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Abstract

A protocol defines a structured conversation aimed at exchanging information between
two or more parties. Complete confidentiality is virtually impossible so long as useful in-
formation needs to be transmitted. A more useful approach is to quantify the amount of
information that is leaked. Traditionally, information flow in protocols has been analyzed
using notions of entropy. We move to a discrete approach where information is measured
in terms of propositional facts. We consider protocols involving agents holding numbered
cards who exchange information to discover each others’ private hands. We define a transi-
tion system that searches the space of all possible announcement sequencesmade by such a
set of agents and tries to identify a subset of announcements that constitutes an informative
yet safe protocol.
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1 Introduction
A protocol defines a structured conversation aimed at exchanging information between two or
more parties. In a computational setting, there is a natural tension between transmitting rele-
vant information to a trusted partner and leaking confidential data to an intruder.

This has led to the study of security in protocols from the perspective of information flow.
Complete confidentiality is virtually impossible so long as useful information needs to be trans-
mitted. For instance, rejecting an invalid password reveals indirectly what the password is not.
Hence, a more useful approach is to quantify the amount of information that is made available
to an eavesdropper and use this as a basis for evaluating the security of protocols.

Several proposals have been made over the past decade to model quantitative information
flow [1, 2, 3, 4, 6, 7, 8]. The general consensus has been to use ideas from information theory,
primarily the notion of entropy, as a basis for measuring information leakage. Starting with
the classical notion of entropy proposed by Shannon, some of this work has moved towards an-
alyzing alternative notions of entropy. These choices are often motivated by ad hoc synthetic
scenarios that bear no clear relationship to protocols in actual use.

We move away from this continuous measurement of information content to a discrete ap-
proach in terms of knowledge. To start with, we regard information as consisting of proposi-
tional facts, representing knowledge that has to be shared amongst agents. Initially, the eaves-
dropper does not know any of these facts. As the protocol evolves and the honest agents partic-
ipating in the conversation learn facts about each other, the eavesdropper also comes to know
certain facts about the system. The goal is to have informative protocols that share knowledge
effectively, but are still safe in terms of leaking this knowledge to an intruder.

Concretely, we focus on problems involving sets of agents holding cards on which distinct
numbers are written. Each hand is initially known only to the agent who holds it. The agents’
aim is to learn about each others’ hands through public announcements, while revealing as little
as possible to an eavesdropper.

An example is the Russian Cards problem with distribution 〈k1|k2|k3〉, denoting that A and
B get k1,k2 cards respectively while the third player C gets k3 cards. The objective of A and B is
to communicate with each other so that they both eventually learn each other’s cards, while C
remains ignorant of every card. An in-depth analysis of this problem in terms of the logic of
public announcements can be found in [9].

One generalization of the Russian Cards setting is the Secure Aggregation of Distributed In-
formation (SADI) problem, where there are k agents and an eavesdropper E . The distribution of
cards is then given by 〈n1| . . . |nk〉, with ni denoting the number of cards that honest agent i holds.
The eavesdropper E does not receive any cards. The objective is to come up with protocols such
that all the honest agents learn each others’ cards while E remains ignorant of the location of at
least some, if not all, cards. The SADI problem is analyzed in [5].

We present an approach to the SADI problem based on searching through the state space of a
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transition system. Each state of the transition system describes the knowledge of the individual
agents, in terms of atomic propositions of the form A knows that B has card i and A knows that B does
not have card i. Each announcement updates these knowledge propositions. To effect this update,
we set up rules linking the propositions and use a SAT solver to compute the set of possible states
after each announcement.

The updates we compute are first order—that is, they calculate the knowledge that has been
revealed through the current sequence of announcements. However, we also need to capture
second order knowledge—for instance, the given sequence should be compatible with more than
one starting distribution of cards to prevent the eavesdropper from indirectly inferring the cards
held by thehonest agents fromthe choice of the announcement sequence. Using the formulation
from [5], we show that such second order knowledge can also be captured using our transition
system framework.

The paper is organized as follows. We set the framework for the SADI problem in Section 2.
In the next section, we describe howwe set up a transition system to analyze this problem. Sec-
tion 4 describes how we can formulate and answer questions about information flow using our
transition system. In Section 5 we describe some experimental results. We conclude with a dis-
cussion of future directions.

