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Abstract. Modelling security protocols easily leads us to consideration
of infinite state systems and as a result, the verification of secrecy, a
crucial requirement in security, becomes undecidable. To cope with this,
various bounds are externally imposed to yield finite systems and veri-
fication is done for these systems. In this paper, we suggest a semantic
approach, whereby the bounds are obtained by equating terms used in
communications. We propose an equivalence relation on terms of finite
index which leads to a notion of normal terms such that the secrecy prob-
lem becomes decidable for those protocols that use only normal terms.
Many interesting protocols studied in the literature seem to respect this
relation, suggesting that finite state methods may be applicable for these
(a priori) infinite state systems.

1 Introduction

Cryptographic protocols operate in environments where communicating agents
exchange information over public channels. The possibility of intruders listening
to message exchanges and manipulating the system (for example by blocking
messages, or forging them) necessitates the use of encrypted communication.
Stringent requirements on these protocols relate to ensuring secrecy of informa-
tion (only the receiver gets the secret and not any intruder), authentication (the
secret does originate from the purported sender) and so on. Despite considerable
ingenuity on the part of the designers of these protocols, many possible attacks
are often discovered later. Interestingly, most of these attacks are independent, of
the encryption schemes used, but rely on logical design flaws, and use intruders’
abilities to manipulate communication patterns between honest agents ([Low96]
[CJIT]).

It is in this context that formal verification of security protocols assumes
importance ([Me95], [SC00]). The protocols are typically finite (indeed, very

short) sequences of communications and the requirements can be stated in simple
logics (for instance propositional modal logics). Hence the use of theorem proving
techniques to verify the correctness of such protocols, as well as model checking
for finding attacks, seems a priori interesting and worthwhile ([Bol97], [MCJ97],
[Pau9g]).

The verification problem for security protocols can be formulated as follows:
given an abstract specification of the protocol as a sequence of communications



between agents, is it the case that every run generated by possible multi-sessions
between agents, with a hypothetical intruder interleaving arbitrarily many ac-
tions, satisfy the given security requirements? There are many requirements but
an important (and central) requirement is that of secrecy: a secret that is gener-
ated by an honest agent should not be leaked to the intruder, who is assumed to
have unlimited computational resources and can keep a record of every public
system event and utilize it at an arbitrarily later time. However, the intruder
cannot generate an honest agent’s secret autonomously, nor can it break encryp-
tion.

Security protocols are typically specified as a (finite) set of roles (typically
with names like challenger, responder and so on). These are abstract patterns of
communication which specify what messages are sent when, and how to respond
to the receipt of any message. The content of these messages is (usually) not
relevant, but the structure is; hence abstract variables suffice to describe the
protocol. A system consists of a finite set of agents. In any system run, an agent
plays one or more roles, each time instantiating variables appropriately with its
secrets. Every honest agent is assumed to follow the protocol.

In interesting situations, the same agent may play several roles simultane-
ously, often with the same agents; these are referred to as multi-sessions. More-
oever, an agent may play a role many times. Hence the set of system runs is
(typically) infinite.

Typically, one all-powerful intruder is assumed, who can copy every com-
munication in the system, can block any message and can pretend to be any
agent. It is assumed that the intruder has unlimited computational resources
and can keep a record of every public system event and utilize it at an arbitrar-
ily later time. However, the intruder cannot generate an honest agent’s secret
autonomously, nor can it break encryption.

Even the precise modelling of system states is non-trivial. This has to do
with the fact that the intruder needs to be unconstrained, and yet the state
of knowledge of the intruder is crucial for verification; much of the literature
is devoted to this aspect ([Gou00], [M099]). The next difficulty is that when
we model the semantics of the system precisely, we get infinite state systems.
There are many sources of unboundedness in the modelling of security protocols.

