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.res.inAbstra
t. Modelling se
urity proto
ols easily leads us to 
onsiderationof in�nite state systems and as a result, the veri�
ation of se
re
y, a
ru
ial requirement in se
urity, be
omes unde
idable. To 
ope with this,various bounds are externally imposed to yield �nite systems and veri-�
ation is done for these systems. In this paper, we suggest a semanti
approa
h, whereby the bounds are obtained by equating terms used in
ommuni
ations. We propose an equivalen
e relation on terms of �niteindex whi
h leads to a notion of normal terms su
h that the se
re
y prob-lem be
omes de
idable for those proto
ols that use only normal terms.Many interesting proto
ols studied in the literature seem to respe
t thisrelation, suggesting that �nite state methods may be appli
able for these(a priori) in�nite state systems.1 Introdu
tionCryptographi
 proto
ols operate in environments where 
ommuni
ating agentsex
hange information over publi
 
hannels. The possibility of intruders listeningto message ex
hanges and manipulating the system (for example by blo
kingmessages, or forging them) ne
essitates the use of en
rypted 
ommuni
ation.Stringent requirements on these proto
ols relate to ensuring se
re
y of informa-tion (only the re
eiver gets the se
ret and not any intruder), authenti
ation (these
ret does originate from the purported sender) and so on. Despite 
onsiderableingenuity on the part of the designers of these proto
ols, many possible atta
ksare often dis
overed later. Interestingly, most of these atta
ks are independent ofthe en
ryption s
hemes used, but rely on logi
al design 
aws, and use intruders'abilities to manipulate 
ommuni
ation patterns between honest agents ([Low96℄,[CJ97℄).It is in this 
ontext that formal veri�
ation of se
urity proto
ols assumesimportan
e ([Me95℄, [SC00℄). The proto
ols are typi
ally �nite (indeed, veryshort) sequen
es of 
ommuni
ations and the requirements 
an be stated in simplelogi
s (for instan
e propositional modal logi
s). Hen
e the use of theorem provingte
hniques to verify the 
orre
tness of su
h proto
ols, as well as model 
he
kingfor �nding atta
ks, seems a priori interesting and worthwhile ([Bol97℄, [MCJ97℄,[Pau98℄).The veri�
ation problem for se
urity proto
ols 
an be formulated as follows:given an abstra
t spe
i�
ation of the proto
ol as a sequen
e of 
ommuni
ations



between agents, is it the 
ase that every run generated by possible multi-sessionsbetween agents, with a hypotheti
al intruder interleaving arbitrarily many a
-tions, satisfy the given se
urity requirements? There are many requirements butan important (and 
entral) requirement is that of se
re
y: a se
ret that is gener-ated by an honest agent should not be leaked to the intruder, who is assumed tohave unlimited 
omputational resour
es and 
an keep a re
ord of every publi
system event and utilize it at an arbitrarily later time. However, the intruder
annot generate an honest agent's se
ret autonomously, nor 
an it break en
ryp-tion.Se
urity proto
ols are typi
ally spe
i�ed as a (�nite) set of roles (typi
allywith names like 
hallenger, responder and so on). These are abstra
t patterns of
ommuni
ation whi
h spe
ify what messages are sent when, and how to respondto the re
eipt of any message. The 
ontent of these messages is (usually) notrelevant, but the stru
ture is; hen
e abstra
t variables suÆ
e to des
ribe theproto
ol. A system 
onsists of a �nite set of agents. In any system run, an agentplays one or more roles, ea
h time instantiating variables appropriately with itsse
rets. Every honest agent is assumed to follow the proto
ol.In interesting situations, the same agent may play several roles simultane-ously, often with the same agents; these are referred to as multi-sessions. More-oever, an agent may play a role many times. Hen
e the set of system runs is(typi
ally) in�nite.Typi
ally, one all-powerful intruder is assumed, who 
an 
opy every 
om-muni
ation in the system, 
an blo
k any message and 
an pretend to be anyagent. It is assumed that the intruder has unlimited 
omputational resour
esand 
an keep a re
ord of every publi
 system event and utilize it at an arbitrar-ily later time. However, the intruder 
annot generate an honest agent's se
retautonomously, nor 
an it break en
ryption.Even the pre
ise modelling of system states is non-trivial. This has to dowith the fa
t that the intruder needs to be un
onstrained, and yet the stateof knowledge of the intruder is 
ru
ial for veri�
ation; mu
h of the literatureis devoted to this aspe
t ([Gou00℄, [Mo99℄). The next diÆ
ulty is that whenwe model the semanti
s of the system pre
isely, we get in�nite state systems.There are many sour
es of unboundedness in the modelling of se
urity proto
ols.The �rst type of unboundedness relates to the requirement of freshness: ev-ery time an agent sends out a se
ret (a non
e), it is a new one | an obviousrequirement to avoid the intruder replaying old sessions. But this means thatwhen there is no bound on the number of plays of roles by agents, the number ofnon
es used grows unboundedly as well. Unbounded length of messages may also
ause 
ompli
ation. Sin
e the intruder may generate arbitrarily long messages,and agents re
eiving them may be 
onstrained by the proto
ol to respond inkind, the system state spa
e may be
ome in�nite.Given that the models are in�nite state systems, it is not surprising thatthe se
re
y problem for su
h proto
ols is unde
idable. [DLMS99℄ use unboundedgeneration of non
es to show that the se
re
y problem for proto
ols is unde-
idable, even when the number of roles, the length of ea
h role and message