2 Preliminaries
Recalling the definitions from [5], the setting we consider involves a finite set of agents, Ag, with
information distributed amongst them. Apart from the (honest) agents in Ag, there is also the
eavesdropper. For convenience, if Ag consists of k honest agents, we assume that they are named
{0, 1, . . . ,k−1}.

For our purposes, the information that the agents hold consists of a set of cards numbered
0, 1, . . . ,n−1. These cards are distributed amongst the honest agents. In what follows, if X is a set
andm is a natural number, then

�X
m

�
denotes the subsets of X of cardinalitym. The cardinality of

X is denoted by #X.
It is assumed that there is a mechanism to distribute the cards initially, at the end of which

each agent knows his own hand and the number of cards that everyone has been dealt, but noth-
ing more. The problem is for the honest agents to learn each other’s hands via public announce-
ments without leaking information to the eavesdropper.

Definition 1 The distribution type is a vector s̄= (sp)p�Ag of natural numbers, where sp denotes the num-
ber of cards dealt initially to agent p. We denote by |̄s| the total number of cards,Σp�Agsp.

A deal of type s̄ is a partition H = (Hp)p�Ag of {0, . . . , |̄s| − 1} such that #Hp = sp for each agent p. We
say Hp is the hand of p. Further, we denote the set of all deals over s̄ by Deals(̄s).

Given two deals H and H′ of type s̄, and an agent p, we say that H and H′ are indistinguishable for p
(in symbols: H∼p H′) if Hp = H′p.
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The agents try to learn each other’s hand by publicly (and truthfully) announcing informa-
tion about their own cards. Consider an agent A holding the cards {1,2,3}. One announcement
he might make is “My hand is either {1,2,3} or {1,4,6} or {2,3,5}.” Any other agent who holds
4 and 5, on hearing this announcement, will immediately know that A’s hand is {1,2,3}. But the
eavesdropper still has uncertainty about A’s hand, since he doesn’t have any cards of his own.
Another possible announcement is “My cards are among {1,2,3,4,6,7}.” Yet another announce-
ment is “The sum of the numbers onmy cards is 6.” All these announcements can be encoded as
a disjunction of hands. For instance, the last announcement above is the disjunction “My hand
is either {1,2,3} or {0,2,4}.”
Definition 2 (Actions) Fix a distribution type s̄, and let Cards = {0, . . . , |̄s| − 1}. An announcement
by agent p is a disjunction of possible hands. Since he has sp cards, the announcement can be thought of
as a subset of
�Cards

sp

�
. Thus we can define Actp, the set of p-announcements to beP(

�Cards
sp

�
), whereP(X)

denotes the powerset of X. The set of actions is defined to be Act=
∪

p�Ag Actp.

We assume a situation in which agents take turns to make announcements, starting from 0
and proceeding in cyclic order, till they achieve a certain goal. This is formalized by the following
definition.

Definition 3 (Runs) Fix a distribution type s̄ as before, with m agents. An execution is a (finite or infi-
nite) sequence of actionsα0α1 · · · such thatαi � Actpwhenever imodm= p. A finite execution is also called
a run. Given a run ρ = α0α1 . . .αn and two indices i ≤ j, α[i . . . j] denotes the segment αiαi+1 . . .αj. We
denote the length of a runρ by |ρ|. The set of runs is denoted by Runs.

A protocol describes a strategy for each agent tomake announcements given the current his-
tory. We constrain each announcement to be truthful. We also insist that a protocol depend only
on the local information available to the agent—any two situations that are the same from the
agent’s point of view must elicit the same response. In other words, if the agent holds the same
hand in two different deals and sees the same sequence of announcements, he must respond
identically in both situations.

Definition 4 (Protocol) Fix a distribution type s̄, with m agents. A protocol (for s̄) is a functionπ as-
signing to every deal H � Deals(̄s), and every run ρ � Runs with |ρ| mod m = p, a non-empty set of p-
actionsπ(H,ρ)⊆ Actp such that:

• Hp � α for allα �π(H,ρ) (the announcement is truthful), and

• if H∼p H′, thenπ(H,ρ) =π(H′,ρ) (the announcement is view-based).