The first type of unboundedness relates to the requirement of freshness: ev-
ery time an agent sends out a secret (a nonce), it is a new one — an obvious
requirement to avoid the intruder replaying old sessions. But this means that
when there is no bound on the number of plays of roles by agents, the number of
nonces used grows unboundedly as well. Unbounded length of messages may also
cause complication. Since the intruder may generate arbitrarily long messages,
and agents receiving them may be constrained by the protocol to respond in

kind, the system state space may become infinite.

Given that the models are infinite state systems, it is not surprising that
the secrecy problem for such protocols is undecidable. [DLMS99] use unbounded
generation of nonces to show that the secrecy problem for protocols is unde-
cidable, even when the number of roles, the length of each role and message



length are bounded. On the other hand, even if only boundedly many nonces
are assumed to be generated, the intruder may get unbounded slave work from
honest agents using messages of arbitrary length, leading to undecidability as in
[HT96].

How then are we to cope with verification of such systems? The literature
consists of many proposals that typically place bounds on the number of plays
on any run of the protocol, effectively yielding a finite system. Examples of this
approach include [ALV01], [MS01] and [RT01]. There are also approaches which
impose syntactic restrictions on the use of the tupling operator. Examples of this
include [DEKS82] and [ALV01]. [CS02] is a good survey on the various approaches
to decidability of security protocol verification, and also on the undecidability

results.

An alternative to placing such ‘external’ bounds is to look for subclasses
of protocols in which, either by virtue of the manner in which communication
patterns between agents are structured, or by the way in which system behaviour
is structured, decidability obtains. The definition of such a subclass is arrived
at by a detailed analysis of the undecidability proof; while we cannot hope for
an exact characterization, it suffices to come up with a restriction that is strong
enough to exclude the “source” of undecidability while yet retaining a large
enough class of interesting protocols.

In this context, the work [CCO3] uses techniques from tree automata to
achieve decidability for the class of protocols in which every agent copies at
most one piece of any message it receives into any message it sends. (See also
[CCMO1].)

Our approach in this paper is motivated by semantic considerations. We
propose a semantic criterion which gives decidability in the presence of terms
of arbitrary length, but with boundedly many nonces. The central contribution
of the paper is the definition of a natural equivalence relation on terms, which
leads to the notion of normal terms. We define normal protocols to be those for
which all the terms appearing in the protocol description are normal and show
that, for the class of normal protocols, the secrecy problem is decidable. This
is an interesting subclass of protocols, including most protocols standard in the
literature ([CJ97]).

It turns out that without the restriction, the halting problem for two-counter
machines may be coded, illustrating how distinguishing such terms lies at the
source of undecidability. We show that for the subclass studied, the decidability
result extends to other properties than secrecy as well, those which can be stated
in a simple modal logic.

In a companion paper ([RS03]), we have proposed a simple syntactic re-
striction on protocols and show decidability in the presence of unboundedly
many nonces, but bounded message length. The condition essentially states that
between any two terms that occur in distinct communications, no encrypted
subterm of one can be unified with a subterm of the other.



2 Security protocols and their semantics

Fix a finite set of agents Ag with a special intruder I € Ag. Ag\{I} is denoted by
Ho. The set of keys K is K;; U K4 where Ky, the set of long-term keys is the set
{kap,pubk 4, privk, | A,B € Ag, A # B}, and K, is a finite set of short-term
keys. pubk 4 is A’s public key and privk 4 is its private key. kap is the long-term
key shared by A and B. For every k € K define k € K as follows: for the shared
keys and short-term keys k = k, whereas pubk , = privk , and privk , = pubk ,.

k is k’s inverse key. For A € Ag, K4 def {pubkg,kap | B # A} U {privk 4} is
the set of keys known to A. Also fix a finite set of nonces N. Define the set of
basic terms Ty to be K U N U Ag. (Note that every system studied would have
such a finite set T, associated with it. Here, for ease of presentation, we fix one
such system for the discourse.)