length are bounded. On the other hand, even if only boundedly many non
esare assumed to be generated, the intruder may get unbounded slave work fromhonest agents using messages of arbitrary length, leading to unde
idability as in[HT96℄.How then are we to 
ope with veri�
ation of su
h systems? The literature
onsists of many proposals that typi
ally pla
e bounds on the number of playson any run of the proto
ol, e�e
tively yielding a �nite system. Examples of thisapproa
h in
lude [ALV01℄, [MS01℄ and [RT01℄. There are also approa
hes whi
himpose synta
ti
 restri
tions on the use of the tupling operator. Examples of thisin
lude [DEK82℄ and [ALV01℄. [CS02℄ is a good survey on the various approa
hesto de
idability of se
urity proto
ol veri�
ation, and also on the unde
idabilityresults.An alternative to pla
ing su
h `external' bounds is to look for sub
lassesof proto
ols in whi
h, either by virtue of the manner in whi
h 
ommuni
ationpatterns between agents are stru
tured, or by the way in whi
h system behaviouris stru
tured, de
idability obtains. The de�nition of su
h a sub
lass is arrivedat by a detailed analysis of the unde
idability proof; while we 
annot hope foran exa
t 
hara
terization, it suÆ
es to 
ome up with a restri
tion that is strongenough to ex
lude the \sour
e" of unde
idability while yet retaining a largeenough 
lass of interesting proto
ols.In this 
ontext, the work [CC03℄ uses te
hniques from tree automata toa
hieve de
idability for the 
lass of proto
ols in whi
h every agent 
opies atmost one pie
e of any message it re
eives into any message it sends. (See also[CCM01℄.)Our approa
h in this paper is motivated by semanti
 
onsiderations. Wepropose a semanti
 
riterion whi
h gives de
idability in the presen
e of termsof arbitrary length, but with boundedly many non
es. The 
entral 
ontributionof the paper is the de�nition of a natural equivalen
e relation on terms, whi
hleads to the notion of normal terms. We de�ne normal proto
ols to be those forwhi
h all the terms appearing in the proto
ol des
ription are normal and showthat, for the 
lass of normal proto
ols, the se
re
y problem is de
idable. Thisis an interesting sub
lass of proto
ols, in
luding most proto
ols standard in theliterature ([CJ97℄).It turns out that without the restri
tion, the halting problem for two-
ounterma
hines may be 
oded, illustrating how distinguishing su
h terms lies at thesour
e of unde
idability. We show that for the sub
lass studied, the de
idabilityresult extends to other properties than se
re
y as well, those whi
h 
an be statedin a simple modal logi
.In a 
ompanion paper ([RS03℄), we have proposed a simple synta
ti
 re-stri
tion on proto
ols and show de
idability in the presen
e of unboundedlymany non
es, but bounded message length. The 
ondition essentially states thatbetween any two terms that o

ur in distin
t 
ommuni
ations, no en
ryptedsubterm of one 
an be uni�ed with a subterm of the other.



