
An equivalene on terms for seurity protoolsR. Ramanujam and S. P. SureshThe Institute of Mathematial SienesC.I.T. Campus, Chennai 600 113, India.E-mail: fjam,spsureshg�ims.res.inAbstrat. Modelling seurity protools easily leads us to onsiderationof in�nite state systems and as a result, the veri�ation of serey, aruial requirement in seurity, beomes undeidable. To ope with this,various bounds are externally imposed to yield �nite systems and veri-�ation is done for these systems. In this paper, we suggest a semantiapproah, whereby the bounds are obtained by equating terms used inommuniations. We propose an equivalene relation on terms of �niteindex whih leads to a notion of normal terms suh that the serey prob-lem beomes deidable for those protools that use only normal terms.Many interesting protools studied in the literature seem to respet thisrelation, suggesting that �nite state methods may be appliable for these(a priori) in�nite state systems.1 IntrodutionCryptographi protools operate in environments where ommuniating agentsexhange information over publi hannels. The possibility of intruders listeningto message exhanges and manipulating the system (for example by blokingmessages, or forging them) neessitates the use of enrypted ommuniation.Stringent requirements on these protools relate to ensuring serey of informa-tion (only the reeiver gets the seret and not any intruder), authentiation (theseret does originate from the purported sender) and so on. Despite onsiderableingenuity on the part of the designers of these protools, many possible attaksare often disovered later. Interestingly, most of these attaks are independent ofthe enryption shemes used, but rely on logial design aws, and use intruders'abilities to manipulate ommuniation patterns between honest agents ([Low96℄,[CJ97℄).It is in this ontext that formal veri�ation of seurity protools assumesimportane ([Me95℄, [SC00℄). The protools are typially �nite (indeed, veryshort) sequenes of ommuniations and the requirements an be stated in simplelogis (for instane propositional modal logis). Hene the use of theorem provingtehniques to verify the orretness of suh protools, as well as model hekingfor �nding attaks, seems a priori interesting and worthwhile ([Bol97℄, [MCJ97℄,[Pau98℄).The veri�ation problem for seurity protools an be formulated as follows:given an abstrat spei�ation of the protool as a sequene of ommuniations



between agents, is it the ase that every run generated by possible multi-sessionsbetween agents, with a hypothetial intruder interleaving arbitrarily many a-tions, satisfy the given seurity requirements? There are many requirements butan important (and entral) requirement is that of serey: a seret that is gener-ated by an honest agent should not be leaked to the intruder, who is assumed tohave unlimited omputational resoures and an keep a reord of every publisystem event and utilize it at an arbitrarily later time. However, the intruderannot generate an honest agent's seret autonomously, nor an it break enryp-tion.Seurity protools are typially spei�ed as a (�nite) set of roles (typiallywith names like hallenger, responder and so on). These are abstrat patterns ofommuniation whih speify what messages are sent when, and how to respondto the reeipt of any message. The ontent of these messages is (usually) notrelevant, but the struture is; hene abstrat variables suÆe to desribe theprotool. A system onsists of a �nite set of agents. In any system run, an agentplays one or more roles, eah time instantiating variables appropriately with itsserets. Every honest agent is assumed to follow the protool.In interesting situations, the same agent may play several roles simultane-ously, often with the same agents; these are referred to as multi-sessions. More-oever, an agent may play a role many times. Hene the set of system runs is(typially) in�nite.Typially, one all-powerful intruder is assumed, who an opy every om-muniation in the system, an blok any message and an pretend to be anyagent. It is assumed that the intruder has unlimited omputational resouresand an keep a reord of every publi system event and utilize it at an arbitrar-ily later time. However, the intruder