Define the set of information terms to be

T u= m |t ] {th

where m ranges over Ty \ Kj; and k ranges over K. We define the set of subterms
of a term ¢, ST(t), to be the least set T' such ‘rha‘r teT;if (t,t') € T thent €T
and t' € T; and if {t}, € T then ¢t € T. ST(T U ST(t) for any T C T.

teT
For a set of terms T and a key k we say that k is referred toin T if k € T or

dt . {t}k efT.

Y ={AB:(M)t,A?B:t | A,B € Ag,A# B,t € T,M C ST(t) N Ty} is the
set of actions. For a = A!B:(M)t, term(a) = ¢t and NT(a) = M. Similarly for
a = A?B:t, term(a) = t and NT(a) = . For any action a, |a| is defined to
be |term(a)|. For any send action A!B:(M)t, B?A:t is said to be its matching
receive. terms(ay - --ag) = {term(a;) |1 < i </} and NT(ay---ag) = NT(a;) U

-~UNT(ay). For any n € X*, CT(n) def (To N ST (terms(n))) \ NT(n) is the
set of constants of . An event is a pair (n,1) where n € X% and 1 <4 < |n|. The
set of all events is called Events. For e = (a; - - - ag, i) € Events, act(e) = a;.

Note that B is (merely) the intended receiver in A!B: (M)t and the purported
sender in A7B:t. As we will see later, every send action is an instantaneous
receive by the intruder, and similarly, every receive action is an instantaneous
send by the intruder.

X4, the set of A-actions is given by {C!D:(M)t,C?D:t € X' | C = A}. For
any 1 = a1---ap € X* and any A € Ag, n | A is given by a;, ---a;, where
{i1,...,ip}={i <l|a; € ¥s}.

Definition 2.1 Let T' C T be a set of informaﬁon terms. analz(T'), the set
of terms analyzable from T, is the least subsel T of T such that: T C T if
(t1,t2) € T then ty € T and ty € T and if {t}, € TandkeT thenteT.

synth(T'), the set of terms %yn‘rhe%lzable from T, is the least subset T of T
such that: TCT if tq €T and ty € T then (t1,12) ET and 7ff€T and k€T
then {t}x € T. For ease of notation, synth(analz(T)) is denoted T.



The definitions of analz and synth are due to [Pau98]. We will assume a
number of basic properties of synth and analz proved in [Pau98].

Definition 2.2 An information state s is a tuple (s4)ac a, where for each agent
A, s4 CT.S denotes the set of all information states. The notions of an action
enabled at a state and update of a state on an action are given as follows:

— AlB: (M)t is enabled at s iff t € s4 UM, and if none of the terms in M
0CCUTS 1IN 8.

— A?B:t is enabled at s iff t € 57.

— update(s, A!B:(M)t) = s" where s’y = saUM, st = sy U{t}, and s, = sc
for all the other C € Ag.

— update(s, A?B:t) = s' where s'y = saU{t} and si, = sc for all other C € Ag.

We extend the notion of update to sequences of actions as follows: update(s,e) =
s, update(s,n - a) = update(update(s,n),a).

Definition 2.3 A protocol Pr is a sequence a1b, - --asby € X1 such that:

— foralli:1<i<U/¥, b; is a;’s matching receive,

— for all k € Kg referred to in ST (terms(Pr)), k € NT(Pr), and

— for so = (Ka U CT(Pr))acag, for all i : 1 < i < {, a; is enabled at
update(sg,a1by - a;_1b;_1).

One of the standard presentations of protocols is as a sequence of communica-
tions of the form A— B:(M)t. For technical convenience, we split each commu-
nication of the above form into a pair of actions, A!B: (M)t and B?A:t. We also
require that all the short-term keys used in the protocol are freshly generated.
This is a standard requirement and explains precisely why these keys are called
“short-term”.

Given a protocol Pr, Roles(Pr) def {PrlA| A€ Ag and Pr{A # ¢}.