A run of a protocolπ is a pair (H,ρ)where H � Deals(̄s) and ρ = α0α1 . . .αm is a run such that αi+1 �
π(H,ρ[0 . . . i]) for every i<m. The set of runs ofπ is denoted by Runs(π).
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Weare interested in protocols that are informative (all honest agents learn thewhole deal) and
safe (the eavesdropper is uncertain about the deal even after listening to all the announcements).
We formalize these notions below.

Definition 5 A run (H,ρ) of a protocolπ is informative for an agent p if there is no execution (H′,ρ) of
π with H ∼p H′ and H ̸= H′. (i.e., there is no other starting deal that is consistent with p’s hand and the
subsequent announcements.)

A protocolπ is

• weakly informative (WI): if every run ofπ is informative for some agent.

• informative (I): if every run ofπ is informative for every agent.

The eavesdropper does not have any information about the deal to begin with. Hence, the
actual deal could be any deal of the correct distribution type. As the honest agents communicate
amongst themselves, the eavesdropper uses the information in the announcements to eliminate
various deals from contention. At the end of a sequence of announcements, he will be left with
a set of deals that are consistent with this sequence. This set must have at least one element,
namely the actual deal. This set is formally defined below.

Definition 6 Givenaprotocolπandarunρ, define the (eavesdropper’s) ignorance set Iπ(ρ) tobe{H | (H,ρ) �
Runs(π)}.

Iπ(ρ) is can be used to determine what the eavesdropper knows at the end of ρ.
Consider a situation where agent 0 holds the card 5 in every deal in Iπ(ρ). This means that

the eavesdropper has ruled out all deals where agent 0 does not hold card 5 as being inconsistent
withρ. Hence, the runρ has leaked information about the location of card 5 to the eavesdropper.

Consider another situation involving card 5, where agent 1 holds card 5 in some of the deals
in Iπ(ρ), and agent 2 holds card 5 in the rest of the deals in Iπ(ρ). Here, even though the eaves-
dropper does not know exactly who holds the card 5, he is certain that no agent other than {1,2}
holds card 5.

This leads us to the following two notions of safety of a card (at the end of a run).

Definition 7 (Safety of cards) Arun (H,ρ)ofaprotocolπ is safe for the card c if for everyagentp, there
is a deal G � Iπ(ρ) such that c ̸� Gp.

A run (H,ρ) of a protocolπ is strongly safe for the card c if for every agent p, there are two deals F,G �
Iπ(ρ) such that c � Fp and c ̸� Gp.

Thus, safety of a run means that the eavesdropper does not know for certain that an agent
p has card c, but the eavesdropper may have concluded that p definitely does not have c. On the
other hand, strong safety requires that the eavesdropper cannot conclude whether p holds c or p
does not hold c.

We can lift the notion of safety from runs to protocols as follows.
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Definition 8 (Safety of Protocols) A protocolπ is

• deal safe: if every run ofπ is safe for some card c. Equivalently, deal safetymeans that the eavesdrop-
per does not learn the deal at the end of any run ofπ.

• p-safe (for an agent p): if every run ofπ is safe for all cards in Hp.

• safe: if every execution ofπ is safe for every card c.

• strongly safe: if every execution ofπ is strongly safe for every card c.

In the rest of the paper, we will examine an approach to synthesize informative and safe
protocols based on these definitions. Equivalently, our approach can be used to validate if a given
protocol is informative and safe.

We assume that there are at least three honest agents, so that negative information of the
form p does not hold card c does not automatically imply positive information of the form q holds
card c.

3 Implementation
In this section, we describe a tool written in Python to search for informative and safe runs of
a particular distribution type. Before presenting the details of the tool, we present an abstract
transition systemmodel for protocols.

3.1 Defining the transition system
Fix a distribution type s̄with k agents {0, 1, . . . ,k−1}. For convenience, we assume that the eaves-
dropper is agent k, with the understanding that agent k possesses no cards. Let {0, 1, . . . ,n−1} be
the set of cards dealt. We describe a transition system that tracks the uncertainty of every agent
about the actual deal. Essentially, each agent implicitly stores a set of valuations that represent
all deals that are compatible with the information that he has seen so far.

