves that S ⊆ derive(X,Φ), and we are done. ◀



 Communicating assertions in security protocols: formal models and complexity

ALGORITHM : Algorithm to compute derive(X,Φ), for X ⊆ st andΦ ⊆ sf

function f(X,Φ)

S← ∅;
for all σ : (α1 ∨ α2) ∈ Φ do

if σ : α1 /∈ Φ and σ : α2 /∈ Φ then
T ← f(X,Φ ∪ {σ : α1}) ;
U← f(X,Φ ∪ {σ : α2}) ;
S← S ∪ (T ∩U) ;

end
end
return local(X,Φ ∪ S)

▶ Proposition  (Completeness). For X ⊆ st ,Φ ⊆ sf, derive(X,Φ) ⊆ f(X,Φ).

Proof. For allα ∈ sf, we prove that ifα ∈ derive(X,Φ) thenα ∈ f(X,Φ). The proof is by induction
on the structure of a derivation π of X,Φ ⊢ α. There are two cases to consider.

Suppose the last rule r of π is not ∨e. If r is ax1 or ax2 or eq, α ∈ Φ ⊆ local(X,Φ) and
local(X,Φ) ⊆ f(X,Φ). If r is something else, let P = {β | X,Φ ⊢ β is a premise of r}. Since
each β ∈ P is the conclusion of a subproof of π, by induction hypothesis, P ⊆ f(X,Φ). Now
α ∈ local(X, P) ⊆ local(X, f(X,Φ)) = f(X,Φ).
Suppose the last rule of π is∨e. Then α is of the form σ : β (where σ could also be ε) and there
are three subproofs of π with conclusions X,Φ ⊢ σ : (α1 ∨ α2) and X,Φ ∪ {σ : α1} ⊢ σ : β,
and X,Φ ∪ {σ : α2} ⊢ σ : β, respectively. If either σ : α1 ∈ Φ or σ : α2 ∈ Φ, then one of the
immediate subproofs of π witnesses the fact that X,Φ ⊢ σ : β, and we are done, by induction
hypothesis. Otherwise we see by induction hypothesis that

σ : β ∈ f(X,Φ ∪ {σ : α1}) ∩ f(X,Φ ∪ {σ : α2}).

Thus σ : β ∈ f(X,Φ), as required.
◀

▶ Theorem . For X ⊆ st andΦ ⊆ sf, f(X,Φ) = derive(X,Φ).

▶ Theorem . The derivability problem is in PSPACE.

Proof. Thenesting depth of recursion in the function f is atmostN, and the three variablesS, T and
U can be seen as bit vectors of sizeN (encoding subsets of sf). Thuswe need to store atmostO(N2)

on the stack (and reuse space across “disjoint” invocations). All calls to the subroutine local can be
performed using two global bit vectors, each of sizeN, and do not add to the space complexity. ◀

We have proved that the derivability problem is co-NP-hard, and that it is in PSPACE. This gap
has been bridged in [], where we prove a co-NP upper bound for several fragments of intuition-
istic logic with disjunction. As is made clear in the proofs, the high complexity of the derivability
problem ismainly due to the disjunction elimination rule, and so it is worth exploring ways to limit
its effect. One simple way of achieving this is to impose an upper bound on the number of disjunc-
tions that occur in Φ (independent of the size of Φ). The next theorem shows that this modified
problem can be solved in PTIME, using the same procedure we presented earlier.

▶ Theorem . The derivability problem with bounded number of disjunctions is solvable in PTIME.

Proof. If the are only p disjunctions (independent ofN), the height of the call tree is bounded by
p, and the degree of each node in the call tree is at mostN. Thus the total number of calls to f is at
mostNp. Since local can be computed in polynomial time, this theorem follows. ◀



R. Ramanujam, V. Sundararajan and S. P. Suresh 

. Safety checking

We have studied the complexity of the derivability problem, which pertains to a passive intruder
that only derives new terms and assertions from its store of terms and assertions, without enga-
ging with other agents actively. But the main problem of interest for the formal verification of
protocols is the active intruder deduction problem, which asks whether is an attack on a given pro-
tocol. Formally, an attack on Pr is a run of TS(Pr) that leads to an undesirable system state. Since
the problem is undecidable, as mentioned earlier, we place bounds to obtain decidability. We form-
alize intruder deduction (the general and bounded versions) as follows.

▶ Definition  (Safety checking and bounded safety checking). Let Safe be an arbitrary, but fixed safety
predicate (i.e. a set of protocol states).