A substitution o is a map from Ty to T such that: o(Ag) C Ag,if A # B
then o(A) # o(B), 0(Ks) C Ksi, 0(kap) = ko(ayo(n), o(pubk ) = pubk, ),
and o(privk ) = privk, 4). Substitutions are extended to terms and actions
pointwise. o is suitable for a iff for all m € NT(a), o(m) € N and for m # n €
NT(a), o(m) # o(n). Forn =a;---a; € X*, o is suitable for n iff it is suitable
for a; for all i < ¢, and o(n) = o(a1)---o(as). A substitution o is said to be
suitable for a protocol Pr if for all t € CT(Pr),o(t) = t.

The important point here is that if an action o' with term(a’) = ¢’ is an
instance of an action a with term(a) = t, then ¢’ has the same “structure” as ¢
(i.e., t' is a substitution instance of t), but ¢’ might be longer than ¢. This arises
because the intruder substitutes a longer term in place of a nonce in ¢. In such
a situation the behaviour of the honest agents is as if ¢ is of the same length
as t — since the honest agents follow the protocol and hence do not expect any
message communicated to have a longer term in place of a nonce. Note that the
definition of substitutions being suitable for an action ensures that honest agents
only substitute nonces for nonces, acting according to protocol.



Given a protocol Pr, n' € X* is a play of Pr if ' = o(n) where n € Roles(Pr)
and o is a substitution suitable for Pr and 7. Plays(Pr) is the set of all plays of
Pr. Events(Pr) = {(n,i) € Events | n € Plays(Pr)}.

Define a function infstate from S x Fvents(Pr)* to S by induction as follows:

— infstate(so,€) = So.
— If infstate(so, &) = s and & = £ - e, then infstate(so, &) = update(s, act(e)).

If infstate(sg, &) = s, for any A € Ag, infstate 4(s0,&) = sa.

Given a protocol Pr, sqg € § is said to be an initial information state of Pr if
for all A € Ho, (so)a = K4 U CT(Pr) and there exists a subset T' of N U K
such that (so)r = Ky U CT(Pr) UT. The set of all initial information states of
Pr is denoted by Init(Pr).

Definition 2.4 Given a protocol Pr, the set of runs of Pr, R(Pr) is inductively
defined as follows:

— (s0,€) € R(Pr) for every sq € Init(Pr).

— Suppose (s0,€) € R(Pr) and infstate(so,&) = s. Suppose there is (1,i) such
that for all 1 < j < i, (n,7) occurs in &, (n,i) does not occur in &, and
act(n,i) is enabled at s. Then (sg, €-(n,1)) € R(Pr).

Definition 2.5 Given a protocol Pr, Sys(Pr) = (Q, I, —) is the system defined
by it, where:
— @, the set of protocol states, is R(Pr).
— I, the set of initial protocol states, is {(s,¢) | s € Init(Pr)}.
— for (s,6),(s',€") € Q and a € ¥, (5,&)-25(s",&") iff s = s' and there exists
(n,1) such that & = ¢ - (n,1) and n(i) = a.

Definition 2.6 Suppose Pr is a protocol and let Sys(Pr) be (Q,I,—). For q €
Q and m € Ty, we say that m is a secret at q if there exists A € Ho such
that m belongs to analz(sa) \ analz(sy) (where infstate(q) = s). Pr is leaky iff
there exist q,q' € Q with g—q' and m € Ty such that m is a secret at q and
m € infstate;(q'). Pr is said to preserve secrecy iff it is non-leaky.

The secrecy problem is the problem of determining whether a given pro-
tocol preserves secrecy.

3 An equivalence on terms

In this section we define an equivalence relation on terms and prove some of its
properties.