2 Se
urity proto
ols and their semanti
sFix a �nite set of agents Ag with a spe
ial intruder I 2 Ag . AgnfIg is denoted byHo. The set of keys K is Klt [Kst where Klt , the set of long-term keys is the setfkAB ; pubkA; privkA j A;B 2 Ag ; A 6= Bg, and Kst is a �nite set of short-termkeys. pubkA is A's publi
 key and privkA is its private key. kAB is the long-termkey shared by A and B. For every k 2 K de�ne k 2 K as follows: for the sharedkeys and short-term keys k = k, whereas pubkA = privkA and privkA = pubkA.k is k's inverse key. For A 2 Ag , KA def= fpubkB ; kAB j B 6= Ag [ fprivkAg isthe set of keys known to A. Also �x a �nite set of non
es N . De�ne the set ofbasi
 terms T0 to be K [N [ Ag . (Note that every system studied would havesu
h a �nite set T0 asso
iated with it. Here, for ease of presentation, we �x onesu
h system for the dis
ourse.)De�ne the set of information terms to beT ::= m j (t; t0) j ftgkwhere m ranges over T0 nKlt and k ranges overK. We de�ne the set of subtermsof a term t, ST (t), to be the least set T su
h that: t 2 T ; if (t; t0) 2 T then t 2 Tand t0 2 T ; and if ftgk 2 T then t 2 T . ST (T ) = [t2T ST (t) for any T � T .For a set of terms T and a key k we say that k is referred to in T if k 2 T or9t : ftgk 2 T .� = fA!B: (M)t; A?B:t j A;B 2 Ag ; A 6= B; t 2 T ;M � ST (t) \ T0g is theset of a
tions. For a = A!B: (M)t, term(a) = t and NT (a) = M . Similarly fora = A?B:t, term(a) = t and NT (a) = ;. For any a
tion a, jaj is de�ned tobe jterm(a)j. For any send a
tion A!B: (M)t, B?A:t is said to be its mat
hingre
eive. terms(a1 � � � a`) = fterm(ai) j 1 � i � `g and NT (a1 � � � a`) = NT (a1) [� � � [ NT (a`). For any � 2 ��, CT (�) def= (T0 \ ST (terms(�))) n NT (�) is theset of 
onstants of �. An event is a pair (�; i) where � 2 �+ and 1 � i � j�j. Theset of all events is 
alled Events . For e = (a1 � � � a`; i) 2 Events , a
t(e) = ai.Note that B is (merely) the intended re
eiver in A!B: (M)t and the purportedsender in A?B:t. As we will see later, every send a
tion is an instantaneousre
eive by the intruder, and similarly, every re
eive a
tion is an instantaneoussend by the intruder.�A, the set of A-a
tions is given by fC!D: (M)t; C?D:t 2 � j C = Ag. Forany � = a1 � � � a` 2 �� and any A 2 Ag , � � A is given by ai1 � � � air wherefi1; : : : ; irg = fi � ` j ai 2 �Ag.De�nition 2.1 Let T � T be a set of information terms. analz(T ), the setof terms analyzable from T , is the least subset bT of T su
h that: T � bT ; if(t1; t2) 2 bT then t1 2 bT and t2 2 bT ; and if ftgk 2 bT and k 2 bT then t 2 bT .synth(T ), the set of terms synthesizable from T , is the least subset bT of Tsu
h that: T � bT ; if t1 2 bT and t2 2 bT then (t1; t2) 2 bT ; and if t 2 bT and k 2 bTthen ftgk 2 bT . For ease of notation, synth(analz(T )) is denoted T .



The de�nitions of analz and synth are due to [Pau98℄. We will assume anumber of basi
 properties of synth and analz proved in [Pau98℄.De�nition 2.2 An information state s is a tuple (sA)A2Ag where for ea
h agentA, sA � T . S denotes the set of all information states. The notions of an a
tionenabled at a state and update of a state on an a
tion are given as follows:{ A!B: (M)t is enabled at s i� t 2 sA [M , and if none of the terms in Mo

