
Challenges for decidable epistemic logics ěom security
protocols

R Ramanujam, S P Suresh

ĉe Institute of Mathematical Sciences
Chennai, India

jam@imsc.res.in

Chennai Mathematical Institute
Chennai, India

spsuresh@cmi.ac.in

AĶňŉŇĵķŉ. ĉe notion of knowledge is central to reasoning about security protocols. For-
malizing the notion in epistemic logics offers several challenges: the semantics of knowledge is
subtlewhen cryptographic primitives are employed in communications, and the unboundedness
inherent in the semantics typically leads to undecidability. We propose a simple epistemic logic
which is expressive enough to describe interesting security properties, and for which the proto-
col veriėcation problem is decidable when there is an upper bound on the number of nonces that
may be used in any run.

 Summary
. Knowledge and communication

Acentral question inknowledge theory relates tohowknowersupdate their knowl-
edge on receipt of a communication. ĉis is important, since the very purpose
of communications is (typically) to create such an update of knowledge in the
recipient. However, there is oěen a lack of concordance between the intended
update and that which occurs, leading to interesting situations and much work
for knowledge theorists.

Communication protocols studied by computer scientists offer a restricted
(but yet interesting) domain for the study of knowledge change. Protocol de-
scriptions deėne (but also limit) how communications are to be interpreted, and
in this sense potential knowledge change can be ‘calculated’ and messages de-
signed accordingly, as long as participants in the protocol game can be trusted to
play by the rules.

ĉe last caveat above is signiėcant, and a goodbit of the theory of distributed
systems relates to what happens when some of the players do not strictly adhere
to the protocol diktat. If a sender cannot be trusted, a recipient is uncertain how
to interpret a received message. Computer scientists solve this problem in two
ways:



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

• ĉe global way: honest participants proceed as if all the world is honest,
and protocol rules ensure that desired global coordination is achieved, as
long as only a fraction (say, at most one third) are untrustworthy. ĉis is
the realm of fault tolerant distributed algorithms [ǉǋ].

• ĉe local way: honest participants run a pre-protocol using special facili-
ties (and codes) to create a trusted subnetwork and decide on a protocol
to be followed within it. Once this step is completed, they use the protocol
agreed on. ĉis is the approach used by cryptographic protocols.

One of the earliest applications of knowledge theory in distributed comput-
ing was in fault tolerance [ǉǉ, ǐ]. BAN logics [ǋ] initiated the laĨer study, that of
epistemic logics for security analysis. ĉis domain poses challenging questions
for epistemic logics, because we are called upon to determine knowledge update
in the presence of a great deal of uncertainty and distrust. Since this makes the
update weak, any aĨempt to transfer knowledge must take such distrust into ac-
count as well. As remarked above, these are pre-protocols, so communications
do not have much informational content; but their form is quite critical.

. Cryptographic protocols

Security protocols are speciėcations of communication paĨerns which are in-
tended to let agents share secrets over a public network. ĉey are required to
perform correctly even in the presence of malicious intruderswho listen to the
message exchanges that happenover the network and alsomanipulate the system
(by blocking or forging messages, for instance). Obvious correctness require-
ments include secrecy: an intruder cannot read the contents of a message in-
tended for others; authenticity: if B receives a message that appears to be from
agent A and intended for B, then A indeed sent the samemessage intended for B
in the recent past.

Mechanisms for ensuring security typically use encrypted communication.
However, even the use of the most perfect cryptographic tools does not always
ensure the desired security goals. (See [ǉ] for an illuminating account.) ĉis
situation arises primarily because of logical Ěaws in the design of protocols. It is
widely acknowledged that security protocols are hard to analyze, bugs difficult to
detect, andhence that it is desirable to look for automaticmeansbywhich aĨacks
on protocols can be discovered. ĉis means that formal models for reasoning
about security protocols should be developed.

Here is a typical message exchange in a security protocol.
1. A→B ∶{n}public(B)
2. B→A ∶{n}public(A)

ĉis notation represents the following intention on the part of the designer. A
andB have been active in thenetwork in the recent past. Awishes to talk toB, and



RĵŁĵłŊľĵŁ& SŊŇĹňļ

ensure that she is talking to B. Both have strong faith in public key encryption and
know each other’s public keys. A generates a fresh nonce (a random, previously
unused, unguessable number) n and sends it to B encrypted in his public key.
When B receives the message, he can indeed decrypt and learn n. He returns it
to A now encrypted with her public key.

Given perfect encryption, when A sends the message she knows that only
somebody who knows the private key of B can know n. So, when she later re-
ceives n encrypted in her own public key, she knows that someone who knows
the private key of B has accessed n (and it has to be recently, since n was previ-
ously unused).

Note the repeated use of the word know in the above story. It is clear that
one of the main goals of security protocols is the selective transfer of some kind
of knowledge to certain selectmembers of a possiblyhostile, public network. ĉe
network is hostile in that some members might be saboteurs who actively try to
manipulate the actions of the other members to try to learn new secrets. As we
can see, cryptographic methods are used to aid honest participants.

. Difficulties

Consider the implications for knowledge theory from this liĨle story. We list be-
low some immediate questions that arise, most of which can be easily answered,
individually. ĉe difficulty is in answering them all, in one uniform framework.

• What details of the encryption algorithm should be known to A and B for
them to employ the reasoning above?

• If the algorithmemploys randomelements, should they be able to ascertain
that they are indeed chosen randomly (in order for their understanding to
be certiėed as knowledge)?

• What knowledge is needed on A’s part to ensure that n is previously un-
used? Given that n comes from an unbounded set, does the representation
used by AmaĨer?

• Once A encrypts n with B’s public key, she only has a bit string fromwhich
she cannot get any new information. (If she could, so could others.) In-
deed, if she does this twice, she would get a different string each time. How
can she be said to know that this is the term {n}B?