Say that a key k encrypts in a term t if 3t' : {¢'}x € ST(¢). Given a term ¢t
and a key k define ¢_j, by induction as follows: for m € Ty, m_, = m; (¢, ')y =
(t—g,t";); and ({t}x)— is defined to be t_y if k = k', and {t_j}s otherwise.
The binary relation = on terms is given in Figure 1. We say that ¢t = ¢' iff there
is a “proof” of t = ' which does not use the axioms (A2) or (A5). Any term
which has a subterm of the form (¢,t) or of the form {¢}; with k encrypting in
t is said to be a redez.



(Al)t=t (R1)  t=t (R3) ti =t), tr=t)
(A2) (¢, t) =t 7=t (t,12) = (7, 15)
(A3) (t,t') = (t',1)

(Ad) (L () = (4 1), ") R E=¢, ¢ =t (R4) L=+t

(A5) {t}r = {t—s} t=t" {the ={t'}s

Fig. 1. Definition of =.

Definition 3.1 A term t is said to be normal if there is no t' such that t = t'
and t' is a redex. An action a is normal iff term(a) is normal. A sequence of
actions ay . ..ag 18 normal iff for all i < £, a; is normal. Pr = a1by -+ - agby is
called a normal protocol if Pr is a protocol and is also normal. An event (n,1)
is normal if 1 is normal. A sequence of events £ = ey - - - eg is normal if for all
1 </t, e; is normal.

The main function of the equivalence relation is to ensure two things: the
tupling operator works with sets of terms now rather than lists, which is ensured
by Axioms (A2) to (A4); the depth of the encryption operator is bounded. The
justification for the latter stems from the fact that honest agents, when they
send terms on their own, would substitute only nonces for nonces, and hence
would generate only terms of bounded encryption depth. The intruder would
substitute terms of arbitrary depth for small terms, but this is precisely where,
for purposes of detecting leaks, we can work with bounded depth terms, as the
subsequent development will show.

Proposition 3.2 The equivalence relation = on terms is of finite index.

Proof Idea: It is easy to see that every term is equivalent to a normal term.
We now show that the set of normal terms is finite, which will immediately imply
the statement of the proposition.

Let |To| = B. Let N; denote the set of normal terms of encryption depth i.
It suffices to show that Np is finite, since no term ¢ of encryption depth greater
than B can be normal. Ny is just the set of tuples of distinct terms from of Ty,
and hence |Ny| < 29(F). Now for any i, N;;, is got by encrypting terms from
N; using at most B keys and forming tuples of such terms which are distinct.
We can show that the number of terms that can be formed in this manner is at
most 20((B+1)IN:l) Thus by induction, N; is a finite set for all i > 0. Hence the
result.

O

The above proof also tells us that the size of any normal term is bounded.
Let us denote that bound by M for the rest of the paper. (M depends only on
the size of Ty, which is fixed for the discussion in the paper.)

Ifa=AlB:(M)t and o' = A''B":(M")t' thena=a"iff A=A"B=B' M =
M'" and t = t'. Similarly for a = A?B:t and o’ = A'"?B":t',a=d if A= A" B =



B' and t =t'. Now forp = a1 ---ag and ' = a}---aj, n =n' iff for all i < ¢,
a; = a}. For any two (n,14), (1',i) € Fvents, we say that (n,i) = (¢',4) it n =1/

and i = i'. We extend = to Events™ as follows: = is the least equivalence relation
on FEvents® such that

—for{ =e;---eqand ¢’ =€} - e}, if forall i < ¢, e; =€} then £ =¢'.
— ¢-e=¢if e occurs in £.
—if£=¢ thenforanye, E-e=¢& -e.

(50,€) = (50,¢") iff sg = 55 and £ = &'

Proposition 3.3 Suppose Pr is a protocol and (s, &), (s4,&') € R(Pr) such that
(s0,&) = (s4,&"). Then for any m € Ty and A € Ag, m € infstate ,(so,&) iff
m € infstate 4(sg,&").