annot generate an honest agent's seretautonomously, nor an it break enryption.Even the preise modelling of system states is non-trivial. This has to dowith the fat that the intruder needs to be unonstrained, and yet the stateof knowledge of the intruder is ruial for veri�ation; muh of the literatureis devoted to this aspet ([Gou00℄, [Mo99℄). The next diÆulty is that whenwe model the semantis of the system preisely, we get in�nite state systems.There are many soures of unboundedness in the modelling of seurity protools.The �rst type of unboundedness relates to the requirement of freshness: ev-ery time an agent sends out a seret (a none), it is a new one | an obviousrequirement to avoid the intruder replaying old sessions. But this means thatwhen there is no bound on the number of plays of roles by agents, the number ofnones used grows unboundedly as well. Unbounded length of messages may alsoause ompliation. Sine the intruder may generate arbitrarily long messages,and agents reeiving them may be onstrained by the protool to respond inkind, the system state spae may beome in�nite.Given that the models are in�nite state systems, it is not surprising thatthe serey problem for suh protools is undeidable. [DLMS99℄ use unboundedgeneration of nones to show that the serey problem for protools is unde-idable, even when the number of roles, the length of eah role and message



length are bounded. On the other hand, even if only boundedly many nonesare assumed to be generated, the intruder may get unbounded slave work fromhonest agents using messages of arbitrary length, leading to undeidability as in[HT96℄.How then are we to ope with veri�ation of suh systems? The literatureonsists of many proposals that typially plae bounds on the number of playson any run of the protool, e�etively yielding a �nite system. Examples of thisapproah inlude [ALV01℄, [MS01℄ and [RT01℄. There are also approahes whihimpose syntati restritions on the use of the tupling operator. Examples of thisinlude [DEK82℄ and [ALV01℄. [CS02℄ is a good survey on the various approahesto deidability of seurity protool veri�ation, and also on the undeidabilityresults.An alternative to plaing suh `external' bounds is to look for sublassesof protools in whih, either by virtue of the manner in whih ommuniationpatterns between agents are strutured, or by the way in whih system behaviouris strutured, deidability obtains. The de�nition of suh a sublass is arrivedat by a detailed analysis of the undeidability proof; while we annot hope foran exat haraterization, it suÆes to ome up with a restrition that is strongenough to exlude the \soure" of undeidability while yet retaining a largeenough lass of interesting protools.In this ontext, the work [CC03℄ uses tehniques from tree automata toahieve deidability for the lass of protools in whih every agent opies atmost one piee of any message it reeives into any message it sends. (See also[CCM01℄.)Our approah in this paper is motivated by semanti onsiderations. Wepropose a semanti riterion whih gives deidability in the presene of termsof arbitrary length, but with boundedly many nones. The entral ontributionof the paper is the de�nition of a natural equivalene relation on terms, whihleads to the notion of normal terms. We de�ne normal protools to be those forwhih all the terms appearing in the protool desription are normal and showthat, for the lass of normal protools, the serey problem is deidable. Thisis an interesting sublass of protools, inluding most protools standard in theliterature ([CJ97℄).It turns out that without the restrition, the halting problem for two-ountermahines may be oded, illustrating how distinguishing suh terms lies at thesoure of undeidability. We show that for the sublass studied, the deidabilityresult extends to other properties than serey as well, those whih an be statedin a simple modal logi.In a ompanion paper ([RS03℄), we have proposed a simple syntati re-strition on protools and show deidability in the presene of unboundedlymany nones, but bounded message length. The ondition essentially states thatbetween any two terms that our in distint ommuniations, no enryptedsubterm of one an be uni�ed with a subterm of the other.