• What B receives is a bit string. How does he know it is encrypted at all, let
alonewith his key? In effect, thismeans that he knows all possiblemessages
encrypted with his key.

• Note that B has no way of telling when the n received was generated and
by whom. What precisely does B know regarding the communication, that
causes him to act?

A simple answer to most of these questions is the Dolev-Yaomodel [ǎ], used
extensively in formal studies of security protocols, which we describe in the next



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

section. In this view, a receivermay expect to receive a term {t}k according to the
protocol, but unless she also has k−1, she cannot get t (using only this encrypted
term). ĉis is a formof database knowledge: an agentAhas only that information
explicitly stored in the agent’s database. However, ascribing knowledge to agents
involves inference as well, and it is this more general form of knowledge that is of
interest in epistemic logics.

Note that we are using a variety of forms of knowledge, each of which has
been extensively studied by knowledge theorists. We have propositional knowl-
edge: for instance, that {{x}k}k−1 = x; process knowledge: that of efficacy of en-
cryption; algorithmic knowledge: that of how to extract messages from codes; im-
plicit knowledge: that of how B responds to a message; explicit knowledge: that of
n in A’s database; and so on. It is worth noting that the difference between propo-
sitional knowledge and sentential knowledge emphasized by Parikh [ǉǍ] is also cru-
cially relevant when we talk of knowing encoded text.

. Decidability issues

A central aim of formal methods in security theory is to ėnd algorithmic solutions
to the veriėcation problem: do all runs of a given security protocol Pr satisfy a
given security property ϕ ? When the answer is no, the counterexample is termed
anaĪackon theprotocol, and theneed for automaticmethods arises from the fact
that ėnding aĨacks can be quite complicated, whereas the cost of any potential
aĨack is very high.

Since the space of all runs of a security protocol typically constitute an inė-
nite state system, even simple reachability properties are undecidable, and hence
the project of automatic veriėcation of security protocols is doomed to failure,
unless some restrictions are imposed. Typically this is in the form of bounded
veriėcation, whereby we assume that the number of concurrent multisessions
possible at any time is bounded, and syntactic conditions ensure that the term
space of communications is also bounded.

When the security property ϕ involves epistemic modalities, there is a fur-
ther complication. Suppose that we place external bounds so that all runs use
only a ėxed ėnite set of terms T . ĉen the semantics deėnes a ėnite state system,
and the veriėcation problem is decidable. However, with Hintikka-style seman-
tics of knowledge, this also implies that T is common knowledge in the system,
which goes against the very basics of security theory. In the example discussed
above, we crucially used the fact that a nonce n was freshly generated and hence
not known to others.

An alternative is that we check ϕ only over runs that use T , but let the knowl-
edge modality range over all runs, modelling the fact that agents do not know T .
However, this is easily seen to lead to undecidability as well.

An interesting complication arises due to the fact that we are talking of de-



RĵŁĵłŊľĵŁ& SŊŇĹňļ

cidability of the veriėcation problem and not that of the satisėability problem
for the logic. When the logic is sufficiently simple, deciding the satisėability of
knowledgeproperties of security protocols is not very different from that of other
“interpreted” systems. However, when we are considering the runs of a given
protocol, the situation is different: asserting the existence of an equivalent run
requires a witness that is admissible according to the given protocol. In knowl-
edge theory, this is typically achieved by forming a product with the given ėnite
state system being checked. In the case of a security protocol, the system is in-
ėnite state, and hence a simple product does not suffice. As we will see below,
we will let the knowledge formula guide us to an abstraction of the inėnite state
system to one that is ėnite state and then proceed to verify it in the laĨer.

. This paper

In this paper, we look for a minimal logic of knowledge that addresses some of
the semantic issues discussed above, and for which the veriėcation problem is
decidable. ĉe main idea is to limit expressiveness so that knowledge of data
and encryption is described by an underlying inference system that operates at
the level of terms used in messages, and propositional epistemic connectives are
deėned on top of this system.

ĉe logic we study is a standardHintikka style propositional logic of knowl-
edge, where the atomic propositions have speciėc structure related to security
protocols.

. The proposal

ĉe syntax of the logic is as given below:

L ∶∶= A has x ∣ sent(A, B, x) ∣ received(A, B, x) ∣ ¬α ∣ α ∨ β ∣Gα ∣Hα ∣KAα

Gα asserts that α holds always in the future. Its dual Fα says that α holds
sometime in the future. SimilarlyHα andPα refer to all the time points and some
time point, respectively, in the past. LAα is the dual ofKAα, as usual.

ĉe basic propositions require some explanation: the x that ėgures in the
syntax stands for secret nonces or keys exchanged in an execution of a proto-
col. A has x asserts that A has the secret x in her database. sent(A, B, x) speciėes
that a communication event happened with A sending a term containing x in-
tended for B. received(A, B, x)makes a similar assertion about A receiving a term
purportedly from B.

ĉe logic is admiĨedly ratherweak. Note the absenceofnext-timeorprevious-
time modalities, so we are not describing system transitions here. Moreover in-
formation accumulation is monotone, as we will see below. Critically, there are



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

no encrypted terms in the syntax of formulas, and hence we cannot describe
cryptographic protocols. All this is in the spirit of an abstract speciėcation logic
inwhichweonlywish to specify security requirements, notdescribemechanisms
for implementing them.

One important reason for studying such a minimal logic is to address the
semantic difficulties discussed earlier. ĉemain idea is to limit the expressiveness
of the logic as follows:

• ĉe model uses an explicit primitive for talking about what is and what is
not decipherable by agents, but this is not referred to in the logic.

• An indistinguishability relation is deėned, which in effect makes pieces of
messages that can only have originated with the intruder/adversary indis-
tinguishable from those generated by honest principals. Knowledge is de-
ėned in terms of this relation.

• ĉusknowledgequantiėes over intruder capabilities, anddescribes proper-
ties invariant on an equivalence class of messages (compatible with a given
protocol).