urs in s.{ A?B:t is enabled at s i� t 2 sI .{ update(s; A!B: (M)t) = s0 where s0A = sA [M , s0I = sI [ ftg, and s0C = sCfor all the other C 2 Ag.{ update(s; A?B:t) = s0 where s0A = sA[ftg and s0C = sC for all other C 2 Ag.We extend the notion of update to sequen
es of a
tions as follows: update(s; ") =s, update(s; � � a) = update(update(s; �); a).De�nition 2.3 A proto
ol Pr is a sequen
e a1b1 � � �a`b` 2 �+ su
h that:{ for all i : 1 � i � `, bi is ai's mat
hing re
eive,{ for all k 2 Kst referred to in ST (terms(Pr)), k 2 NT (Pr), and{ for s0 = (KA [ CT (Pr))A2Ag , for all i : 1 � i � `, ai is enabled atupdate(s0; a1b1 � � � ai�1bi�1).One of the standard presentations of proto
ols is as a sequen
e of 
ommuni
a-tions of the form A!B : (M)t. For te
hni
al 
onvenien
e, we split ea
h 
ommu-ni
ation of the above form into a pair of a
tions, A!B: (M)t and B?A:t. We alsorequire that all the short-term keys used in the proto
ol are freshly generated.This is a standard requirement and explains pre
isely why these keys are 
alled\short-term".Given a proto
ol Pr, Roles(Pr) def= fPr�A j A 2 Ag and Pr �A 6= "g.A substitution � is a map from T0 to T su
h that: �(Ag) � Ag , if A 6= Bthen �(A) 6= �(B), �(Kst ) � Kst , �(kAB ) = k�(A)�(B), �(pubkA) = pubk�(A),and �(privkA) = privk�(A). Substitutions are extended to terms and a
tionspointwise. � is suitable for a i� for all m 2 NT (a), �(m) 2 N and for m 6= n 2NT (a), �(m) 6= �(n). For � = a1 � � � a` 2 ��, � is suitable for � i� it is suitablefor ai for all i � `, and �(�) = �(a1) � � ��(a`). A substitution � is said to besuitable for a proto
ol Pr if for all t 2 CT (Pr); �(t) = t.The important point here is that if an a
tion a0 with term(a0) = t0 is aninstan
e of an a
tion a with term(a) = t, then t0 has the same \stru
ture" as t(i.e., t0 is a substitution instan
e of t), but t0 might be longer than t. This arisesbe
ause the intruder substitutes a longer term in pla
e of a non
e in t. In su
ha situation the behaviour of the honest agents is as if t0 is of the same lengthas t { sin
e the honest agents follow the proto
ol and hen
e do not expe
t anymessage 
ommuni
ated to have a longer term in pla
e of a non
e. Note that thede�nition of substitutions being suitable for an a
tion ensures that honest agentsonly substitute non
es for non
es, a
ting a

ording to proto
ol.



Given a proto
ol Pr, �0 2 �� is a play of Pr if �0 = �(�) where � 2 Roles(Pr)and � is a substitution suitable for Pr and �. Plays(Pr) is the set of all plays ofPr. Events(Pr) = f(�; i) 2 Events j � 2 Plays(Pr)g.De�ne a fun
tion infstate from S �Events(Pr)� to S by indu
tion as follows:{ infstate(s0; ") = s0.{ If infstate(s0; �) = s and �0 = � � e, then infstate(s0; �0) = update(s; a
t(e)).If infstate(s0; �) = s, for any A 2 Ag , infstateA(s0; �) = sA.Given a proto
ol Pr, s0 2 S is said to be an initial information state of Pr iffor all A 2 Ho, (s0)A = KA [ CT (Pr) and there exists a subset T of N [ Kstsu
h that (s0)I = KI [ CT (Pr) [ T . The set of all initial information states ofPr is denoted by Init(Pr).De�nition 2.4 Given a proto
ol Pr, the set of runs of Pr, R(Pr) is indu
tivelyde�ned as follows:{ (s0; ") 2 R(Pr) for every s0 2 Init(Pr).{ Suppose (s0; �) 2 R(Pr) and infstate(s0; �) = s. Suppose there is (�; i) su
hthat for all 1 � j < i, (�; j) o

urs in �, (�; i) does not o

ur in �, anda
t(�; i) is enabled at s. Then (s0; � � (�; i)) 2 R(Pr).De�nition 2.5 Given a proto
ol Pr, Sys(Pr) = (Q; I;�!) is the system de�nedby it, where:{ Q, the set of proto
ol states, is R(Pr).{ I, the set of initial proto
ol states, is f(s; ") j s 2 Init(Pr)g.{ for (s; �); (s0; �0) 2 Q and a 2 �, (s; �) a�!(s0; �0) i� s = s0 and there exists(�; i) su
h that �0 = � � (�; i) and �(i) = a.De�nition 2.6 Suppose Pr is a proto
ol and let Sys(Pr) be (Q; I;�!). For q 2Q and m 2 T0, we say that m is a se
ret at q if there exists A 2 Ho su
hthat m belongs to analz(sA) n analz(sI ) (where infstate(q) = s). Pr is leaky i�there exist q; q0 2 Q with q ��!q0 and m 2 T0 su
h that m is a se
ret at q andm 2 infstateI(q0). Pr is said to preserve se
re
y i� it is non-leaky.The se
re
y problem is the problem of determining whether a given pro-to
ol preserves se
re
y.3 An equivalen
e on termsIn this se
tion we de�ne an equivalen
e relation on terms and prove some of itsproperties.Say that a key k en
rypts in a term t if 9t0 : ft0gk 2 ST (t). Given a term tand a key k de�ne t�k by indu
tion as follows: for m 2 T0, m�k = m; (t; t0)�k =(t�k; t0�k); and (ftgk0)�k is de�ned to be t�k if k = k0, and ft�kgk0 otherwise.The binary relation � on terms is given in Figure 1. We say that t �1 t0 i� thereis a \proof" of t � t0 whi
h does not use the axioms (A2) or (A5). Any termwhi
h has a subterm of the form (t; t) or of the form ftgk with k en
rypting int is said to be a redex.