Safety checking: Given a protocol Pr, is some protocol state s /∈ Safe reachable in TS(Pr) from an
initial protocol state?
k-bounded safety checking: Given Pr, is some protocol state s /∈ Safewith atmostk-role instances

reachable in TS(Pr) from an initial protocol state?

▶ Theorem . . If membership in Safe is decidable in PSPACE, the k-bounded safety checking w.r.t.
Safe is solved in PSPACE.

. Ifmembership in Safe is decidable inNP, thek-bounded safety checkingw.r.t. Safe is inNP ifwe restrict
our attention to protocols with at most p disjunctions, for a fixed p.

Proof. . A run ofPr starting froman initial statewith atmostk role instances is of length linear in
the sum of the lengths of all roles in Pr. A PSPACE algorithm can go through all such runs to see
if an unsafe protocol state is reachable. To check that each action is enabled at the appropriate
protocol state along a run, we need to solve linearly many instances of the derivability problem,
which runs in PSPACE. Thus the problem is in PSPACE.

. One can guess a sequence of protocol states and actions of length linear in the size of Pr and
verify that all the actions are enabled at the appropriate states. Since we are considering a
protocol with at most p disjunctions for a fixed p, along each run we consider, there will be
at most k ∗ p disjunctions, which is still independent of the size of the input. To check that
actions are enabled at the appropriate states, we need to solve linearly many instances of the
derivability problem (with bounded number of disjunctions this time) which can be done in
polynomial time. Thus the problem is in NP.

◀

We leave a finer analysis of the complexity of both the derivability problemand the safety check-
ing problem for future work.

 Discussion

We have argued that it is worthwhile to extend the Dolev-Yao model of security protocols so that
agents have the capability to communicate assertions about terms in addition to terms. These
assertions play the same role as certificates that may be verified but cannot be generated by the
recipient. Wehave suggested that such an abstraction allowsus tomodel a variety of such certificate
mechanisms. As a contribution to the theory of security protocols, we delineate the complexity of
the derivability problem and provide a decision procedure. We study the safety checking problem
(which involves the active intruder).

We would like to emphasize here that the main thrust of the paper is the overall framework,
rather than a specific assertion language. We use a minimal logic for assertions, and many exten-
sions by way of connectives or modalities are possible; however, it is best to drive extensions by



 Communicating assertions in security protocols: formal models and complexity

applications that require them. We leave the study of such extensions to future work. We have
indicated another way to enrich the assertion language in Section . We added the ability for an as-
sertion to contain placeholders which refer to the accompanying term. Another natural extension
is to use variables in assertions to refer to various parts of the accompanying term. The formal de-
velopment can be carried out on the lines of Section . But there are interesting considerations and
technical challenges when we enrich the language with variables and other operators (like equality
and inequality between terms) and connectives (like negation).

Another important aspect is the power of the intruder in these models. We should be careful
that the increased power given to thehonest agents of communicating assertions does not allow the
intruder scope for more attacks (than in the basic Dolev-Yao model) by injecting “false” assertions
into the system. Our definitions ensure that the intruder does not have this power, but it is a
challenging question to determine howmuchwe can vary the key definitions while still limiting the
power of the intruder. Quite apart from the intruder’s ability to inject falsehoods is the ability to
learn secrets. It would be an interesting exercise to study in more detail the attacks in the presence
of communicated assertions (in comparison to attacks in the basic Dolev-Yao model).

The central elements of our model are the derivation rules and the state transition rules for
various actions. These define the semantics of protocols for us. We have provided an informal
operational justification of the transition rules in terms of a TTP that verifies proofs. But it is de-
sirable to provide a formal operationalmodel that justifies the various choicesmade in the handling
of communicated assertions. Of particular relevance here is the rely-guarantee framework for trust
management proposed in [].

APPENDIX

A Normalization and other proofs

Among the rules, ax1, split, dec and∧e are the pure elimination rules,∨e and⊥ are the hybrid rules,
and the rest (ax2, pair, enc,∧i and∨i) are the pure introduction rules. The premises of a pure elim-
ination rule or a hybrid rule are classified into major premises and minor premises. For the split, dec
and ∧e rules, there is only one premise of the form X,Φ ⊢ α and that is its major premise. For
the∨e rule, the major premise is the sequent X,Φ ⊢ σ : (α∨β), involving the disjunction that is
eliminated. For the⊥ rule, both premises are major.