• Formulas, in themselves, describeonlywhatprincipals knowordonotknow
about who has access to which secret. Protocols use cryptographic mech-
anisms to achieve this, and the veriėcation problem determines whether,
under the perfect encryption assumption, the speciėcations are met.

Even in this limited speciėcation language, we can easily specify many de-
sirable properties of protocols. For instance, here is a simple version of secrecy,
which says that in any run where A sends B (distinct from I) a secretm, I cannot
get hold of m.

G[sent(A, B,m) ⊃ ¬(I hasm)]
An even stronger version states that A in fact knows this (and can therefore base
her further actions on this knowledge, if she chooses to).

G[sent(A, B,m) ⊃ KA ¬(I hasm)]

Authentication is simply stated as:

G[received(A, B,m) ⊃ Psent(B,A,m)]

ĉemain theoremof the paper asserts that the protocol veriėcation problem
of the logic is elementarily decidable, as long as we consider protocol runs with
a ėxed upper bound on the number of concurrent multi-sessions. Despite this
bound, the inexact nature of agents’ knowledge forces us to consider an inėnite
set of runs as possible, and hence the decision question is nontrivial.

. BAN logic

It is important to highlight the similarities and differences of our approach with
that of BAN logic [ǋ]. BAN logic is a highly abstract logic that is intended to be



RĵŁĵłŊľĵŁ& SŊŇĹňļ

used for assertional reasoning about protocols, much in the style ofHoare logics.
It is a propositional modal logic with formulas like A believes α, A sees α, A sent α,
ěesh n, A controls α etc. More critically, the logic comes with a deduction system
with plausible rules like the following:

A sees α A believes (ěesh α)
A believes α

A believes (C controls α) A believes (C sent α)
A believes α

ĉere aremany rules but the above two are crucial, as they pertain to information
transfer. ĉe key to reasoning in this logic is the process of idealisation, where
message exchanges are themselves propositionalized. For example, a communi-
cation A→B ∶k may be rendered as

B sees (A sent (k is a good key for A and B))
Based on all this, non-trivial reasoning about the behaviour of protocols can be
carried out assertionally. Many protocols have been proved correct using BAN
logic, and Ěaws in many protocols have been detected using it as well. But this
approach – the idealisation process, in particular – hasmet with a lot of criticism
over the years ([ǉǌ], for example), as there aremany examples of protocolswhere
there is a mismatch between the logic and the semantics of the protocol. ĉe
point is that the intruder behaviour is too rich to be captured by a simple set of
rules.

Recentwork byCohen andDam[ǌ, Ǎ] hasmade signiėcant progress by pro-
viding a Kripke semantics for BAN logic that addresses the logical omniscience
problem, and by exploring various completeness and expressibility issues.

An important feature of the logic discussed here is that the idealisation step
is limited to assertions about which (atomic) secrets an agent has access to. ĉis
has implications for reasoning, as well as decidable veriėcation, as we will see
below.

 Security protocol modelling
We brieĚy present our model for protocols in this section. A more detailed pre-
sentation can be found in [ǉǎ]. Most of the elements of the model are standard
in the literature onmodelling security protocols. In particular, we use theDolev-
Yao adversary model [ǎ].

Terms and actions

We start with a (potentially inėnite) set of agents Ag, which includes the in-
truder I, and the others, who are called honest agents. Fix a countable set of



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

fresh secretsN . (ĉis includes random, nonguessable nonces as well as temporary
session keys.) K , the set of potential keys, is givenbyN ∪{public(A), private(A) ∣
A ∈ Ag}∪{shared(A, B) ∣ A, B ∈ Ag}. Herepublic(A), private(A), and shared(A, B)
denote the public key of A, private key of A, and (long-term) shared key between
A and B. We assume an inverse k for each k ∈K such that k = k.

T0
def= K ∪Ag is the set of basic terms.

ĉe set of information terms is deėned to be

T ∶∶= m ∣ (t1, t2) ∣ {t1}k

where m ranges over T0, t1 and t2 range over T , and k ranges over K . Here
(t1, t2) denotes the pair consisting of t1 and t2, and {t1}k denotes the term t1 en-
crypted using k. ĉese are the terms used in the message exchanges (which will
be presently introduced). We use st(t) to denote the set of subterms of t.

We model communication between agents by actions. An action is either a
send actionof the formA!B∶ t or a receive actionof the formA?B∶ t. HereAand B are
distinct agents, A is honest, and t is a term. For an action a of the form A!B∶ t or
A?B∶ t, we deėne term(a) to be t. ĉe agentB is (merely) the intended receiver in
A!B∶ t and the purported sender in A?B∶ t. Since the intruder is assumed to have
access to the entire communication network at all times, every send action can
be seen as an instantaneous receive by the intruder, and similarly, every receive
action is an instantaneous send by the intruder.

Protocol specifications

A protocol is given by the roles it contains, and a role is a ėnite sequence of
actions. A parametrized role η[m1,⋯ ,mk] is a role in which the basic terms
m1, . . . , mk are singled out as parameters. ĉe idea is that an agent participating
in the protocol can execute many sessions of a role in the course of a single run,
by instantiating the parameters in many different ways. All the basic terms oc-
curring in a parametrized role that are not counted among the parameters are the
constants of the role. ĉey do not change their meaning over different sessions
of the role.

Suppose η = a1⋯ ak is a parametrized role. We say that a nonce n originates
at i(≤ k) in η if:

• n is a parameter of η,
• ai is a send action, and
• n ∈ st(term(ai)) and for all j < i , n ∉ st(term(a j)).

If a nonce n originates at i in a role it means that the agent sending the message
ai uses n for the ėrst time in the role. ĉis usually means that, in any session of
that role, the agent playing the role has to generate a fresh, nonguessable random
number and send it as a challenge. Subsequent receipt of the same number in



RĵŁĵłŊľĵŁ& SŊŇĹňļ

the same session plays a part in convincing the agent that the original message
reached the intended recipient.