(A1) t � t(A2) (t; t) � t(A3) (t; t0) � (t0; t)(A4) (t; (t0; t00)) � ((t; t0); t00)(A5) ftgk � ft�kgk (R1) t � t0t0 � t(R2) t � t0; t0 � t00t � t00 (R3) t1 � t01; t2 � t02(t1; t2) � (t01; t02)(R4) t � t0ftgk � ft0gkFig. 1. De�nition of �.De�nition 3.1 A term t is said to be normal if there is no t0 su
h that t �1 t0and t0 is a redex. An a
tion a is normal i� term(a) is normal. A sequen
e ofa
tions a1 : : : a` is normal i� for all i � `, ai is normal. Pr = a1b1 � � �a`b` is
alled a normal proto
ol if Pr is a proto
ol and is also normal. An event (�; i)is normal if � is normal. A sequen
e of events � = e1 � � � e` is normal if for alli � `, ei is normal.The main fun
tion of the equivalen
e relation is to ensure two things: thetupling operator works with sets of terms now rather than lists, whi
h is ensuredby Axioms (A2) to (A4); the depth of the en
ryption operator is bounded. Thejusti�
ation for the latter stems from the fa
t that honest agents, when theysend terms on their own, would substitute only non
es for non
es, and hen
ewould generate only terms of bounded en
ryption depth. The intruder wouldsubstitute terms of arbitrary depth for small terms, but this is pre
isely where,for purposes of dete
ting leaks, we 
an work with bounded depth terms, as thesubsequent development will show.Proposition 3.2 The equivalen
e relation � on terms is of �nite index.Proof Idea: It is easy to see that every term is equivalent to a normal term.We now show that the set of normal terms is �nite, whi
h will immediately implythe statement of the proposition.Let jT0j = B. Let Ni denote the set of normal terms of en
ryption depth i.It suÆ
es to show that NB is �nite, sin
e no term t of en
ryption depth greaterthan B 
an be normal. N0 is just the set of tuples of distin
t terms from of T0,and hen
e jN0j � 2O(B). Now for any i, Ni+1 is got by en
rypting terms fromNi using at most B keys and forming tuples of su
h terms whi
h are distin
t.We 
an show that the number of terms that 
an be formed in this manner is atmost 2O((B+1)�jNij). Thus by indu
tion, Ni is a �nite set for all i � 0. Hen
e theresult. 2The above proof also tells us that the size of any normal term is bounded.Let us denote that bound by M for the rest of the paper. (M depends only onthe size of T0, whi
h is �xed for the dis
ussion in the paper.)If a = A!B: (M)t and a0 = A0!B0: (M 0)t0 then a � a0 i� A = A0; B = B0;M =M 0 and t � t0. Similarly for a = A?B:t and a0 = A0?B0:t0, a � a0 i� A = A0; B =



B0 and t � t0. Now for � = a1 � � � a` and �0 = a01 � � � a0̀ , � � �0 i� for all i � `,ai � a0i. For any two (�; i); (�0; i) 2 Events , we say that (�; i) � (�0; i0) i� � � �0and i = i0. We extend � to Events� as follows: � is the least equivalen
e relationon Events� su
h that{ for � = e1 � � � e` and �0 = e01 � � � e0̀ , if for all i � `, ei � e0i then � � �0.{ � � e � � if e o

urs in �.{ if � � �0 then for any e, � � e � �0 � e.(s0; �) � (s00; �0) i� s0 = s00 and � � �0.Proposition 3.3 Suppose Pr is a proto
ol and (s0; �); (s00; �0) 2 R(Pr) su
h that(s0; �) � (s00; �0). Then for any m 2 T0 and A 2 Ag, m 2 infstateA(s0; �) i�m 2 infstateA(s00; �0).Proof Idea: Throughout the proof, we use the fa
t that sin
e (s0; �) �(s00; �0), s0 = s00. It is trivial to see that if e o