A normal derivation is one satisfying the following conditions:
The major premise of every pure elimination rule or the∨e rule (occurring in the proof) is the
conclusion of a pure elimination rule.
The conclusion of any instance of the⊥ rule is not the premise of any introduction rule.
The conclusion of any instance of the⊥ rule is not the major premise of any hybrid or elimina-
tion rule.

▶ Definition  (Rank of a derivation). Let π be a derivation with last rule r and conclusion X,Φ ⊢ α.
Let π1, . . . , πn be the immediate subproofs of π. Let each πi end with rule ri and have conclusion
X,Φi ⊢ αi. Also, let X,Φ1 ⊢ α1 be the major premise of r. By induction on π, we define rank(π)
as follows:

If r is a pure elimination rule and r1 is a hybrid rule or pure introduction rule, then

rank(π) = max(|α1|, rank(π1), · · · , rank(πn)).

If r1 is⊥ and r is a hybrid rule or pure elimination rule or pure introduction rule, then

rank(π) = max(|α1|, rank(π1), · · · , rank(πn)).



R. Ramanujam, V. Sundararajan and S. P. Suresh 

Otherwise

rank(π) = max(rank(π1), · · · , rank(πn)).

▶ Proposition  (Monotonicity). If there is a proof ofX,Φ ⊢ αwith cut rankm andΦ ⊆ Φ ′, then there
is a proof of X,Φ ′ ⊢ αwith cut rankm.

Proof. Let π be a proof of X,Φ ⊢ α, and let Φ ′′ = Φ ′ \ Φ. It is easy to check that replacing
every sequent X,Ψ ⊢ β occurring in π by X,Ψ ∪ Φ ′′ ⊢ β, we still have a valid proof π ′, with
conclusionX,Φ ′ ⊢ α. (Thepoint is that in rules involving a discharge of the premises, the discharge
is optional, so if some rule inπ discharges a formula inΦ ′′, we can apply the same rule inπ ′ without
discharging that formula.) Since the structure of the proof does not change, the cut rank remains
the same.

◀

▶ Proposition  (Admissibility of Cut). If π1 is a derivation of X,Φ ⊢ α (with last rule r1) and π a
derivation of X,Ψ ⊢ β (with last rule r), then there is a derivationϖ of X,Φ ∪ (Ψ \ {α}) ⊢ β such that

rank(ϖ) ⩽ max(rank(π1), rank(π), |α|).

Further, either the last rule ofϖ is r or β = α and the last rule ofϖ is r1.

Proof. Theproof is by induction on the size ofπ, and a case analysis on r. For notational ease, we let
rank(π1) = m1, rank(π) = m, and n = max(m1,m, |α|). We present a few sample cases below.
r is ax1: If β ̸= α, then β ∈ Ψ \ {α} and we can takeϖ to be the following proof:

ax
X,Φ ∪ (Ψ \ {α}) ⊢ β

Clearly rank(ϖ) = 0 ⩽ n and the last rule ofϖ ′ is r.
If β = α, then we takeϖ to be the proof of X,Φ ∪ (Ψ \ {α}) ⊢ α guaranteed by Monotonicity
(applied to π1). Clearly rank(ϖ) = m1 ⩽ n.

r is∧i: Then π has the following structure:

τ1···
X,Ψ ⊢ β1

τ2···
X,Ψ ⊢ β2

∧i
X, Ψ ⊢ β

By induction hypothesis, there exist proofs ϖ1 and ϖ2 with conclusions respectively X,Φ ∪
(Ψ \ {α}) ⊢ β1 and X,Φ ∪ (Ψ \ {α}) ⊢ β2, both of which have cut ranks at most n. We define
ϖ to be the following proof:

ϖ1···
X,Φ ∪ (Ψ \ {α}) ⊢ β1

ϖ2···
X,Φ ∪ (Ψ \ {α}) ⊢ β2

∧i
X,Φ ∪ (Ψ \ {α}) ⊢ β

Clearly rank(ϖ) = max(rank(ϖ1), rank(ϖ2)) ⩽ n. Further, the last rule ofϖ is r.
r is∨e: Then π has the following structure:

τ1···
r ′1

X,Ψ ⊢ σ : (φ∨ψ)