Definition 9 (Valuations) The set of knowledge propositions for an agent p≤ k, denotedK (p), is
the set

{Kpq(c),KpNq(c) | q< k,q ̸= p, c< n}.
The proposition Kpq(c) describes the fact that agent p knows that agent q has card c, while the
proposition KpNq(c) says that p knows that q does not have card c.

Definition 10 Avaluation for agentp (with respect toan initial dealH) is a functionv : K (p)→{⊤,⊥}
satisfying the following conditions, where we write v |= ℓ to mean v(ℓ) =⊤ and v ̸|= ℓ to mean v(ℓ) =⊥.
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• consistencywith the deal: For all 0≤ c< n, if c � Hp then for all 0≤ q< k, p ̸= q, v |= KpNq(c).
• consistency of knowledge propositions: For all 0 ≤ q < k and 0 ≤ c < n, either v ̸|= Kpq(c) or
v ̸|= KpNq(c).

• ownership of cards: For all 0≤ q< k and 0≤ c< n, v |= Kpq(c) iff for all r /� {p,q}, v |= KpNr(c)
• consistency with the distribution type: For each q ̸= p, there are at most sq propositions of the
form Kpq(c) such that v |= Kpq(c).

• complete knowledge: For each q ̸= p, there are exactly sq propositions of the form Kpq(c) such that
v |= Kpq(c) iff there are exactly (n− sq) propositions of the form KpNq(c) such that v |= KpNq(c).

We denote the set of all valuations for agent p by Valsp, and let Vals=
∪

p≤mValsp.

A valuation for p is supposed to capture p’s information state. If vmapsKpq(c) to⊤, itmeans that p
believes, in this information state, that q has card c. If vmaps KpNq(c) to⊤, itmeans that p believes
that q does not have card c. If vmaps both Kpq(c) and KpNq(c) to⊥, this means that p is uncertain
about whether or not q holds card c.

Assuming three agents {0, 1,2}, an example valuation for agent 0 is given in Figure 1. This
corresponds to the initial deal ({0, 1},{2,3,4},{5,6,7,8}).

0 1 2 3 4 5 6 7 8
K01 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K02 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K0N1 ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K0N2 ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
Figure 1: Valuation for agent 0 at initial deal 〈0, 1|2,3,4|5,6,7,8〉

Each agent has a valuation describing the initial state according to his perspective, but as
he hears more andmore announcements (which are all disjunctions), it might not be possible to
represent the information he has bymeans of one valuation. Each disjunct in the announcement
he hears might lead him to consider a new valuation as a possible world. Thus each agent might
need to store a set of valuations as a run progresses. This leads to the following definition of
states.

Definition 11 (States) A state is an k+ 1-tuple (V0, . . . ,Vk)where each Vp ⊆ Valsp.
Definition 12 (X-extension) Let v be a q-valuation andX be an sp-sized subset of {0, . . . ,n−1}. We say
that a q-valuation v′ is a X-extension of v if v≤ v′ and v′ |= Kqp(c) for all c � X.
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Note that for a given v and X, it is possible that there is no X-extension of v.

Definition 13 (State updates) Givenastates= (V0, . . . ,Vk)andap-announcementα,wedefineupdate(s,α)
to be s′ = (V′0, . . . ,V′k) such that:

• V′p = Vp

• for q ̸= p, V′q =
∪

v�Vq,X is a disjunct ofα{v′ | v′ is an X-extension of v}.
The core component of our tool computes the updated state at the end of a sequence of an-

nouncements, starting from an initial deal. The final state encapsulates a nontrivial amount of
information, from which one can test whether the honest agents have complete knowledge of
the deal, and also whether the eavesdropper knows the original deal. Furthermore, we can also
generate the uncertainty set of the eavesdropper, namely, the set of all deals that are compatible
with the given announcement sequence. We can use this information in a variety of ways, as
detailed in Section 4.

The important point to note is that the tool computes the updated state implicitly. Rather
than explicitlymaintain a set of valuations after each announcement, the tool just collects all the
announcements, and invokes the SAT solver to determine the certain knowledge of the agents.