A protocol is a ėnite set of parametrized roles {η1, . . . , ηn}. ĉe set of con-
stants ofPr, denotedC(Pr), consists of all constants of all roles ofPr. ĉe seman-
tics of a protocol is given by the set of all its runs. A run is got by instantiating
each role of the protocol in an appropriate manner, and forming admissible in-
terleavings of such instantiations. We present the relevant deėnitions below.

Substitutions and events

A substitution σ is a map from T0 to T0 such that σ(Ag) ⊆ Ag, σ(N ) ⊆ N ,
and σ(I) = I. For any T ⊆ T0, σ is said to be a T-substitution iff for all x ∈ T0,
σ(x) ∈ T . A substitution σ is suitable for a parametrized role η if σ(m) = m for
all constants m of η. We say that σ is suitable for a protocol Pr if σ(m) = m for
all constants m of Pr.

A run of a protocol is any sequence of actions that can possibly be performed
by the various agents taking part in the protocol. We model each run as a se-
quence of event occurrences, which are actions with some extra information about
causality. (From now on, we will gloss over the difference between events and
event occurrences.) An event of a protocol Pr is a triple (η, σ , lp) such that η is a
role of Pr, σ is a substitution, and 1 ≤ lp ≤ ∣η∣. A T-event is one which involves a
T-substitution. For an event e = (η, σ , lp) with η = a1⋯ aℓ, act(e) def= σ(alp). If
e = (η, σ , lp) and lp < ∣η∣ and e′ = (η, σ , lp + 1), then we say that e locally precedes
e′ and denote it by e <ℓ e′. We say that a nonce n is uniquely originating in a set
of events E of a protocol Pr if there is atmost one event (η, σ , lp) of E and atmost
one nonce m such that m originates at lp in η and σ(m) = n. (Note that the fact
m originates in η implies that m is a parameter of η.)

Message generation rules

We intend a run of a protocol to be an admissible sequence of events. A very im-
portant ingredient of the admissibility criterion is the enabling of events given
a particular information state. To treat this formally, we need to deėne how the
agents (particularly the intruder) can build new messages from old. ĉis is for-
malised by the notion of derivations.

A sequent is of the form T ⊢ t where T ⊆ T and t ∈ T . A derivation or a
proof π of T ⊢ t is a tree whose nodes are labelled by sequents and connected by
one of the analz-rules or synth-rules in Figure ǉ; whose root is labelled T ⊢ t; and
whose leaves are labelled by instances of the Ax rule. We will use the notation
T ⊢ t to denote both the sequent, and the fact that it is derivable. For a set of
terms T , T def= {t ∣ T ⊢ t} is the closure of T . Note that T is in general inėnite



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

AxT ∪ {t} ⊢ t

T ⊢ (t1, t2) spliti(i = 1, 2)T ⊢ ti

T ⊢ {t}k T ⊢ k decryptT ⊢ t

analz-rules

T ⊢ t1 T ⊢ t2 pair
T ⊢ (t1, t2)

T ⊢ t T ⊢ k encrypt
T ⊢ {t1}k

synth-rules

Figure ǉ: Message generation rules.

even when T is ėnite, and hence the following proposition is useful. It is quite
well known in the literature. A proof can be found in [ǉǐ], for instance.
PŇŃńŃňĽŉĽŃł ǉ. Suppose that T is a ėnite set of terms and t is a term. Checking
whether T ⊢ t is decidable.

Information states, updates, and runs

An information state (or just state) is a tuple (sA)A∈Ag, where sA ⊆ T for each
A ∈ Ag. ĉe initial state of Pr, denoted by init(Pr) is the tuple (sA)A∈Ag such that
for all A ∈ Ag,

sA = C(Pr) ∪Ag ∪ {private(A)} ∪ {public(B), shared(A, B) ∣ B ∈ Ag}.

ĉe notion of information state as simply a set of terms is rudimentary, but
suffices for our purposes; it can be considered as a database of explicit but re-
stricted knowledge. ĉe notions of an action enabled at a state, and update(s, a),
the update of a state s on an action a, are deėned as follows:

• A send action a is enabled at s iff term(a) ∈ sA.
• A receive action a is enabled at s iff term(a) ∈ sI .
• update(s,A!B∶ t) def= s′ where s′I = sI ∪ {t}, and for all agents C other than I,
s′C = sC .

• update(s,A?B∶ t) def= s′ where s′B = sB ∪{t} and for all agents C other than B,
s′C = sC .

update(s, η) for a state s and a sequence of actions η is deėned in the obvious
manner. ĉus if sA is a form of explicit knowledge, then sA is a form of implicit
knowledge, but one that is algorithmically constructible by the agent.

Given a protocol Pr and a sequence ξ = e1⋯ ek of events of Pr, infstate(ξ) is
deėned to be update(init(Pr), act(e1)⋯act(ek)). Given a protocolPr, a sequence
e1⋯ ek of events of Pr is said to be a run of Pr iff the following conditions hold:

• for all i , j ≤ k such that i ≠ j, ei ≠ e j,



RĵŁĵłŊľĵŁ& SŊŇĹňļ

• for all i ≤ k and for all e such that e +→ℓ ei , there exists j < i such that e j = e,
• for all i ≤ k, act(ei) is enabled at infstate(e1⋯ ei−1), and
• everynonce that is not a constantofPr is uniquelyoriginating in{e1, . . . , ek}.

We say that ξ is a T-run of Pr, for any given T ⊆ T0, if for all i ≤ k, st(ei)∩T0 ⊆ T .
We say that ξ is a b-run of Pr, for any given b ∈ N, if there are at most b nonces
uniquely originating in ξ. We letR(Pr),RT(Pr), andRb(Pr)denote respectively
the set of all runs, all T-runs, and all b-runs of Pr.