τ2···
X,Ψ ∪ {σ : φ} ⊢ β

τ3···
X,Ψ ∪ {σ : ψ} ⊢ β

∨e
X,Ψ ⊢ β



 Communicating assertions in security protocols: formal models and complexity

By inductionhypothesis, there exist proofsϖ1,ϖ2 andϖ3 with conclusions respectivelyX,Φ∪
(Ψ \ {α}) ⊢ σ : (φ∨ψ), X,Φ∪ ((Ψ∪ {σ : φ}) \ {α}) ⊢ β and X,Φ∪ ((Ψ∪ {σ : ψ}) \ {α}) ⊢ β,
all of whose cut ranks are⩽ n. By appealing to Monotonicity if necessary (in the cases when α
is σ : φ or σ : ψ), we can take the conclusion ofϖ2 andϖ3 to beX,Φ∪ {σ : φ}∪ (Ψ\ {α}) ⊢ β
and X,Φ∪ {σ : ψ}∪ (Ψ \ {α}) ⊢ β. ϖ is the following proof (usingΘ to denoteΦ∪ (Ψ \ {α})):

ϖ1···
r ′′1

X,Θ ⊢ σ : (φ∨ψ)

ϖ2···
X,Θ ∪ {σ : φ} ⊢ β

ϖ3···
X,Θ ∪ {σ : ψ} ⊢ β

∨e
X,Θ ⊢ β

Now if r ′′1 is a pure elimination, rank(ϖ) ⩽ n. Otherwise, rank(ϖ) ⩽ max(|φ ∨ ψ|, n). But
then either r ′′1 = r ′1 (in which case |σ : (φ∨ψ)| ⩽ m ⩽ n), or α = σ : (φ∨ψ) and r ′′1 = r1 (in
which case |σ : (φ∨ψ)| = |α| ⩽ n). Thus rank(ϖ) ⩽ n. Again the last rule ofϖ is r.

◀

▶ Lemma. Supposeπ is a derivationwith conclusionX,Φ ⊢ α and last rule rwith rank(π) = m > 0,
and all proper subderivations of π are of rank< m. Then the following hold.

. If r is a pure elimination rule, |α| < m.

. There is a derivation π ′ of X,Φ ⊢ α such that rank(π ′) < m.

Proof. Let π1, . . . , πn be the immediate subproofs of π. Let each πi end with rule ri and have
conclusion X,Φi ⊢ αi, and let X,Φ1 ⊢ α1 be the major premise of r. Given the conditions of the
lemma, it is clear that rank(π) = |α1| = m and one of the following cases holds:

r1 is not a pure elimination rule, r is a pure elimination rule or a hybrid rule, and X1 = X.

r1 is⊥ and r is a pure introduction rule.

. If r is a pure elimination rule, then α1 = α∧ β or α1 = β∧ α, for some β. But then it is clear
that |α| < |α1| = m.

. To show the existence of π ′, we perform an induction on ||π|| and a case analysis on r1. A few
representative cases are shown below.

It cannot be the case that r1 is ax2 or eq, since the conclusions of these rules are atomic
formulas, and there can be no hybrid or pure elimination rules with them asmajor premises.

Suppose r1 is pair. Then rhas to be split. In this casewe can takeπ ′ to be one of the immediate
subproofs of π1, and clearly rank(π ′) < m.

Suppose r1 is enc. Then r has to be dec. In this case we can take π ′ to be one of the immediate
subproofs of π1, and clearly rank(π ′) < m.

Suppose r1 is∧i. Then r has to be∧e. In this case we can take π ′ to be one of the immediate
subproofs of π1, and clearly rank(π ′) < m.

Suppose r1 is ∨i. Then r has to be ∨e. Say α1 = β ∨ γ and the major premise of r1 is
β. Note that |β| < |β ∨ γ| = m. Let π2 be the immediate subproof of π with conclusion
X,Φ ∪ {β} ⊢ α, and let π11 be the subproof of π1 with conclusion X,Φ ⊢ β. Thus we can
apply cut on π11 and π2 to get a derivation π ′ of X ⊢ α such that

rank(π ′) ⩽ max(|β|, rank(π11), rank(π2)) < m.