2 Seurity protools and their semantisFix a �nite set of agents Ag with a speial intruder I 2 Ag . AgnfIg is denoted byHo. The set of keys K is Klt [Kst where Klt , the set of long-term keys is the setfkAB ; pubkA; privkA j A;B 2 Ag ; A 6= Bg, and Kst is a �nite set of short-termkeys. pubkA is A's publi key and privkA is its private key. kAB is the long-termkey shared by A and B. For every k 2 K de�ne k 2 K as follows: for the sharedkeys and short-term keys k = k, whereas pubkA = privkA and privkA = pubkA.k is k's inverse key. For A 2 Ag , KA def= fpubkB ; kAB j B 6= Ag [ fprivkAg isthe set of keys known to A. Also �x a �nite set of nones N . De�ne the set ofbasi terms T0 to be K [N [ Ag . (Note that every system studied would havesuh a �nite set T0 assoiated with it. Here, for ease of presentation, we �x onesuh system for the disourse.)De�ne the set of information terms to beT ::= m j (t; t0) j ftgkwhere m ranges over T0 nKlt and k ranges overK. We de�ne the set of subtermsof a term t, ST (t), to be the least set T suh that: t 2 T ; if (t; t0) 2 T then t 2 Tand t0 2 T ; and if ftgk 2 T then t 2 T . ST (T ) = [t2T ST (t) for any T � T .For a set of terms T and a key k we say that k is referred to in T if k 2 T or9t : ftgk 2 T .� = fA!B: (M)t; A?B:t j A;B 2 Ag ; A 6= B; t 2 T ;M � ST (t) \ T0g is theset of ations. For a = A!B: (M)t, term(a) = t and NT (a) = M . Similarly fora = A?B:t, term(a) = t and NT (a) = ;. For any ation a, jaj is de�ned tobe jterm(a)j. For any send ation A!B: (M)t, B?A:t is said to be its mathingreeive. terms(a1 � � � a`) = fterm(ai) j 1 � i � `g and NT (a1 � � � a`) = NT (a1) [� � � [ NT (a`). For any � 2 ��, CT (�) def= (T0 \ ST (terms(�))) n NT (�) is theset of onstants of �. An event is a pair (�; i) where � 2 �+ and 1 � i � j�j. Theset of all events is alled Events . For e = (a1 � � � a`; i) 2 Events , at(e) = ai.Note that B is (merely) the intended reeiver in A!B: (M)t and the purportedsender in A?B:t. As we will see later, every send ation is an instantaneousreeive by the intruder, and similarly, every reeive ation is an instantaneoussend by the intruder.�A, the set of A-ations is given by fC!D: (M)t; C?D:t 2 � j C = Ag. Forany � = a1 � � � a` 2 �� and any A 2 Ag , � � A is given by ai1 � � � air wherefi1; : : : ; irg = fi � ` j ai 2 �Ag.De�nition 2.1 Let T � T be a set of information terms. analz(T ), the setof terms analyzable from T , is the least subset bT of T suh that: T � bT ; if(t1; t2) 2 bT then t1 2 bT and t2 2 bT ; and if ftgk 2 bT and k 2 bT then t 2 bT .synth(T ), the set of terms synthesizable from T , is the least subset bT of Tsuh that: T � bT ; if t1 2 bT and t2 2 bT then (t1; t2) 2 bT ; and if t 2 bT and k 2 bTthen ftgk 2 bT . For ease of notation, synth(analz(T )) is denoted T .