 The semantics of the logic
We now formally present the syntax and semantics of our logic. From themodel
for security protocols presented earlier, it is clear that protocol descriptionsmen-
tion abstract names for agents, nonces, and keys, but the runs use different in-
stantiations for these abstract names. It is these concrete systems determined by
protocols that we wish to specify properties of and verify. To be abstract, the
speciėcation logic should also mention only the abstract names, but the seman-
tics must translate them into concrete names used in runs. A difficulty is that the
denotation of an abstract name differs at different points in runs, so we have to
ėnd awayof resolving the differentmeanings. ĉis is akin to the problemof rigid
designators in ėrst order modal logic.

We use the simple device of using logical variables. ĉeir meaning is given
by assignments, just as in ėrst-order logic. But we do not allow quantiėcation
over variables in the logic itself. We let X denote the inėnite set of logical vari-
ables. ĉese variables are supposed to stand for nonces. We also need to use
concrete agent names in the logic for speciėcations based on agent-based knowl-
edge modalities to make sense. It bears emphasizing that variables do not have
the same status as the abstract names in the protocol speciėcation. ĉese indeed
refer to concrete nonces that occur in concrete executions of the protocol, but
quite oěen we do not want to bother about which particular concrete nonce is
being talked about.

Recall the syntax of the logic:

L ∶∶= A has x ∣ sent(A, B, x) ∣ received(A, B, x) ∣ ¬α ∣ α ∨ β ∣Gα ∣Hα ∣KAα

ĉe semantics of the logic crucially hinges on an equivalence relation on
runs, which is deėned as follows. Intuitively, an agent cannot distinguish a term
{t}k from any other bitstring in a state where she has no information about k.

We deėne the set P of paĨerns as follows (where ◻ denotes an unknown
paĨern):

P,Q ∈P ∶∶= m ∈ T0 ∣ (P,Q) ∣ {P}k ∣ ◻

An action paĪern is an action that uses a paĨern instead of a term, and an event
paĪern is an event that uses an action paĨern instead of an action.



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

We can now deėne the paĨerns derivable by an agent on seeing a term t in
the context of a set of terms S. In a sense, this is the only certain knowledge that
the agent can rely on at that state. A similar notion has been deėned in [Ǌǈ] in
the context of providing semantics for a BAN-like logic.

paĪern(m, S) =
⎧⎪⎪⎨⎪⎪⎩

m if m ∈ T0 ∩ S
◻ if m ∈ T0 ∖ S

paĪern((t1, t2), S) = (paĪern(t1, S), paĪern(t2, S))

paĪern({t}k , S) =
⎧⎪⎪⎨⎪⎪⎩

{paĪern(t, S)}k if k ∈ S
◻ otherwise

We extend the deėnition to paĪern(a, S) and paĪern(e , S) for an action a,
event e and a set of terms S in the obvious manner. Note that paĪern(a, S) is an
action paĨern and paĪern(e , S) is an event paĨern. For ξ = e1⋯ en, we deėne
paĪern(ξ, S) to be the sequence paĪern(e1, S)⋯ paĪern(en , S).
DĹĺĽłĽŉĽŃłǊ. AnagentA’s view of a run ξ, denoted ξ↾A, is deėned as paĪern(ξ′, S),
where ξ′ is the subsequence of all A-events of ξ, and S = infstate(ξ). For two runs ξ
and ξ′ of Pr and an agent A, we deėne ξ and ξ′ to be A-equivalent (in symbols ξ ∼A ξ′)
iff ξ↾A = ξ′↾A. For ξ = e1⋯ en, ξ′ = e′1⋯ e′n′ , i ≤ n, and i′ ≤ n′, we say that (ξ, i) ∼A
(ξ′, i′) when e1⋯ ei ∼A e′1⋯ e′i′ .

ĉenext issue in giving the semantics ofL is how to handle the logical vari-
ables. ĉis is standard. Along with the protocol we have an assignment a ∶ X →
N . A T-assignment (for T ⊆ N ) is one which maps logical variables only to
nonces in T .

ĉe semantics of formulas in such logics of knowledge is typically given at
points: (ξ, i) ⊧a α [ǉǈ]. However, to emphasize the fact that knowledge se-
mantics crucially depends on the set of runs being considered, we present it as
R , (ξ, i) ⊧a α below. Aswe vary the setR, for instance to consider a subset, what
is common knowledge to agents changes, and hence the semantics as well.

Fix a protocolPr and an assignment a. For any subsetR ofR(Pr), we deėne
the satisfaction relation R , (ξ, i) ⊧a α as follows, where ξ ∈ R, i ≤ ∣ξ∣, and α is a
formula:

• R , (ξ, i) ⊧a A has x iff a(x) ∈ sA for s = infstate((ξ, i)).
• R , (ξ, i) ⊧a sent(A, B, x) iff act(ξ(i)) = A!B∶ t for some t such that a(x)

occurs as a non-key subterm of t.
• R , (ξ, i) ⊧a received(A, B, x) iff act(ξ(i)) = A?B∶ t for some t such that a(x)

occurs as a non-key subterm of t.
• R , (ξ, i) ⊧a Gα iff for all i such that i ≤ i′ ≤ ∣ξ∣, it is the case thatR , (ξ, i′) ⊧a
α.



RĵŁĵłŊľĵŁ& SŊŇĹňļ

• R , (ξ, i) ⊧a Hα iff for all i′ such that 1 ≤ i′ ≤ i, it is the case thatR , (ξ, i′) ⊧a
α.

• R , (ξ, i) ⊧a KAα iff for all ξ′ ∈R and i′ ≤ ∣ξ′∣ such that (ξ, i) ∼A (ξ′, i′), it is
the case that R , (ξ′, i′) ⊧a α.

For a protocol Pr and a formula α, we say that α is valid over Pr iff for all
assignments a, and all runs (ξ, i) of Pr, R(Pr), (ξ, i) ⊧a α.