urs in �0 and � = �0 � e, theninfstate(s0; �) = infstateA(s00; �0). It suÆ
es to prove the proposition in the 
asewhen � = e1 � � � e`, �0 = e01 � � � e0̀ and for all i � `, ei � e0i. We 
an then argue byindu
tion on the \proof" that (s0; �) � (s00; �0).Suppose � = e1 � � � e`, �0 = e01 � � � e0̀ and for all i � `, ei � e0i. We nowpro
eed by indu
tion on `. In the base 
ase � = �0 = " and therefore 
learlyinfstate(s0; �) = infstate(s0; �0) = s0. For the indu
tion step suppose that � =�1�e and �0 = �01�e0 with e � e0 and that for all A 2 Ag andm 2 T0,m 2 analz(sA)i� m 2 analz(s0A) (letting infstate(s0; �) = s and infstate(s0; �0) = s0). Considerthe 
ase when e = (�; i) with �(i) = A?B:t and e0 = (�0; i) with �0(i) = A?B:t0and t � t0. Now we have to prove that for all m 2 T0, m 2 analz(sA [ ftg) i�m 2 analz(s0A [ ft0g). This is easily seen to be true using the fa
t that if t andt0 are equivalent terms, then the same set of basi
 terms o

ur as subterms inboth t and t0 and further every su
h basi
 term m is en
rypted by the same setof keys in both t and t0, as is evident from the axiom (A5) in the de�nition of�. The 
ase when �(i) and �0(i) are send a
tions is treated in identi
al fashion.2Note that the fa
t that � is of �nite index 
ru
ially depends on the fa
tthat T0 is �nite. When we 
onsider the situation where N and Kst are in�nite,Proposition 3.2 does not hold. Nevertheless, we 
an build an equivalen
e of �niteindex on terms starting from a given equivalen
e relation on T0. Thus the aboveresults 
an be adapted to a more general setting also.4 De
idabilityLet Pr be a proto
ol and let Sys(Pr) = (Q; I;�!). The set R0(Pr) is de�nedto be f(s0; �) j � is normal and there exists �0 su
h that � � �0 and (s0; �0) 2R(Pr)g. The �nite state system Sys0(Pr) as de�ned to be (R0(Pr); I;�!0) wherefor (s; �); (s0; �0) 2 R0(Pr) and a 2 �, (s; �) a�!0(s0; �0) i� s = s0 and there exists



(�; i) su
h that �0 = � � (�; i) and �(i) = a. We say that Sys0(Pr) is leaky i� thereare two states r; r0 2 R0(Pr) with r ��!0r0 and m 2 T0 su
h that m is a se
ret ofr and m 2 analz(infstateI(r0)).The following lemma is an easy 
onsequen
e of Proposition 3.2.Lemma 4.1 Sys0(Pr) is a �nite-state system.Theorem 4.2 Pr is leaky i� Sys0(Pr) is leaky.Proof Idea: Suppose Sys(Pr) = (Q; I;�!) and Sys0(Pr) = (Q0; I 0;�!0).Suppose Pr is leaky. This means that there are two states q; q0 2 Q with q ��!q0and m 2 T0 su
h that m is a se
ret of q and m 2 analz(infstateI(q0)). Thereforethere is a state r0 2 Q0, su
h that q0 � r0. Now sin
e q ��!q0, there exist s0 2 Sand �; �0 su
h that q = (s0; �), q0 = (s0; �0) and � is a pre�x of �0. Let r0 = (s0; & 0).Sin
e q0 � r0, �0 � & 0. We 
an easily argue that there is a pre�x & of & 0 su
h that� � & . Let r = (s0; &). Then q � r. Now it follows from Lemma 3.3 that m is ase
ret of r and m 2 analz(infstateI(r0)). Thus Sys�(Pr) is leaky.Suppose Sys0(Pr) is leaky. Then there are two r; r0 2 Q0 with r ��!0r0 andm 2 T0 su
h that m is a se
ret of r and m 2 analz(infstateI(r0)). We knowthat there is some q0 2 Q su
h that q0 � r0. From Lemma 3.3, it follows thatm 2 analz(infstateI(q0)). Let r = (s0; &) and r0 = (s0; & 0). Let q0 = (s0; �0). We
an easily argue that there is a pre�x � of �0 with � � & . Let q = (s0; &). Thenq � r and therefore m is a se
ret of q as well, by Lemma 3.3. Thus Pr is leaky.2Lemma 4.3 Let Pr be a normal proto
ol, (s0; �) 2 R(Pr), and M 0 = max t2sjtjwhere infstate(s0; �) = s. Then for every e enabled at (s0; �), there is e0 � e su
hthat jterm(e0)j �M � (M 0 + 1) and e0 is enabled at (s0; �).Proof Idea: This is trivial to see if e 
orresponds to a send a
tion. Sin
ethe proto
ol is normal, a send by an honest agent, whi
h involves a normal termhaving size at most M and mentioning at most M non
es, is of size at mostM � (M 0+1) sin
e a