3.2 A high-level description of the tool
In this section, we describe in more detail some key components of our tool. In the interests
of space, we present a high-level overview1. The tool is written in Python, and implements the
system described in the previous section. It interacts with the SAT solver Z3 to compute the up-
dated state after each announcement. As detailed in the definition of valuations, each valuation
has to satisfy a lot of constraints. These are coded as system invariants. A solver instance is
created and formulas corresponding to the constraints are added to the solver, as shown in the
following snippet.

solvR = Solver()

solvR.push()

vD,oW,hK = self.validDeal(), self.ownership(), self.hand2K()

kC,oK,dK = self.kConsistency(), self.ownershipK(), self.dealK()

solvR.add(vD)

solvR.add(oW)

solvR.add(hK)

solvR.add(kC)

solvR.add(oK)

1Please check http://www.cmi.ac.in/~spsuresh/projects/russian-cards-z3/ for the full code.
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solvR.add(dK)

solvR.push()

return solvR

For instance, validDeal corresponds to the constraint that if c � Hp then v |= KpNq(c), while
ownershipK corresponds to the constraint that v |= Kpq(c) iff v |= KpNr(c) for all r ̸= q. Similarly
for the other constraints.

Given any announcement as a tuple consisting of the speaker as well as the DNF formula,
the updateAnn procedure produces a new state with the appropriate update to the knowledge of
each agent. Essentially, it translates the announcement to an appropriate formula denoting how
each agent other than the speaker would perceive it and this is appended to the knowledge of
each listener.

To process a sequence of announcements, the tool does not calculate the set of valuations at
each intermediate state. Rather, repeated calls to updateAnn are made, which builds a conjunc-
tion of the initial knowledge, the constraints, and all the announcements. Now we can call the
SAT solver to check what all propositions are consequences of this formula, and thus determine
all the propositions that each agent is certain about.

The tool is meant to go through a set of runs of bounded length, each run consisting of an-
nouncements of a specific structure (typically a bound on the number of disjunctions in the
announcement), and compute various statistics at the end of each run. For instance, we might
want to know how many propositions of the form Kmp(c) is definitely known to m (remember
{0, . . . ,m− 1} is the set of honest agents and m is the eavesdropper) at the end of a run. This
measures the amount of positive knowledge leaked. We might also want to check how many
propositions of the form KmNp(c) is definitely known to m (i.e., for every valuation v � Vm in the
final state, v |= KmNp(c)). This measures the amount of negative knowledge leaked. We can use
this tool to either discover protocols or check whether a purported protocol is informative and
safe, as elaborated in Section 4.

3.3 An example
In this example, we illustrate the functioning of our tool with the 〈2|3|4〉 SADI problem de-
tailed in [5]. Recall that the initial deal is 〈0, 1|2,3,4|5,6,7,8〉, and an informative and safe an-
nouncement sequence is the announcement {01,08, 18} by A, followed by the announcement
{0234, 1237,5678} by C. (B passes its turn – by announcing true, for instance).

First, we need to create and initialize the problem instance

In [1]: from cpState import *

In [2]: deal = {’a’:[0,1], ’b’:[2,3,4], ’c’:[5,6,7,8], ’e’:[]};

In [3]: infAgts, eaves = [’a’, ’b’, ’c’], ’e’;

In [4]: agts = infAgts + [eaves]
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In [5]: s0 = cpState([2, 3, 4, 0], agts, deal, infAgts, eaves)

At the end of the above commands, we obtain the initial state s0 initialized with the deal
〈0, 1|2,3,4|5,6,7,8〉. Having obtained the initial state, we now need to update it with the an-
nouncements ann1 of A followed by ann2 of C.

In [6]: ann1 = (’a’, [[0, 1], [0, 8], [1, 8]])

In [7]: ann2 = (’c’, [[0, 2, 3, 4], [1, 2, 3, 7], [5, 6, 7, 8]])

In [8]: s1 = s0.updateAnn(ann1)

In [9]: s2 = s1.updateAnn(ann2)

Now that we have the resulting state s2 alongwith the the intermediate state s1, we can ac-
tually analyze the states and query them to obtain further information about the states of any
agent in each of the states.