Proof Idea: Throughout the proof, we use the fact that since (sg,&) =
(s5,&"), so = sg. It is trivial to see that if e occurs in & and £ = &' - e, then
infstate(so, £) = infstate 4(sg,&"). It suffices to prove the proposition in the case
when £ =e;---eg, & =€) ---e; and for all i < ¢, e; = e;. We can then argue by
induction on the “proof” that (so,&) = (sg,¢’).

Suppose § = e1---es, £ = e ---€, and for all i < ¢, e; = e}. We now
proceed by induction on £. In the base case £ = &' = & and therefore clearly
infstate(so, &) = infstate(sg,&') = s¢. For the induction step suppose that & =
&reand & = &€’ with e = ¢’ and that for all A € Agand m € Ty, m € analz(sa)
iff m € analz(s'y) (letting infstate(so,&) = s and infstate(sq,&') = s'). Consider
the case when e = (n,i) with (i) = A?B:t and €' = (1)/,i) with 7'(i) = A?B:¢'
and t = t'. Now we have to prove that for all m € Ty, m € analz(sa U {t}) iff
m € analz(s’y U {t'}). This is easily seen to be true using the fact that if ¢ and
t' are equivalent terms, then the same set of basic terms occur as subterms in
both ¢ and t' and further every such basic term m is encrypted by the same set
of keys in both ¢ and #', as is evident from the axiom (A5) in the definition of
=. The case when 7(i) and /(i) are send actions is treated in identical fashion.

O

Note that the fact that = is of finite index crucially depends on the fact
that Ty is finite. When we consider the situation where N and K; are infinite,
Proposition 3.2 does not hold. Nevertheless, we can build an equivalence of finite
index on terms starting from a given equivalence relation on 7. Thus the above
results can be adapted to a more general setting also.

4 Decidability

Let Pr be a protocol and let Sys(Pr) = (Q,I,—). The set R'(Pr) is defined
to be {(s0,&) | € is normal and there exists ¢’ such that £ = &' and (sg,&') €
R(Pr)}. The finite state system Sys'(Pr) as defined to be (R'(Pr), I,—') where

for (s,€),(s',¢') € R'(Pr) and a € X, (s,f)i>l(s’,£’) iff s = s’ and there exists



(n,4) such that & = ¢-(n,4) and n(i) = a. We say that Sys'(Pr) is leaky iff there

!
are two states 7,7’ € R'(Pr) with r—= 7' and m € T, such that m is a secret of
r and m € analz(infstate (r")).
The following lemma, is an easy consequence of Proposition 3.2.

Lemma 4.1 Sys'(Pr) is a finite-state system.
Theorem 4.2 Pr is leaky iff Sys' (Pr) is leaky.

Proof Idea: Suppose Sys(Pr) = (Q,I,—) and Sys'(Pr) = (Q', I', —').
Suppose Pr is leaky. This means that there are two states ¢,¢' € Q with g—¢’
and m € Tp such that m is a secret of ¢ and m € analz(infstate,;(q')). Therefore
there is a state ' € @', such that ¢’ = r'. Now since g—¢’, there exist sg € S
and &, &' such that ¢ = (sg,&), ¢’ = (s0,&’) and £ is a prefix of £'. Let ' = (s¢,¢’).
Since ¢' =1, & = ¢'. We can easily argue that there is a prefix ¢ of ¢’ such that
& =c¢. Let r = (sg,5). Then ¢ = r. Now it follows from Lemma 3.3 that m is a
secret of r and m € analz(infstate,(r')). Thus Sys_(Pr) is leaky.

Suppose Sys'(Pr) is leaky. Then there are two r,r' € Q' with r—5'r! and
m € Ty such that m is a secret of r and m € analz(infstate,(r')). We know
that there is some ¢' € @ such that ¢’ = r'. From Lemma 3.3, it follows that
m € analz(infstate;(q")). Let r = (so,s) and ' = (sg,¢"). Let ¢’ = (s9,&'). We
can easily argue that there is a prefix £ of & with £ = ¢. Let ¢ = (sg,¢). Then
q = r and therefore m is a secret of ¢ as well, by Lemma 3.3. Thus Pr is leaky.