For a protocolPr, formula α, and a ėxed T ⊆ T0, we say that α is T-valid over
Pr iff for all T-assignments a, and all T-runs (ξ, i) of Pr, RT(Pr), (ξ, i) ⊧a α.

For a protocol Pr, formula α, and b ≥ ∣T ∣, we say that α is b-valid over Pr iff
for all assignments a, and all b-runs (ξ, i) of Pr, Rb(Pr), (ξ, i) ⊧a α.

Note that we have deėned the semantics of formulas not over arbitrary se-
quences, but relative to the runs of a protocol. ĉis is becausewe are not studying
abstract notions of consistency in the logic but the more concrete questions of
aĨacks on security protocols. If a formula is satisėable as a sequence of infor-
mation states which cannot be obtained as an admissible run of a protocol, such
a property is deemed to be uninteresting. Since the logic itself has no access to
encrypted terms and hence cannot describe protocols, it cannot constrain satis-
ėability to range over such admissible runs either.

 Decidability

ĉe technical problem we now consider is the veriėcation problem for our logic.
ĉis asks for a given protocol Pr and a given formula α whether Pr ⊧ α. ĉe ėrst
thing to note is that this problem is undecidable in general.

TļĹŃŇĹŁ ǋ. ĉe veriėcation problem forL is undecidable.

Undecidability in the context of unboundedly long messages (but bound-
edly many nonces) was shown by [Ǒ] and for unboundedly many nonces (but
bounded message length) by [Ǐ], by different techniques. Chapter ǋ of [ǉǑ]
presents a uniform framework in which such undecidablity results can be seen.

We therefore look at restrictions of the problem and try to obtain decidabil-
ity. A natural restriction is to conėne our interest only to T-runs, for a ėxed ėnite
set T ⊆ T0. ĉe following assertion shows that this is of no help.

TļĹŃŇĹŁ ǌ. For a given Pr and α, and for a ėxed ėnite set T ⊆ T0, checking whether
all T-runs of Pr satisfy α is undecidable.

ĉe proof is based on the same kind of Turing machine codings used in the
proof of ĉeorem ǋ. ĉe point is that even though we evaluate α only on T-
runs of Pr, the knowledgemodalities range over all runs of Pr, not just over all T-
runs. A “simple” formula like LA(I hasm) forces one to consider runs (including
those inwhichAdoes not play a crucial role) inwhich I tries to obtainm through
complicated means, and which might involve the honest agents generating lots



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

of new nonces. ĉe trouble is that the “simple” atomic formula I has m packs a
lot of expressive power, and allows a trivial coding of secrecy.

In this context, it is reasonable to try to obtain decidability by restricting the
semantics of protocols (since even very weak logics are undecidable). One ap-
proach would be to ask if α is T-valid over Pr, given Pr and α. But that would
amount to common knowledge of T , and goes against the grain of security the-
ory: aěer all, agents are assumed to have the ability to generate random nonces
about which others know nothing!

We follow an approach that is standard in security analysis. We place an up-
per bound on the number of nonces that can be used in any run. ĉis also implies
a bound on the number of concurrent multi-sessions an agent can participate in.
More formally, given b > 0, we ask if it is the case that α is b-valid over Pr.

Before we proceed with our speciėc decidability result, we make two pre-
liminary observations.

PŇŃńŃňĽŉĽŃł Ǎ. Given a protocol Pr and a formula α, there exists a ėnite set of
assignmentsA such that Pr ⊧ α iff for all runs (ξ, i) of Pr and all assignments a ěom
A , (ξ, i) ⊧a α.

PŇŃŃĺ: Fix an enumeration x0, x1, . . . of X and an enumeration n0, n1, . . . of N .
Let (without loss of generality) T0 = {n0, . . . , nK−1} be the constants of Pr and α
(the constants of α are just the nonces occurring in α). Let xK , . . . , xL−1 be the
variables occurring in α.

For every a ∶ X → N , consider a−1 ∶ N → N ∪ {xK , . . . , xL−1} deėned as
follows:

a−1(n) =
⎧⎪⎪⎨⎪⎪⎩

n if n ∈ T0 or n /∈ a({xK , . . . , xL−1})
xi if i is the least such that a(xi) = n

Let â ∶ {xK , . . . , xL−1}→ {nK , . . . , nL−1} be given by:

â(xi) =
⎧⎪⎪⎨⎪⎪⎩

n if a(xi) = n ∈ T0

ni if a(xi) /∈ T0

For every assignment a, let ã ∶ N →N be given by:

ã(n) =
⎧⎪⎪⎨⎪⎪⎩

a−1(n) if a−1(n) ∈N
â(a−1(n)) otherwise

It is now straightforward to prove that for all runs (ξ, i) ofPr, all assignments
a, and all subformulas β of α:

(ξ, i) ⊧a β iff (ã(ξ), i) ⊧â β

and the proposition immediately follows. ⊣



RĵŁĵłŊľĵŁ& SŊŇĹňļ

On the strength of the above theorem, in what follows we only consider the
problem of checking whether a particular set of runs of a protocol satisfy a for-
mula under a ėxed assignment (which we shall not mention explicitly).

For a protocol Pr and a set of agentsAg′, call ξ anAg′-run of Pr if only agents
from Ag′ occur in ξ. ĉe following proposition is easy to prove.

PŇŃńŃňĽŉĽŃł ǎ. Given a protocol Pr and a formula α, there is a ėnite set of agents
Ag′ such that Pr ⊧ α iff (ξ, 0) ⊧ α for all Ag′-runs ξ of Pr.

TļĹŃŇĹŁ Ǐ. Fix a bound b. ĉe problem of checking for a given protocol Pr and a
formula α ofL whether α is b-valid over Pr is decidable in time 2(n⋅b⋅d)O(1) , where n is
the size of the protocol speciėcation, and d is the modal depth of α.