We can obtain the set of all positive knowledge propositions for any agent

In [10]: %time s2.getPosK(’a’)

CPU times: user 3.42 s, sys: 32 ms, total: 3.45 s

Wall time: 3.45 s

Out[10]: [’Kab__2’, ’Kab__3’, ’Kab__4’, ’Kac__5’, ’Kac__6’,

’Kac__7’, ’Kac__8’]

In [11]: %time s2.getPosK(’b’)

CPU times: user 2.95 s, sys: 0 ns, total: 2.95 s

Wall time: 2.95 s

Out[11]: [’Kba__0’, ’Kba__1’, ’Kbc__5’, ’Kbc__6’,

’Kbc__7’, ’Kbc__8’]

In [12]: %time s2.getPosK(’c’)

CPU times: user 2.46 s, sys: 4 ms, total: 2.47 s

Wall time: 2.47 s

Out[12]: [’Kca__0’, ’Kca__1’, ’Kcb__2’, ’Kcb__3’, ’Kcb__4’]

In [13]: %time s2.getPosK(’e’)

CPU times: user 4.43 s, sys: 16 ms, total: 4.44 s

Wall time: 4.45 s

Out[13]: []

As observed, the above queries take about 3 to 4 seconds even for this simple example. How-
ever, if all we are interested is in the informativity property, we can reduce the time taken by
using isInfAgt or isInformative as shown below,
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In [14]: %time s2.isInfAgt(a)

CPU times: user 472 ms, sys: 0 ns, total: 472 ms

Wall time: 480 ms

Out[14]: True

In [15]: %time s2.isInfAgt(b)

CPU times: user 468 ms, sys: 0 ns, total: 468 ms

Wall time: 471 ms

Out[15]: True

In [16]: %time s2.isInfAgt(c)

CPU times: user 472 ms, sys: 0 ns, total: 472 ms

Wall time: 476 ms

Out[16]: True

In [17]: %time s2.isInformative(infAgts)

CPU times: user 1.48 s, sys: 0 ns, total: 1.48 s

Wall time: 1.48 s

Out[15]: True

In [16]: %time s2.isInformative([eaves])

CPU times: user 508 ms, sys: 0 ns, total: 508 ms

Wall time: 509 ms

Out[16]: False

Hence, we’ve ascertained that the state s2 is informative to a, b and c but e doesn’t learn the
owner of any card. This tallies with the analysis in [5]. However, we can also query the states for
negative propositions revealed to e,

In [17]: %time s1.getNegK(’e’)

CPU times: user 8.93 s, sys: 0 ns, total: 8.93 s

Wall time: 8.97 s

Out[17]: [’KeNa__2’, ’KeNa__3’, ’KeNa__4’, ’KeNa__5’,

’KeNa__6’, ’KeNa__7’]

In [18]: %time s2.getNegK(’e’)

CPU times: user 8.86 s, sys: 4 ms, total: 8.87 s

Wall time: 8.89 s

Out[18]: [’KeNa__2’, ’KeNa__3’, ’KeNa__4’, ’KeNa__5’,

’KeNa__6’, ’KeNa__7’, ’KeNb__0’, ’KeNb__1’, ’KeNb__8’]
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From the above, it is clear that even though e doesn’t know any of the owners of any cards,
he does know 9 propositions of negative information involving cards [0,8]. In fact, for each of
the cards, he knows at least one agent that does not own the card. Thus, for any card, e initially did
not knowwhich of the 3 agents it belonged to, but at the end, his uncertainty is restricted to 2 of
the 3 agents.

4 Formulating information leakage problems
We can use the transition system defined in the previous section in two ways: to search for an
informative and safe protocol, and to validate if a given protocal is informative and safe.

4.1 Synthesis of protocols
We can characterize informative states based on the knowledge propositions of the agents—in
an informative state, each agent should know completely all the cards of the agents.

Likewise, safety canbedescribed in termsof the knowledgepropositions of the eavesdropper.
Unlike the classical SADI problem, we can quantify the level of safety we tolerate by placing a
threshold on the knowledge revealed to the eavesdropper.

Our first task is to identify a set of runs that lead to informative and safe states. We call
such a run a first-order informative run. It suffices to start the search at a fixed initial state
corresponding a canonical distribution of cards. Every other deal is a permutation of this deal.
If we can find a protocol for this starting deal, we can construct a symmetric protocol for every
other deal by permuting all announcements in the samemanner as the initial deal.