R. Ramanujam, V. Sundararajan and S. P. Suresh 

Suppose r1 is ∨e. Now r can be any pure elimination or hybrid rule. We consider the case
when it is ∨e. The rest of the cases are similar. Now α1 = β ∨ β ′ and π has the following
form:

π11
·
·
·

X,Φ ⊢ γ∨γ′

π12
·
·
·

X,Φ∪ {γ} ⊢ β∨β′

π13
·
·
·

X,Φ∪ {γ′} ⊢ β∨β′

∨e

X,Φ ⊢ β∨β′

π2
·
·
·

X,Φ∪ {β} ⊢ α

π3
·
·
·

X,Φ∪ {β′} ⊢ α

∨e

X,Φ ⊢ α

Let τ2 be the following proof

π12···
X,Φ ∪ {γ} ⊢ β∨ β ′

π2···
X,Φ ∪ {γ, β} ⊢ α

π3···
X,Φ ∪ {γ, β ′} ⊢ α

∨e
X,Φ ∪ {γ} ⊢ α

and let τ3 be the following proof.

π13···
X,Φ ∪ {γ ′} ⊢ β∨ β ′

π2···
X,Φ ∪ {γ ′, β} ⊢ α

π3···
X,Φ ∪ {γ ′, β ′} ⊢ α

∨e
X,Φ ∪ {γ ′} ⊢ α

Now it is possible that rank(τ2) = rank(τ3) = m, but ||τ2|| < ||π|| and ||τ3|| < ||π||. Hence by
induction hypothesis, there are proofs π ′

2 and π ′
3, both of cut rank < m, with conclusions

X,Φ ∪ {γ} ⊢ α and X,Φ ∪ {γ ′} ⊢ α respectively. We take π ′ to be the following proof:

π11···
X,Φ ⊢ γ∨ γ ′

π ′
2···

X,Φ ∪ {γ} ⊢ α

π ′
3···

X,Φ ∪ {γ ′} ⊢ α
∨e

X,Φ ⊢ α
Now if π11 ends in a pure elimination,

rank(π ′) = max(rank(π11), rank(π ′
2), rank(π

′
3)) < m.

Otherwise rank(π ′) ⩽ max(m− 1, |γ∨ γ ′|). But if π11 does not end in a pure elimination,
|γ∨ γ ′| ⩽ rank(π1) < m, and it follows that rank(π ′) < m.
Suppose r1 is ⊥. Now r can be any rule. We consider the case when it is ∨e. The rest of the
cases are similar. Now α1 = β∨ β ′ and π has the following form:

π11
·
·
·

X,Φ ⊢ m ≺ {b}k

π12
·
·
·

X,Φ ⊢ m ≺ {b}k
⊥ (m ̸= n)

X,Φ ⊢ β∨β′

π2
·
·
·

X,Φ∪ {β} ⊢ α

π3
·
·
·

X,Φ∪ {β′} ⊢ α

∨e

X,Φ ⊢ α

Let τ be the following proof

π11···
X,Φ ⊢ m ≺ {b}k

π12···
X,Φ ⊢ m ≺ {b}k ⊥ (m ̸= n)

X,Φ ⊢ α
Now it is possible that rank(τ) = m, but ||τ|| < ||π||. Hence by induction hypothesis, there
is a proof π ′ of cut rank< m with conclusion X,Φ ⊢ α.



 Communicating assertions in security protocols: formal models and complexity

◀

▶ Theorem (Weak normalization). If there is a derivation ofX,Φ ⊢ α then there is a normal derivation
of X,Φ ⊢ α.

Proof. For every derivation π, define µ(π) to be the pair (d, n) where d = rank(π), and n is the
number of subderivations of π of rank d. If rank(π) = 0, π is already normal. If not, let rank(π) =
d > 0 and letϖ be a subderivation of π with conclusion X,Ψ ⊢ β such that rank(ϖ) = d and no
proper subderivation ofϖ is of rank ⩾ d. By Lemma , |β| < d and there is another derivation
ϖ ′ with rank(ϖ ′) < d and whose conclusion is X,Ψ ⊢ β. Replaceϖ byϖ ′ in π to get the proof
π ′. Now one subderivation of rank d has been eliminated in the process of going from π to π ′. But
we need to check that no new derivations of rank ⩾ d have been introduced in π ′. The only way
this can happen is ifϖ ′ ends in an unsafe rule and is the major premise of an elimination rule in
π ′. But then either |β| < d, orϖ ′ ends in ∨e. In either case, no new subderivation of rank ⩾ d

gets introduced. Thus µ(π ′) < µ(π). Since lexicographic ordering on pairs of natural numbers is a
well order, by repeating the above process we eventually reach a proof of rank 0 – a normal proof,
in other words.