O

Lemma 4.3 Let Pr be a normal protocol, (so,&) € R(Pr), and M' = maz,c,|t|
where infstate(sg, &) = s. Then for every e enabled at (s¢, &), there is €’ = e such
that |term(e')| < M - (M' + 1) and €' is enabled at (sg,§).

Proof Idea: This is trivial to see if e corresponds to a send action. Since
the protocol is normal, a send by an honest agent, which involves a normal term
having size at most M and mentioning at most M nonces, is of size at most
M - (M'"+1) since according to semantics the nonces in the term are substituted
either with newly generated nonces or with terms already received.

Suppose e corresponds to a receive action. This corresponds to a send by the
intruder. There is no a priori bound on the size of e. But since the protocol de-
scription mentions only normal terms, there is always some event e’ = e enabled
at (sg, &) such that for some normal term ¢ € 57, term(e’) is got by substituting

terms from analz(sy) for nonces in ¢. It can be easily seen that term(e’) is of size
at most M - (M’ +1).

O

Theorem 4.4 For the class of normal protocols, the secrecy problem is decid-
able.



Proof Idea: It suffices to prove that for the class of normal protocols, the set
R'(Pr) is effectively constructible. We show by induction on 4, how to construct
the set of sequences of length 7 in R'(Pr). This suffices to prove that R'(Pr) is
constructible, since all the sequences in it are of bounded length.

Let us denote by R; the set of sequences in R'(Pr) of length i. Ry is essentially
the set of initial information states of Pr. This is easily constructible since each
initial information state is a tuple of subsets of Ty, which is a fixed finite set.

Suppose R; is constructible. Now we claim that R;y; is exactly the set of
(s0,&1-€) such that (s, &) € R;, e is normal, and there exists e’ with |term(e’)| <
M- (M +1), e =¢€ and €' is enabled at (sg,&). This is easily seen to be an
effectively checkable condition and hence if we prove the above claim the theorem
is proved.

Suppose (sg, &1 - €) € Riy1. This means that (so,&;) € Ry, i.e., there is some
(s0,&1) € R(Pr) such that & = £]. We can show that there is some e’ enabled
at (so,&]) with e = €'. Therefore, by Lemma 4.3 there is €'’ such that e’ = €”,
[term(e")| < M - (M' + 1) where M' = maz{|t| | t € infstate(so,&1)}. Now the
terms from infstate(so, &) which are used to construct ¢ have “normal coun-
terparts” in infstate(so,&1). Therefore we can show that there is e’ equivalent
to e’ which is of size < M - (M + 1) and is enabled at (sp,&1) (the “normal
counterpart” of (sg,])). Also e = €. This proves one direction of the claim.

Suppose now that (sg, &) € R; and that there exists e’ such that |term(e)| <
M - (M +1), e =€ and €' is enabled at (sg,&;). Now there is some (sg,£]) €
R(Pr) with (so,&]) = (s0,&1). We can show that all e; occurring in (sg, &) are
“normal counterparts” of events occurring in (so,&]). Hence we can show that
there is some e such that |[term(e")| < M - (M' + 1) where M' = maz{|t| |t €
infstate(so,&1)}, and €' = €' and € is enabled at (sp,&]). Since e =¢e', e = €.
Since (sg,&; - €'") € R(Pr), (s0,&1 - €) € Riy1.

This concludes the proof that for normal protocols, the secrecy problem is
decidable.

O

Note that in the setting we are considering in this paper, using the equiva-
lence on terms of finite index, given any system we can quotient it to obtain an
equivalent finite state system. As observed earlier, in the case of unboundedly
many nonces, the equivalence on terms would not be on finite index, and hence
the quotiented systems would in general not be finite. In [RS03], we consider the
secrecy problem in the situation where message length is bounded but the nonce
set is infinite, and show that, for a suitable subclass of protocols we call them
structured protocols even though they have infinitely many runs in general, still
they have the property that if the system is leaky, then there is run of bounded
length witnessing a leak. This suffices to prove decidabilty.