The de�nitions of analz and synth are due to [Pau98℄. We will assume anumber of basi properties of synth and analz proved in [Pau98℄.De�nition 2.2 An information state s is a tuple (sA)A2Ag where for eah agentA, sA � T . S denotes the set of all information states. The notions of an ationenabled at a state and update of a state on an ation are given as follows:{ A!B: (M)t is enabled at s i� t 2 sA [M , and if none of the terms in Mours in s.{ A?B:t is enabled at s i� t 2 sI .{ update(s; A!B: (M)t) = s0 where s0A = sA [M , s0I = sI [ ftg, and s0C = sCfor all the other C 2 Ag.{ update(s; A?B:t) = s0 where s0A = sA[ftg and s0C = sC for all other C 2 Ag.We extend the notion of update to sequenes of ations as follows: update(s; ") =s, update(s; � � a) = update(update(s; �); a).De�nition 2.3 A protool Pr is a sequene a1b1 � � �a`b` 2 �+ suh that:{ for all i : 1 � i � `, bi is ai's mathing reeive,{ for all k 2 Kst referred to in ST (terms(Pr)), k 2 NT (Pr), and{ for s0 = (KA [ CT (Pr))A2Ag , for all i : 1 � i � `, ai is enabled atupdate(s0; a1b1 � � � ai�1bi�1).One of the standard presentations of protools is as a sequene of ommunia-tions of the form A!B : (M)t. For tehnial onveniene, we split eah ommu-niation of the above form into a pair of ations, A!B: (M)t and B?A:t. We alsorequire that all the short-term keys used in the protool are freshly generated.This is a standard requirement and explains preisely why these keys are alled\short-term".Given a protool Pr, Roles(Pr) def= fPr�A j A 2 Ag and Pr �A 6= "g.A substitution � is a map from T0 to T suh that: �(Ag) � Ag , if A 6= Bthen �(A) 6= �(B), �(Kst ) � Kst , �(kAB ) = k�(A)�(B), �(pubkA) = pubk�(A),and �(privkA) = privk�(A). Substitutions are extended to terms and ationspointwise. � is suitable for a i� for all m 2 NT (a), �(m) 2 N and for m 6= n 2NT (a), �(m) 6= �(n). For � = a1 � � � a` 2 ��, � is suitable for � i� it is suitablefor ai for all i � `, and �(�) = �(a1) � � ��(a`). A substitution � is said to besuitable for a protool Pr if for all t 2 CT (Pr); �(t) = t.The important point here is that if an ation a0 with term(a0) = t0 is aninstane of an ation a with term(a) = t, then t0 has the same \struture" as t(i.e., t0 is a substitution instane of t), but t0 might be longer than t. This arisesbeause the intruder substitutes a longer term in plae of a none in t. In suha situation the behaviour of the honest agents is as if t0 is of the same lengthas t { sine the honest agents follow the protool and hene do not expet anymessage ommuniated to have a longer term in plae of a none. Note that thede�nition of substitutions being suitable for an ation ensures that honest agentsonly substitute nones for nones, ating aording to protool.



Given a protool Pr, �0 2 �� is a play of Pr if �0 = �(�) where � 2 Roles(Pr)and � is a substitution suitable for Pr and �. Plays(Pr) is the set of all plays ofPr. Events(Pr) = f(�; i) 2 Events j � 2 Plays(Pr)g.De�ne a funtion infstate from S �Events(Pr)� to S by indution as follows:{ infstate(s0; ") = s0.{ If infstate(s0; �) = s and �0 = � � e, then infstate(s0; �0) = update(s; at(e)).If infstate(s0; �) = s, for any A 2 Ag , infstateA(s0; �) = sA.Given a protool Pr, s0 2 S is said to be an initial information state of Pr iffor all A 2 Ho, (s0)A = KA [ CT (Pr) and there exists a subset T of N [ Kstsuh that (s0)I = KI [ CT (Pr) [ T . The set of all initial information states ofPr is denoted by Init(Pr).De�nition 2.4 Given a protool Pr, the set of runs of Pr, R(Pr) is indutivelyde�ned as follows:{ (s0; ") 2 R(Pr) for every s0 2 Init(Pr).{ Suppose (s0; �) 2 R(Pr) and infstate(s0; �) = s. Suppose there is (�; i) suhthat for all 1 � j < i, (�; j) ours in �, (�; i) does not our in �, andat(�; i) is enabled at s. Then (s0; � � (�; i)) 2 R(Pr).De�nition 2.5 Given a protool Pr, Sys(Pr) = (Q; I;�!) is the system de�nedby it, where:{ Q, the set of protool states, is R(Pr).{ I, the set of initial protool states, is f(s; ") j s 2 Init(Pr)g.{ for (s; �); (s0; �0) 2 Q and a 2 �, (s; �) a�!(s0; �0) i� s = s0 and there exists(�; i) suh that �0 = � � (�; i) and �(i) = a.De�nition 2.6 Suppose Pr is a protool and let Sys(Pr) be (Q; I;�!). For q 2Q and m 2 T0, we say that m is a seret at q if there exists A 2 Ho suhthat m belongs to analz(sA) n analz(sI ) (where infstate(q) = s). Pr is leaky i�there exist q; q0 2 Q with q ��!q0 and m 2 T0 suh that m is a seret at q andm 2 infstateI(q0). Pr is said to preserve serey i� it is non-leaky.The serey problem is the problem of determining whether a given pro-tool preserves serey.3 An equivalene on termsIn this setion we de�ne an equivalene relation on terms and prove some of itsproperties.Say that a key k enrypts in a term t if 9t0 : ft0gk 2 ST (t). Given a term tand a key k de�ne t�k by indution as follows: for m 2 T0, m�k = m; (t; t0)�k =(t�k; t0�k); and (ftgk0)�k is de�ned to be t�k if k = k0, and ft�kgk0 otherwise.The binary relation � on terms is given in Figure 1. We say that t �1 t0 i� thereis a \proof" of t � t0 whih does not use the axioms (A2) or (A5). Any termwhih has a subterm of the form (t; t) or of the form ftgk with k enrypting int is said to be a redex.