Fix a bound b for the rest of the section. Also ėx a protocol Pr and a formula
α. We want to check whether α is b-valid over Pr.

We let T be the set consisting of the constants of Pr, and the nonces occur-
ring in α. For ease of notation, we refer toRb(Pr) byR for the rest of the section.
Assume that themodal depth of the formula is d. ĉis means that it is enough to
consider “chains” of runs of length at most d to determine the truth of the given
formula on any run. ĉus if we ėnd an ėnite set of runs R′ that is d-bisimilar to
R, it will turn out to be enough to check the truth of α over R′, in order to verify
α over R.

Towards this, we deėne a set of nonce paĪerns {◻i , j ∣ i ≤ d , j ≤ b}, and deėne
for each i ≤ d the set Pi = {◻i′ , j ∣ i′ ≤ i , j ≤ b}. We denote by Ri(i ≤ d) the set of
runs which only use nonces from T and paĨerns from Pi (in place of nonces).
A run belonging to Ri is also referred to as an i-run.

For i ≤ d, a zap function of rank i is a one-to-one, partial map µ ∶ N → T ∪Pi
such that for all n ∈ T , µ(n) = n. We say that a zap function µ is suitable for a
b-run ξ of the protocol if it is deėned for all nonces occurring in ξ. For two b-
runs ξ and ξ′ of Pr, we say that ξ ≈i ξ′ iff there exist zap functions µ, µ′ of rank i
suitable for ξ and ξ′, respectively, such that µ(ξ) = µ′(ξ′). It is clear that ≈i is an
equivalence relation for all i ≤ d.

ĉe heart of the proof is the following lemma:

LĹŁŁĵ ǐ. For all i < d, b-runs ξ1 and ξ2 such that ξ1 ≈i ξ2, the following holds:
for all agents A, all b-runs ξ′1, and all positions ℓ ≤ ∣ξ1∣, ℓ′ ≤ ∣ξ′1∣ such
that (ξ1, ℓ) ∼A (ξ′1, ℓ′), there exists a b-run ξ′2 such that ξ′1 ≈i+1 ξ′2 and
(ξ2, ℓ) ∼A (ξ′2, ℓ′).

PŇŃŃĺ: Let µ1, µ2 beappropriate zap functionsof rank i such that µ1(ξ1) = µ2(ξ2).
Let N ′ be the nonces occurring in ξ1↾A. Deėne ξ′2 to be τ(ξ′1)where τ is deėned



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

as follows (assuming a set of “fresh nonces” n1, . . . , nb):

τ(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

undeėned if n does not occur in ξ′1
µ−12 (µ1(n)) if n ∈N ′

ni if n is the ith nonce occurring in ξ′1 and not in N ′

It is clear that we can ėnd zap functions µ′1 and µ′2 of rank i + 1 such that µ′1(ξ′1) =
µ′2(ξ′2). (ĉey mimic µ1 respectively on N ′ and map the other nonces (in order
of occurrence) to ◻i+1,0,◻i+1,1, . . . , ◻i+1,b).

Now we show that (ξ2, ℓ) ∼A (ξ′2, ℓ′). Note that ξ2 = µ−12 (µ1(ξ1)) and ξ′2 =
(µ′2)−1(µ′1(ξ′1)). Also ξ1↾A = ξ′1↾A. But notice that on N ′, µ′2 and µ′1 agree with µ1,
and therefore ξ′2↾A = µ−11 (µ1(ξ′1↾A)) = ξ′1↾A. ⊣

From this, it is a standard argument to prove the following lemma.
LĹŁŁĵ Ǒ. For any i ≤ d, any formula β of modal depth d − i, and any two runs ξ
and ξ′ such that ξ ≈i ξ′, and all ℓ ≤ ∣ξ∣, (ξ, ℓ) ⊧ β iff (ξ, ℓ) ⊧ β.

ĉeorem Ǐ now follows from the fact that the veriėcation problem reduces
to verifying the truth of α over a ėnite set R′ of runs of Pr (got from Rd by using
a “fresh nonce” nx ,y in place of each ◻i , j ∈ Pd). A naive decision procedure is
to generate the set of all such runs and check whether the given formula is true.
Proposition ǉ is used crucially both to check the truth of atomic formulas of the
formAhas x, and to check admissibility conditions on actions sequences. We get
the bound on R′ as follows: each event of a run in R′ is speciėed by an action a
in the protocol speciėcation, and nonces of the form ni , j that instantiate the ones
in a. ĉus the set of events we need to consider is of size B = n ⋅ (b⋅d)O(1). Now a
run in R′ is determined by a subset of the events and an ordering on them. ĉus
the number of runs is (B + 1)B. ĉus we get the bound speciėed in the theorem.

 Discussion
ĉe central idea of the decision procedure above is to liĜ the decidability of the
question T ⊢ t to that of the logic. ĉis suggests that we can extend the result
to protocols whose message terms over richer cryptographic primitives, as long
as the question T ⊢ t remains decidable. We could include algebraic properties
of the encryption operators, or extend the term algebra with primitives such as
blind signatures, and yet achieve such decidability. In [Ǌ], we show this in the case
of blind pairing.

ĉe use of the inference system on terms suggests that knowledge of agents
reduces to provability in the weaker system. However, there are many crypto-
graphic contexts such as zero knowledge proofswhere agents can verify that a term
has a particular structure, without being able to construct it. Such a considera-
tion takes us beyond Dolev-Yao models.



RĵŁĵłŊľĵŁ& SŊŇĹňļ

HalpernandPucella [ǉǊ]makeanaĨempt togobeyond theDolevYaomodel,
by also considering probabilistic notions and the intruder aĨempting to guess
nonces and keys. ĉey employ the idea of modelling adversary capabilities by
restrictions on the algorithms used by adversaries; this is represented in our set-
up by indexing the message derivation system: T ⊢A t describes the algorithm
employed byA. ĉis approach is explored in [ǉǏ]. But our emphasis has been on
decidability, and it will be interesting to explore decision questions in rich logics
like the one in [ǉǊ].