5 Undecidability

We show in this section that the secrecy problem is undecidable even when the
set of nonces used in runs of the protocols is finite. This is shown by sketching



how a two-counter machine can be coded up using the protocol formalism. A
two-counter machine is a machine with a finite set of control states and two
counters holding natural number values. The actions of the machine are state
transitions based on the current state and the values of the counters. In addition,
during each transition, the counters may be incremented or decremented, and
also tested for zero. We code up any given machine by a protocol whose roles
typically look like the following:
A?Bq,x, (z,9) bians ABHA, (2,2), Y} ks

The above role represents a transition which changes state from ¢ to ¢,
increments the first counter and decrements the second. The intruder uses the
fact that arbitrary terms can be substituted in place of nonces to mimic the
behavior of the machines which use the output configuration of one transition
as the input configuration of another. This is achieved by the intruder blocking
the sends in some play of a role of the above kind, and forwarding it to a receive
in some other play (of possibly the same role). This is the key to undecidability.

The terms ¢ and ¢’ in the above merit special mention. They are meant to
encode states of the two-counter machine. Now since an arbitrary two-counter
machine does not have a bound on the number of its states, and since we are
working with a fixed set of nonces, we cannot code states directly. The ¢’s have
to be thought of as some complex terms. Then it is easy to see that even if
we manage to encode the pair of counters using normal terms in the protocol
description, there is a large enough two-counter machine (say, one with much
larger than oM’ states), which cannot be faithfully coded up by any normal
protocol, since there are not enough normal terms to code up even the set of
states of the given machine. In conclusion, for every fixed two-counter machine,
there is a Tp and a normal protocol which uses terms built from T, which codes
the machine, but if we fix Tg, then there are machines (those whose number of
states is much more than the number of normal terms based on Tj) which cannot
be coded by any normal protocol which uses terms built from T.

There is also a coding which uses unbounded encryption depth. This shows
that the restriction which the equivalence relation = places on encryption is also
essential for decidability.

6 A modal logic

We can show that the decidability result of the secrecy problem for normal
protocols also extends to the verification problem for a simple modal logic, in
which one can state security properties.

The formulas of the logic are given by:

P:=Ahast|-a|aVp]|{aa] Oa

where A € Ag,teT,a€ X.

The logic is interpreted on models which are of the form (Sys,7) where:
Sys = (@, I,—>) is a X-labelled transition system and 7 is a valuation function
from @ to S.



Given a model M = ((Q,I,—),7), a state ¢ € @, and a formula «, the
notion (M,q) E « is defined inductively as usual: (M,q) E A has t iff t €
synth(analz((7(g))4)): (M. q) F ~aiff (M, q) = o; (M, q) = aVBiff (M, q) = a
or (M,q) |= B; (M, q) |= (a)a iff 3¢ such that ¢—2+¢' and (M,q') = «; (M, q) =
Oa iff 3¢’ such that ¢ ¢’ and (M, ¢') |= a (where —= is the reflexive transitive
closure of the relation got by taking the union of the relations —%3).

For M = ((@Q,I,—), ), we say that M |= «if (M,q) = aforall ¢ € I For a
protocol Pr and a formula «, we say that Pr |= « iff (Sys(Pr), infstate) |= o. The
verification problem is the problem of determining whether Pr = «, given a
protocol Pr and a formula a.

Note that interesting security properties can be specified in the logic. For
instance, the following formula says that a basic term m is a secret of some state
of the model.

secm 2 O \/ Ahasm A —(I hasm)).
A€Ho
The following formula says that the given model is leaky.
leaky ef O( \/ secm A O(I has m)).

meTy
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