ording to semanti
s the non
es in the term are substitutedeither with newly generated non
es or with terms already re
eived.Suppose e 
orresponds to a re
eive a
tion. This 
orresponds to a send by theintruder. There is no a priori bound on the size of e. But sin
e the proto
ol de-s
ription mentions only normal terms, there is always some event e0 � e enabledat (s0; �) su
h that for some normal term t 2 sI , term(e0) is got by substitutingterms from analz(sI ) for non
es in t. It 
an be easily seen that term(e0) is of sizeat most M � (M 0 + 1). 2Theorem 4.4 For the 
lass of normal proto
ols, the se
re
y problem is de
id-able.



Proof Idea: It suÆ
es to prove that for the 
lass of normal proto
ols, the setR0(Pr) is e�e
tively 
onstru
tible. We show by indu
tion on i, how to 
onstru
tthe set of sequen
es of length i in R0(Pr). This suÆ
es to prove that R0(Pr) is
onstru
tible, sin
e all the sequen
es in it are of bounded length.Let us denote by Ri the set of sequen
es inR0(Pr) of length i. R0 is essentiallythe set of initial information states of Pr. This is easily 
onstru
tible sin
e ea
hinitial information state is a tuple of subsets of T0, whi
h is a �xed �nite set.Suppose Ri is 
onstru
tible. Now we 
laim that Ri+1 is exa
tly the set of(s0; �1 �e) su
h that (s0; �1) 2 Ri, e is normal, and there exists e0 with jterm(e0)j �M � (M + 1), e � e0 and e0 is enabled at (s0; �). This is easily seen to be ane�e
tively 
he
kable 
ondition and hen
e if we prove the above 
laim the theoremis proved.Suppose (s0; �1 � e) 2 Ri+1. This means that (s0; �1) 2 Ri, i.e., there is some(s0; �01) 2 R(Pr) su
h that �1 � �01. We 
an show that there is some e0 enabledat (s0; �01) with e � e0. Therefore, by Lemma 4.3 there is e00 su
h that e0 � e00,jterm(e00)j � M � (M 0 + 1) where M 0 = maxfjtj j t 2 infstate(s0; �01)g. Now theterms from infstate(s0; �01) whi
h are used to 
onstru
t e00 have \normal 
oun-terparts" in infstate(s0; �1). Therefore we 
an show that there is e000 equivalentto e00 whi
h is of size � M � (M + 1) and is enabled at (s0; �1) (the \normal
ounterpart" of (s0; �01)). Also e � e000. This proves one dire
tion of the 
laim.Suppose now that (s0; �1) 2 Ri and that there exists e0 su
h that jterm(e0)j �M � (M + 1), e � e0 and e0 is enabled at (s0; �1). Now there is some (s0; �01) 2R(Pr) with (s0; �01) � (s0; �1). We 
an show that all e1 o

urring in (s0; �1) are\normal 
ounterparts" of events o

urring in (s0; �01). Hen
e we 
an show thatthere is some e00 su
h that jterm(e00)j �M � (M 0 + 1) where M 0 = maxfjtj j t 2infstate(s0; �01)g, and e0 � e00 and e00 is enabled at (s0; �01). Sin
e e � e0, e � e00.Sin
e (s0; �01 � e00) 2 R(Pr), (s0; �1 � e) 2 Ri+1.This 
on
ludes the proof that for normal proto
ols, the se
re
y problem isde
idable. 2Note that in the setting we are 
onsidering in this paper, using the equiva-len
e on terms of �nite index, given any system we 
an quotient it to obtain anequivalent �nite state system. As observed earlier, in the 
ase of unboundedlymany non
es, the equivalen
e on terms would not be on �nite index, and hen
ethe quotiented systems would in general not be �nite. In [RS03℄, we 
onsider these
re
y problem in the situation where message length is bounded but the non
eset is in�nite, and show that, for a suitable sub
lass of proto
ols { we 
all themstru
tured proto
ols { even though they have in�nitely many runs in general, stillthey have the property that if the system is leaky, then there is run of boundedlength witnessing a leak. This suÆ
es to prove de
idabilty.5 Unde
idabilityWe show in this se
tion that the se
re
y problem is unde
idable even when theset of non
es used in runs of the proto
ols is �nite. This is shown by sket
hing