Another consideration, largely ignored in this paper, relates to how security
protocolsmay be implemented in amanner consistentwith knowledge speciėca-
tions [Ǌǉ]. ĉis line of work is important, but what we have aĨempted to argue
here is that such considerations lead us not only to interesting security theory,
but also new theories of knowledge.

References
[ǉ] Ross Anderson and Roger M. Needham. Programming Satan’s computer. In Computer

Science Today, volume ǉǈǈǈ of Lecture Notes in Computer Science, pages ǌǊǎ–ǌǌǉ, ǉǑǑǍ.
[Ǌ] A. Baskar, R. Ramanujam, and S.P. Suresh. Knowledge-based modelling of voting pro-

tocols. In Dov Samet, editor, Proceedings of the ȕȕth Conference on ĉeoretical Aspects of
Rationality and Knowledge, pages ǎǊ–Ǐǉ, ǊǈǈǏ.

[ǋ] Michael Burrows,Martin Abadi, andRogerM.Needham. A logic of authentication. ACM
Transactions on Computer Systems, ǐ(ǉ):ǉǐ–ǋǎ, Feb ǉǑǑǈ.

[ǌ] Mika Cohen and Mats Dam. A completeness result for BAN logic. In ȖȔȔș International
Workshop on Methods for Modalities (MȘM-Ȕș), pages ǊǈǊ–ǊǉǑ, ǊǈǈǍ.

[Ǎ] Mika Cohen andMats Dam. A complete axiomatization of knowledge and cryptography.
In ȖȖnd IEEE Symposium on Logic in Computer Science (LICS ȖȔȔț), pages ǏǏ–ǐǐ. IEEE
Computer Society, ǊǈǈǏ.

[ǎ] DannyDolev andAndrewYao. On the Security of public-key protocols. IEEETransactions
on Informationĉeory, ǊǑ:ǉǑǐ–Ǌǈǐ, ǉǑǐǋ.

[Ǐ] Nancy A. Durgin, Patrick D. Lincoln, John C.Mitchell, and Andre Scedrov. ĉe undecid-
ability of bounded security protocols. In Proceedings of the Workshop on Formal Methods
and Security Protocols (FMSP’ȝȝ), ǉǑǑǑ.

[ǐ] Cynthia Dwork and Yoram Moses. Knowledge and Common Knowledge in a Byzantine
Environment: Crash Failures. Information and Computation, ǐǐ(Ǌ):ǉǍǎ–ǉǐǎ, ǉǑǑǈ.

[Ǒ] Shimon Even and Oded Goldreich. On the security of multi-party ping-pong protocols.
Technical Report ǊǐǍ, Technion - Israel Institute of Technology, ǉǑǐǋ.

[ǉǈ] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. M.I.T. Press, ǉǑǑǍ.

[ǉǉ] JosephY.Halpern andYoramMoses. Knowledge and commonknowledge in a distributed
environment. Journal of the ACM, ǋ(ǋ):ǍǌǑ–ǍǐǏ, ǉǑǑǈ.

[ǉǊ] Joseph Y. Halpern and Riccardo Pucella. Modeling adversaries in a logic for security pro-
tocol analysis. In Formal Aspects of Security, First International Conference, FASec ȖȔȔȖ,
volume ǊǎǊǑ of Lecture Notes in Computer Science, pages ǉǉǍ–ǉǋǊ, Ǌǈǈǋ.

[ǉǋ] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, ǉǑǑǎ.
[ǉǌ] D. M. NesseĨ. A critique of the Burrows, Abadi and Needham logic. ACM Operating

systems review, Ǌǌ(Ǌ):ǋǍ–ǋǐ, ǉǑǑǈ.



SĹķŊŇĽŉŏ ńŇŃŉŃķŃŀň: ķļĵŀŀĹłĻĹň ŉŃ ĹńĽňŉĹŁĽķ ŀŃĻĽķň

[ǉǍ] Rohit Parikh. Logical omniscience and common knowledge: WHAT do we know and
what do WE know? In Proceedings of TARK ȖȔȔș, pages ǎǊ–ǏǏ, ǊǈǈǍ.

[ǉǎ] R.RamanujamandS.P. Suresh. Decidability of context-explicit security protocols. Journal
of Computer Security, ǉǋ(ǉ):ǉǋǍ–ǉǎǍ, ǊǈǈǍ.

[ǉǏ] R. Ramanujam and S. P. Suresh. A (restricted) quantiėer elimination for security proto-
cols. ĉeoretical Computer Science, ǋǎǏ:ǊǊǐ–ǊǍǎ, Ǌǈǈǎ.

[ǉǐ] Michaël Rusinowitch and Mathieu Turuani. Protocol Insecurity with Finite Num-
ber of Sessions and Composed Keys is NP-complete. ĉeoretical Computer Science,
ǊǑǑ:ǌǍǉ–ǌǏǍ, Ǌǈǈǋ.

[ǉǑ] S.P. Suresh. Foundations of Security Protocol Analysis. PhD thesis, ĉe Institute of Math-
ematical Sciences, Chennai, India, November Ǌǈǈǋ. Madras University. Available at
http://www.cmi.ac.in/∼spsuresh.

[Ǌǈ] Paul F. Syverson and P.C. vanOorschot. On unifying some cryptographic protocol logics.
InProceedings of the ȕȗth IEEESymposiumon security and privacy, pages ǉǌ–Ǌǐ. IEEEPress,
ǉǑǑǌ.

[Ǌǉ] Ron van derMeyden andĉomasWilke. Preservation of Epistemic Properties in Security
Protocol Implementations. InDovSamet, editor,Proceedings of TARK ’Ȕț, pages ǊǉǊ–ǊǊǉ,
ǊǈǈǏ.