(A1) t � t(A2) (t; t) � t(A3) (t; t0) � (t0; t)(A4) (t; (t0; t00)) � ((t; t0); t00)(A5) ftgk � ft�kgk (R1) t � t0t0 � t(R2) t � t0; t0 � t00t � t00 (R3) t1 � t01; t2 � t02(t1; t2) � (t01; t02)(R4) t � t0ftgk � ft0gkFig. 1. De�nition of �.De�nition 3.1 A term t is said to be normal if there is no t0 suh that t �1 t0and t0 is a redex. An ation a is normal i� term(a) is normal. A sequene ofations a1 : : : a` is normal i� for all i � `, ai is normal. Pr = a1b1 � � �a`b` isalled a normal protool if Pr is a protool and is also normal. An event (�; i)is normal if � is normal. A sequene of events � = e1 � � � e` is normal if for alli � `, ei is normal.The main funtion of the equivalene relation is to ensure two things: thetupling operator works with sets of terms now rather than lists, whih is ensuredby Axioms (A2) to (A4); the depth of the enryption operator is bounded. Thejusti�ation for the latter stems from the fat that honest agents, when theysend terms on their own, would substitute only nones for nones, and henewould generate only terms of bounded enryption depth. The intruder wouldsubstitute terms of arbitrary depth for small terms, but this is preisely where,for purposes of deteting leaks, we an work with bounded depth terms, as thesubsequent development will show.Proposition 3.2 The equivalene relation � on terms is of �nite index.Proof Idea: It is easy to see that every term is equivalent to a normal term.We now show that the set of normal terms is �nite, whih will immediately implythe statement of the proposition.Let jT0j = B. Let Ni denote the set of normal terms of enryption depth i.It suÆes to show that NB is �nite, sine no term t of enryption depth greaterthan B an be normal. N0 is just the set of tuples of distint terms from of T0,and hene jN0j � 2O(B). Now for any i, Ni+1 is got by enrypting terms fromNi using at most B keys and forming tuples of suh terms whih are distint.We an show that the number of terms that an be formed in this manner is atmost 2O((B+1)�jNij). Thus by indution, Ni is a �nite set for all i � 0. Hene theresult. 2The above proof also tells us that the size of any normal term is bounded.Let us denote that bound by M for the rest of the paper. (M depends only onthe size of T0, whih is �xed for the disussion in the paper.)If a = A!B: (M)t and a0 = A0!B0: (M 0)t0 then a � a0 i� A = A0; B = B0;M =M 0 and t � t0. Similarly for a = A?B:t and a0 = A0?B0:t0, a � a0 i� A = A0; B =



B0 and t � t0. Now for � = a1 � � � a` and �0 = a01 � � � a0̀ , � � �0 i� for all i � `,ai � a0i. For any two (�; i); (�0; i) 2 Events , we say that (�; i) � (�0; i0) i� � � �0and i = i0. We extend � to Events� as follows: � is the least equivalene relationon Events� suh that{ for � = e1 � � � e` and �0 = e01 � � � e0̀ , if for all i � `, ei � e0i then � � �0.{ � � e � � if e ours in �.{ if � � �0 then for any e, � � e � �0 � e.