◀

▶ Definition . The set of subformulas of α, denoted sf(α), is defined as the smallest setΦ ⊆ A

such that
α ∈ Φ
If σ : (β∧ γ) ∈ Φ or σ : (β∨ γ) ∈ Φ, then {σ : β, σ : γ} ⊆ Φ.
Ifm ≺ {t}k ∈ Φ orm ≺ (t, t ′) ∈ Φ orm ≺ (t ′, t) ∈ Φ, thenm ≺ t ∈ Φ.

The set of terms occurring inΦ, denoted terms(Φ), is defined to be

{m, t | σ : (m ≺ t) ∈ sf(Φ)} ∪ {t, t ′ | σ : (t = t ′) ∈ sf(Φ)}.

st(X,Φ) is defined to be st(X ∪ terms(Φ)) and sf(X,Φ) is defined to be

sf(Φ) ∪ {m ≺ {b}k|m,b, k ∈ st(X,Φ) ∩B}.

It is clear that |sf(X,Φ)| < 2.N3, whereN is the size of X,Φ.

▶ Theorem (Subformula property). Letπ be a normal derivationwith conclusionX,Φ ⊢ α and last rule
r. LetX,Φ ′ ⊢ β andX ⊢dy u occur inπ. ThenΦ ′ ⊆ sf(Φ),β ∈ sf(X,Φ∪{α}) andu ∈ st(X,Φ∪{α}).
Furthermore, if r is a pure elimination rule, then β ∈ sf(X,Φ) and u ∈ st(X,Φ).

Proof. Theproof is by induction on the structure ofπ, and based on a case analysis on r. We present
a few representative cases here.

Suppose r is ax1. Then α ∈ Φ and π is of the form

ax1
X,Φ ⊢ α

Clearly β = α andΦ ′ = Φ. It follows that β ∈ sf(X,Φ) andΦ ′ ⊆ sf(Φ).
Suppose r is ax2. Then π is of the form

X ⊢dy m
ax2

X,Φ ⊢ m ≺ m

Clearly β = α ∈ sf(X,Φ ∪ {α}) andΦ ′ = Φ ⊆ sf(Φ). If X ⊢dy u occurs in π, then u = m ∈
st(X,Φ ∪ {α}).



R. Ramanujam, V. Sundararajan and S. P. Suresh 

Suppose r is pair. Then α = m ≺ (t, t ′) and π is of the following form:

X ⊢dy (t, t ′)

π ′
···

X,Φ ⊢ m ≺ t X ⊢dy st(t ′) ∩B
pair

X,Φ ⊢ m ≺ (t, t ′)

Clearly m ≺ t ∈ sf(X,α). Now either Φ ′ = Φ and β = α or X,Φ ′ ⊢ β occurs in π ′. In
the second case, by induction hypothesis Φ ′ ⊆ sf(Φ) and β ∈ sf(X,Φ ∪ {m ≺ t}). But
sf(X,Φ ∪ {m ≺ t}) ⊆ sf(X,Φ ∪ {m ≺ (t, t ′)}), and hence we are done. If X ⊢dy u occurs in
π, u = (t, t ′) or u ∈ st(t ′)capB or u ∈ st(X,Φ ∪ {m ≺ t}) (by induction hypothesis), and
hence u ∈ st(X,Φ ∪ {m ≺ (t, t ′)}).
Suppose r is enc. The proof is similar to the previous case.
Suppose r is split. Then α = m ≺ t and π is of the following form:

π ′
···

X,Φ ⊢ m ≺ (t, t ′) X ⊢dy st(t ′) ∩B m ̸∈ st(t ′)
split

X,Φ ⊢ m ≺ t
Since π is a normal proof, the last rule of π ′ is a pure elimination. Hence, by induction hy-
pothesis, m ≺ (t, t ′) ∈ sf(X,Φ), and hence m ≺ t ∈ sf(X,Φ) as well. It follows by in-
duction hypothesis that for any X,Φ ′ ⊢ β occurring in π, β ∈ sf(X,Φ) and Φ ′ ⊆ sf(Φ). If
X ⊢dy u occurs in π, u ∈ st(t ′) ∩ B or u ∈ st(X,Φ) (by induction hypothesis), and hence
u ∈ st(X,Φ ∪ {m ≺ (t, t ′)}) = st(X,Φ).
Suppose r is dec. The proof is similar to the previous case.
Suppose r is∧i. Then α = σ : (α ′ ∧ α ′′) and π is of the following form:

π ′
···

X,Φ ⊢ σ : α ′

π ′′
···

X,Φ ⊢ σ : α ′′

∧i
X,Φ ⊢ α

Clearly σ : α ′ ∈ sf(X,α) and σ : α ′′ ∈ sf(X,α). Now eitherΦ ′ = Φ and β = α or X,Φ ′ ⊢ β
occurs in π ′ or π ′′. In the second and third cases, by induction hypothesis Φ ′ ⊆ sf(Φ) and
β ∈ sf(X,Φ ∪ {σ : α ′, σ : α ′′}). But then β ∈ sf(X ∪ {α}), since sf(X,Φ ∪ {σ : α ′, σ : α ′′}) ⊆
sf(X,Φ ∪ {α}). If X ⊢dy u occurs in π, then by induction hypothesis u ∈ st(X,Φ ∪ {σ : α ′, σ :

α ′′}) ⊆ st(X,Φ ∪ {α}).
Suppose r is∨i. The proof is similar to the above case.
Suppose r is∧e. The proof is similar to the split case.
Suppose r is∨e. Then π is of the following form:

π1···
X,Φ ⊢ σ : (φ∨ψ)

π2···
X,Φ ∪ {σ : φ} ⊢ α

π3···
X,Φ ∪ {σ : ψ} ⊢ α

∨e
X,Φ ⊢ α

Again, eitherΦ ′ = Φ andβ = α orX,Φ ′ ⊢ β occurs in one of theπi’s. Suppose it occurs inπ1.
Notice that since π is normal, the last rule of π1 is a pure elimination, and hence by induction
hypothesis, Φ ′ ⊆ sf(Φ) and β ∈ sf(X,Φ). In particular, since σ : (φ ∨ ψ) occurs in π1,
σ : (φ∨ψ) ∈ sf(X,Φ) and thus {σ : φ,σ : ψ} ⊆ sf(X,Φ). Now suppose thatX,Φ ′ ⊢ β occurs
in π2 or π3. Then by induction hypothesis, we have thatΦ ′ ⊆ sf(Φ ∪ {σ : φ,σ : ψ}) ⊆ sf(Φ),
and β ∈ sf(X,Φ ∪ {σ : φ,σ : ψ,α}) ⊆ sf(X,Φ ∪ {α}).



 Communicating assertions in security protocols: formal models and complexity

Suppose r is⊥. Then π is of the following form:

π1···
X,Φ ⊢ σ : (m ≺ {b}k)

π2···
X,Φ ⊢ σ : (n ≺ {b}k) ⊥ (m ̸= n)

X,Φ ⊢ σ : α

Suppose π1 is of the following form

π11··· r
′

X,Φ ⊢ m ≺ b · · ·
enc

X,Φ ⊢ m ≺ {b}k

Now r ′ is a pure elimination rule or ax2. In the first case, we have m,b ∈ st(X,Φ) and k ∈
st(X), and hencem ≺ {b}k ∈ sf(X,Φ). In the second casem,b, k ∈ st(X) and hencem ≺
{b}k ∈ sf(X,Φ). Otherwise π ends in a pure elimination rule, and by induction hypothesis,
σ : (m ≺ {b}k) ∈ sf(X,Φ). Similarly σ : (n ≺ {b}k) ∈ sf(X,Φ) as well.
Nowβ = α andΦ ′ = Φ orX,Φ ′ ⊢ β occurs in one of the subproofs. We conclude by induction
hypothesis thatΦ ′ ⊆ sf(Φ) and

β ∈ sf(X,Φ ∪ {α, σ : (m ≺ {b}k), σ : (n ≺ {b}k)) ⊆ sf(X,Φ ∪ {α}).

◀

References

 Martin Abadi and RogerM. Needham. Prudent engineering practices for cryptographic protocols.
IEEE Trans. Software Engineering, :–, .

 Ross Anderson and Roger M. Needham. Programming satan’s computer. In Computer Science
Today, volume  of Lecture Notes in Computer Science, pages –. Springer, .

 Michael Backes, CătălinHriţcu, andMatteoMaffei. Type-checking zero-knowledge. InProceedings
of the  ACM Conference on Computer and Communications Security, CCS , pages –,
.

 Michael Backes, MatteoMaffei, and Dominique Unruh. Zero-knowledge in the applied pi-calculus
and automated verification of the direct anonymous attestation protocol. In  IEEESymposium
on Security and Privacy (S&P ), pages –, .