how a two-
ounter ma
hine 
an be 
oded up using the proto
ol formalism. Atwo-
ounter ma
hine is a ma
hine with a �nite set of 
ontrol states and two
ounters holding natural number values. The a
tions of the ma
hine are statetransitions based on the 
urrent state and the values of the 
ounters. In addition,during ea
h transition, the 
ounters may be in
remented or de
remented, andalso tested for zero. We 
ode up any given ma
hine by a proto
ol whose rolestypi
ally look like the following:A?B:fq; x; (z; y)gkAB ; A!B:fq0; (z; x); ygkAB .The above role represents a transition whi
h 
hanges state from q to q0,in
rements the �rst 
ounter and de
rements the se
ond. The intruder uses thefa
t that arbitrary terms 
an be substituted in pla
e of non
es to mimi
 thebehavior of the ma
hines whi
h use the output 
on�guration of one transitionas the input 
on�guration of another. This is a
hieved by the intruder blo
kingthe sends in some play of a role of the above kind, and forwarding it to a re
eivein some other play (of possibly the same role). This is the key to unde
idability.The terms q and q0 in the above merit spe
ial mention. They are meant toen
ode states of the two-
ounter ma
hine. Now sin
e an arbitrary two-
ounterma
hine does not have a bound on the number of its states, and sin
e we areworking with a �xed set of non
es, we 
annot 
ode states dire
tly. The q's haveto be thought of as some 
omplex terms. Then it is easy to see that even ifwe manage to en
ode the pair of 
ounters using normal terms in the proto
oldes
ription, there is a large enough two-
ounter ma
hine (say, one with mu
hlarger than 2M2 states), whi
h 
annot be faithfully 
oded up by any normalproto
ol, sin
e there are not enough normal terms to 
ode up even the set ofstates of the given ma
hine. In 
on
lusion, for every �xed two-
ounter ma
hine,there is a T0 and a normal proto
ol whi
h uses terms built from T0 whi
h 
odesthe ma
hine, but if we �x T0, then there are ma
hines (those whose number ofstates is mu
h more than the number of normal terms based on T0) whi
h 
annotbe 
oded by any normal proto
ol whi
h uses terms built from T0.There is also a 
oding whi
h uses unbounded en
ryption depth. This showsthat the restri
tion whi
h the equivalen
e relation � pla
es on en
ryption is alsoessential for de
idability.6 A modal logi
We 
an show that the de
idability result of the se
re
y problem for normalproto
ols also extends to the veri�
ation problem for a simple modal logi
, inwhi
h one 
an state se
urity properties.The formulas of the logi
 are given by:� ::= A has t j :� j � _ � j hai� j 3�where A 2 Ag , t 2 T , a 2 �.The logi
 is interpreted on models whi
h are of the form (Sys; �) where:Sys = (Q; I;�!) is a �-labelled transition system and � is a valuation fun
tionfrom Q to S.



Given a model M = ((Q; I;�!); �), a state q 2 Q, and a formula �, thenotion (M; q) j= � is de�ned indu
tively as usual: (M; q) j= A has t i� t 2synth(analz((�(q))A)); (M; q) j= :� i� (M; q) 6j= �; (M; q) j= �_� i� (M; q) j= �or (M; q) j= �; (M; q) j= hai� i� 9q0 su
h that q a�!q0 and (M; q0) j= �; (M; q) j=3� i� 9q0 su
h that q ��!q0 and (M; q0) j= � (where ��! is the re
exive transitive
losure of the relation got by taking the union of the relations a�!).ForM = ((Q; I;�!); �), we say thatM j= � if (M; q) j= � for all q 2 I For aproto
ol Pr and a formula �, we say that Pr j= � i� (Sys(Pr); infstate) j= �. Theveri�
ation problem is the problem of determining whether Pr j= �, given aproto
ol Pr and a formula �.Note that interesting se
urity properties 
an be spe
i�ed in the logi
. Forinstan
e, the following formula says that a basi
 term m is a se
ret of some stateof the model.se
m def= 3( _A2Ho A has m ^ :(I has m)).The following formula says that the given model is leaky.leaky def= 3( _m2T0 se
m ^ 3(I has m)).Referen
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