(s0; �) � (s00; �0) i� s0 = s00 and � � �0.Proposition 3.3 Suppose Pr is a protool and (s0; �); (s00; �0) 2 R(Pr) suh that(s0; �) � (s00; �0). Then for any m 2 T0 and A 2 Ag, m 2 infstateA(s0; �) i�m 2 infstateA(s00; �0).Proof Idea: Throughout the proof, we use the fat that sine (s0; �) �(s00; �0), s0 = s00. It is trivial to see that if e ours in �0 and � = �0 � e, theninfstate(s0; �) = infstateA(s00; �0). It suÆes to prove the proposition in the asewhen � = e1 � � � e`, �0 = e01 � � � e0̀ and for all i � `, ei � e0i. We an then argue byindution on the \proof" that (s0; �) � (s00; �0).Suppose � = e1 � � � e`, �0 = e01 � � � e0̀ and for all i � `, ei � e0i. We nowproeed by indution on `. In the base ase � = �0 = " and therefore learlyinfstate(s0; �) = infstate(s0; �0) = s0. For the indution step suppose that � =�1�e and �0 = �01�e0 with e � e0 and that for all A 2 Ag andm 2 T0,m 2 analz(sA)i� m 2 analz(s0A) (letting infstate(s0; �) = s and infstate(s0; �0) = s0). Considerthe ase when e = (�; i) with �(i) = A?B:t and e0 = (�0; i) with �0(i) = A?B:t0and t � t0. Now we have to prove that for all m 2 T0, m 2 analz(sA [ ftg) i�m 2 analz(s0A [ ft0g). This is easily seen to be true using the fat that if t andt0 are equivalent terms, then the same set of basi terms our as subterms inboth t and t0 and further every suh basi term m is enrypted by the same setof keys in both t and t0, as is evident from the axiom (A5) in the de�nition of�. The ase when �(i) and �0(i) are send ations is treated in idential fashion.2Note that the fat that � is of �nite index ruially depends on the fatthat T0 is �nite. When we onsider the situation where N and Kst are in�nite,Proposition 3.2 does not hold. Nevertheless, we an build an equivalene of �niteindex on terms starting from a given equivalene relation on T0. Thus the aboveresults an be adapted to a more general setting also.4 DeidabilityLet Pr be a protool and let Sys(Pr) = (Q; I;�!). The set R0(Pr) is de�nedto be f(s0; �) j � is normal and there exists �0 suh that � � �0 and (s0; �0) 2R(Pr)g. The �nite state system Sys0(Pr) as de�ned to be (R0(Pr); I;�!0) wherefor (s; �); (s0; �0) 2 R0(Pr) and a 2 �, (s; �) a�!0(s0; �0) i� s = s0 and there exists



(�; i) suh that �0 = � � (�; i) and �(i) = a. We say that Sys0(Pr) is leaky i� thereare two states r; r0 2 R0(Pr) with r ��!0r0 and m 2 T0 suh that m is a seret ofr and m 2 analz(infstateI(r0)).The following lemma is an easy onsequene of Proposition 3.2.Lemma 4.1 Sys0(Pr) is a �nite-state system.Theorem 4.2 Pr is leaky i� Sys0(Pr) is leaky.Proof Idea: Suppose Sys(Pr) = (Q; I;�!) and Sys0(Pr) = (Q0; I 0;�!0).Suppose Pr is leaky. This means that there are two states q; q0 2 Q with q ��!q0and m 2 T0 suh that m is a seret of q and m 2 analz(infstateI(q0)). Thereforethere is a state r0 2 Q0, suh that q0 � r0. Now sine q ��!q0, there exist s0 2 Sand �; �0 suh that q = (s0; �), q0 = (s0; �0) and � is a pre�x of �0. Let r0 = (s0; & 0).Sine q0 � r0, �0 � & 0. We an easily argue that there is a pre�x & of & 0 suh that� � & . Let r = (s0; &). Then q � r. Now it follows from Lemma 3.3 that m is aseret of r and m 2 analz(infstateI(r0)). Thus Sys�(Pr) is leaky.Suppose Sys0(Pr) is leaky. Then there are two r; r0 2 Q0 with r ��!0r0 andm 2 T0 suh that m is a seret of r and m 2 analz(infstateI(r0)). We knowthat there is some q0 2 Q suh that q0 � r0. From Lemma 3.3, it follows thatm 2 analz(infstateI(q0)). Let r = (s0; &) and r0 = (s0; & 0). Let q0 = (s0; �0). Wean easily argue that there is a pre�x � of �0 with � � & . Let q = (s0; &). Thenq � r and therefore m is a seret of q as well, by Lemma 3.3. Thus Pr is leaky.2Lemma 4.3 Let Pr be a normal protool, (s0; �) 2 R(Pr), and M 0 = max t2sjtjwhere infstate(s0; �) = s. Then for every e enabled at (s0; �), there