 A. Baskar, PrasadNaldurg, K. R. Raghavendra, and S. P. Suresh. Primal Infon Logic: Derivability in
Polynomial Time. In Foundations of Software Technology andTheoretical Computer Science (FSTTCS
), volume  of Leibniz International Proceedings in Informatics (LIPIcs), pages –, .

 A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling of voting protocols. In
Proceedings of the th Conference on Theoretical Aspects of Rationality and Knowledge, TARK ’,
pages –, .

 A. Baskar, R. Ramanujam, and S.P. Suresh. A dolev-yao model for zero knowledge. In Advances in
Computer Science - ASIAN . Information Security and Privacy, volume  of Lecture Notes in
Computer Science, pages –. .

 A. Baskar, R. Ramanujam, and S.P. Suresh. A dexptime-complete dolev-yao theory with dis-
tributive encryption. InMathematical Foundations of Computer Science , volume  of Lec-
ture Notes in Computer Science, pages –. .

 Josh Cohen Benaloh. Advances in Cryptology — CRYPTO’ : Proceedings, chapter Cryptographic
Capsules: A Disjunctive Primitive for Interactive Protocols, pages –. .

 Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In th IEEE
Computer Security Foundations Workshop (CSFW-), pages –, JUN .



R. Ramanujam, V. Sundararajan and S. P. Suresh 

 Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication. ACM Trans.
Comput. Syst., ():–, February .

 Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, andMathieu Turuani. AnNPDecision Pro-
cedure for Protocol Insecurity with XOR. Theoretical Computer Science, (-):–, .

 Hubert Comon-Lundh, Véronique Cortier, and Eugen Zălinescu. Deciding security properties for
cryptographic protocols. application to key cycles. ACM Trans. Comput. Logic, ()::–:.

 Hubert Comon-Lundh and Vitaly Shmatikov. Intruder deductions, constraint solving and insec-
urity decision in presence of exclusive or. In th IEEE Symposium on Logic in Computer Science
(LICS ),, pages –, .

 Cas J. F. Cremers. The scyther tool: Verification, falsification, and analysis of security protocols.
In Computer Aided Verification, th International Conference, CAV , pages –, .

 Stéphanie Delaune, Steve Kremer, andMark Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, ():–, .

 DannyDolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE Transactions
on InformationTheory, ():–, .

 Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov. Multiset rewriting and
the complexity of bounded security protocols. Journal of Computer Security, ():–, .

 Georg Fuchsbauer and David Pointcheval. Anonymous consecutive delegation of signing rights:
Unifying group and proxy signatures. IACR Cryptology ePrint Archive, :, .

 Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large
scale elections. In Advances in Cryptology - AUSCRYPT ’, Workshop on the Theory and Application
of Cryptographic Techniques,, pages –, .

 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., ():–, .

 Yuri Gurevich and Itay Neeman. Logic of infons: The propositional case. ACM Trans. Comput.
Logic, ()::–:, January .

 Joshua D. Guttman, F. Javier Thayer, Jay A. Carlson, Jonathan C. Herzog, John D. Ramsdell, and
Brian T. Sniffen. Trust management in strand spaces: A rely-guarantee method. In Programming
Languages and Systems, th European Symposium on Programming, ESOP ,, pages –,
.

 Nevin Heintze and J. D. Tygar. A model for secure protocols and their compositions. IEEE Trans.
Software Eng., ():–, .

 SteveKremer andMarkRyan. Analysis of an electronic voting protocol in the applied pi calculus. In
Programming Languages and Systems, th European Symposium on Programming,ESOP , pages
–, .

 Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for the equational theory
of abelian groups with distributive encryption. Inf. Comput., ():–, .

 Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, ():–, .
 R. Ramanujam, Vaishnavi Sundararajan, and S. P. Suresh. Extending dolev-yao with assertions.

In Information Systems Security - th International Conference, ICISS , pages –, .
 R. Ramanujam, Vaishnavi Sundararajan, and S. P. Suresh. The complexity of disjunction in intu-

itionistic logic. In Logical Foundations of Computer Science - International Symposium, LFCS ,
pages –, .

 R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols. Journal of
Computer Security, ():–, .

 R. Ramanujam and S. P. Suresh. A (restricted) quantifier elimination for security protocols. Theor.
Comput. Sci., ():–, November .

 Zuzana Rjaskova. Electronic voting schemes. Master’s thesis, Comenius University, .
 Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with a finite number of sessions,

composed keys is np-complete. Theor. Comput. Sci., -():–, .