is e0 � e suhthat jterm(e0)j �M � (M 0 + 1) and e0 is enabled at (s0; �).Proof Idea: This is trivial to see if e orresponds to a send ation. Sinethe protool is normal, a send by an honest agent, whih involves a normal termhaving size at most M and mentioning at most M nones, is of size at mostM � (M 0+1) sine aording to semantis the nones in the term are substitutedeither with newly generated nones or with terms already reeived.Suppose e orresponds to a reeive ation. This orresponds to a send by theintruder. There is no a priori bound on the size of e. But sine the protool de-sription mentions only normal terms, there is always some event e0 � e enabledat (s0; �) suh that for some normal term t 2 sI , term(e0) is got by substitutingterms from analz(sI ) for nones in t. It an be easily seen that term(e0) is of sizeat most M � (M 0 + 1). 2Theorem 4.4 For the lass of normal protools, the serey problem is deid-able.



Proof Idea: It suÆes to prove that for the lass of normal protools, the setR0(Pr) is e�etively onstrutible. We show by indution on i, how to onstrutthe set of sequenes of length i in R0(Pr). This suÆes to prove that R0(Pr) isonstrutible, sine all the sequenes in it are of bounded length.Let us denote by Ri the set of sequenes inR0(Pr) of length i. R0 is essentiallythe set of initial information states of Pr. This is easily onstrutible sine eahinitial information state is a tuple of subsets of T0, whih is a �xed �nite set.Suppose Ri is onstrutible. Now we laim that Ri+1 is exatly the set of(s0; �1 �e) suh that (s0; �1) 2 Ri, e is normal, and there exists e0 with jterm(e0)j �M � (M + 1), e � e0 and e0 is enabled at (s0; �). This is easily seen to be ane�etively hekable ondition and hene if we prove the above laim the theoremis proved.Suppose (s0; �1 � e) 2 Ri+1. This means that (s0; �1) 2 Ri, i.e., there is some(s0; �01) 2 R(Pr) suh that �1 � �01. We an show that there is some e0 enabledat (s0; �01) with e � e0. Therefore, by Lemma 4.3 there is e00 suh that e0 � e00,jterm(e00)j � M � (M 0 + 1) where M 0 = maxfjtj j t 2 infstate(s0; �01)g. Now theterms from infstate(s0; �01) whih are used to onstrut e00 have \normal oun-terparts" in infstate(s0; �1). Therefore we an show that there is e000 equivalentto e00 whih is of size � M � (M + 1) and is enabled at (s0; �1) (the \normalounterpart" of (s0; �01)). Also e � e000. This proves one diretion of the laim.Suppose now that (s0; �1) 2 Ri and that there exists e0 suh that jterm(e0)j �M � (M + 1), e � e0 and e0 is enabled at (s0; �1). Now there is some (s0; �01) 2R(Pr) with (s0; �01) � (s0; �1). We an show that all e1 ourring in (s0; �1) are\normal ounterparts" of events ourring in (s0; �01). Hene we an show thatthere is some e00 suh that jterm(e00)j �M � (M 0 + 1) where M 0 = maxfjtj j t 2infstate(s0; �01)g, and e0 � e00 and e00 is enabled at (s0; �01). Sine e � e0, e � e00.Sine (s0; �01 � e00) 2 R(Pr), (s0; �1 � e) 2 Ri+1.This onludes the proof that for normal protools, the serey problem isdeidable. 2Note that in the setting we are onsidering in this paper, using the equiva-lene on terms of �nite index, given any system we an quotient it to obtain anequivalent �nite state system. As observed earlier, in the ase of unboundedlymany nones, the equivalene on terms would not be on �nite index, and henethe quotiented systems would in general not be �nite. In [RS03℄, we onsider theserey problem in the situation where message length is bounded but the noneset is in�nite, and show that, for a suitable sublass of protools { we all themstrutured protools { even though they have in�nitely many runs in general, stillthey have the property that if the system is leaky, then there is run of boundedlength witnessing a leak. This suÆes to prove deidabilty.5 UndeidabilityWe show in this setion that the serey problem is undeidable even when theset of nones used in runs of the protools is �nite. This is shown by skething



how a two-ounter mahine an be oded up using the protool formalism. Atwo-ounter mahine is a mahine with a �nite set of ontrol states and twoounters holding natural number values. The ations of the mahine are statetransitions based on the urrent state and the values of the ounters. In addition,during eah transition, the ounters may be inremented or deremented, andalso tested for zero. We ode up any given mahine by a protool whose rolestypially look like the following:A?B:fq; x; (z; y)gkAB ; A!B:fq0; (z; x); ygkAB .The above role represents a transition whih hanges state from q to q0,inrements the �rst ounter and derements the seond. The intruder uses thefat that arbitrary terms an be substituted in plae of nones to mimi thebehavior of the mahines whih use the output on�guration of one transitionas the input on�guration of another. This is ahieved by the intruder blokingthe sends in some play of a role of the above kind, and forwarding it to a reeivein some other play (of possibly the same role). This is the key to undeidability.The terms q and q0 in the above merit speial mention. They are meant toenode states of the two-ounter mahine. Now sine an arbitrary two-ountermahine does not have a bound on the number of its states, and sine we areworking with a �xed set of nones, we annot ode states diretly. The q's haveto be thought of as some omplex terms. Then it is easy to see that even ifwe manage to enode the pair of ounters using normal terms in the protooldesription, there is a large enough two-ounter mahine (say, one with muhlarger than 2M2 states), whih annot be faithfully oded up by any normalprotool, sine there are not enough normal terms to ode up even the set ofstates of the given mahine. In onlusion, for every �xed two-ounter mahine,there is a T0 and a normal protool whih uses terms built from T0 whih odesthe mahine, but if we �x T0, then there are mahines (those whose number ofstates is muh more than the number of normal terms based on T0) whih annotbe oded by any normal protool whih uses terms built from T0.There is also a oding whih uses unbounded enryption depth. This showsthat the restrition whih the equivalene relation � plaes on enryption is alsoessential for deidability.6 A modal logiWe an show that the deidability result of the serey problem for normalprotools also extends to the veri�ation problem for a simple modal logi, inwhih one an state seurity properties.The formulas of the logi are given by:� ::= A has t j :� j � _ � j hai� j 3�where A 2 Ag , t 2 T , a 2 �.The logi is interpreted on models whih are of the form (Sys; �) where:Sys = (Q; I;�!) is a �-labelled transition system and � is a valuation funtionfrom Q to S.
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