Having identified first order informative runs (through depth-first search, say) we have to
check if they satisfy second order safety and if they meet the view-based criterion laid down for
protocols.

First order safety guarantees that the eavesdropper has at least two possible deals in his ig-
norance set at the end of each such run. However, this does not guarantee that the same run,
starting from one of the alternative states, achieves informativeness and safety. This is what we
call second order safety. Our first task, therefore, is to identify a set of first order informative
runs that is closed with respect to this pairing: for every run ρ starting from the initial deal H,
there is another deal H′ such that ρ from H′ is informative and safe.

Having identified such a set of runs closed with respect to second order safety, we then en-
sure that there is a subset that is view-based—that is, if H∼p H′, then the choice made after any
sequence of announcements ρ starting from Hmatches that made after ρ starting from H′.

After these two stages of pruning, any first order informative runs that survive constitute a
protocol that solves the given problem.
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4.2 Verification of protocols
Conversely, we can use our transition system to verify a given protocol. This follows conven-
tional lines, wherewe search for a state that is reachablewith respect to the protocol that violates
the given safety requirement.

5 Experimental results
In this section, we document some experimentswith our tool on a 3 agent SADI system. To assist
readability, we refer to the 3 honest agents as {A,B,C} rather than {0, 1,2}. The eavesdropper is
denoted E .

5.1 Need for second order safety
To illustrate the inadequacy of direct first order reasoning, we consider an example with deal
type 〈2,3,4〉. Suppose the initial deal is d0 = 〈0, 1|2,3,4|5,6,7,8〉. Let the first announcement
(ann1) by A be {01, 12,23}. This would result in B obtaining complete knowledge of the deal (as he
has card 2). B could thenmake the second announcement (ann2) as {234,056, 178} to inform the
others.

The only alternative deals compatible with the above announcements are
a) d1 = ({1,2},{0,5,6},{3,4,7,8})
b) d2 = ({2,3},{1,7,8},{0,4,5,6})
c) d3 = ({2,3},{0,5,6},{1,4,7,8})

Onemay check that none of these deals are completely informative to all three agents A,B and
C when using the run ρ consisting of exactly the two announcements above. For the first deal,
A’s announcment is not informative to B and the run itself is not informative to any of the agents.
So, (d1,ρ) is not even weakly informative. The runs (d2,ann1) as well as (d3,ann1) are informative
to exactly B and C respectively (the agent that has card 1) but, (d2,ρ) is not informative to A and
(d3,ρ) is informative to neither A nor C.

Currently, our tool can evaluate announcement sequences for first order safety. It is straight-
forward to extend it to check for second order safety as defined above. However, onewould need
to check what one could handle with a naïve implementation of second order safety. In the next
section, we describe experiments using our tool for first order safety of larger instances with
varying parameters.

5.2 Hand Size and Informativity
For aparticular deal type (say 〈4,4,4,0〉), andaparticular initial deal (say 〈{0, 1,2,3}|{4,5,6,7}|{8,9, 10, 11}〉),
we generate random truthful announcement sequences using the function genRun defined in
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cpState. Though an announcement is simply a disjunction of hands, it makes sense for an
agent to reveal only partial information in every announcement. This can be done by uniformly
restricting the size of each set in the announcement. We call this the size of the hand (hSize)
revealed in the announcement. The function genRun accepts the following arguments
a) The size of each set in the announcement (hSize).
b) The number of sets (or disjuncts) in an announcement (annLen).
c) The number of announcements for each run (runLen).

The executionswere generated for the deal type 〈4,4,4,0〉, varying hSize in the range {1,2,3}.
Furthermore, we also varied annLen to take values in {3,5,7}. The results obtained are presented
in Tables 1, 2, 3. We also ran some experiments for the deal type 〈8,8,8,0〉—the results are tabu-
lated in Table 4. For all runs, we have fixed runLen as 6, denoting sequences of 6 announcements,
corresponding to exactly 2 rounds across the 3 agents. Our eventual goal is to move beyond the
1 round protocols studied in the literature ([5, 9]).

The hSize column denotes the hand size used in the announcements. The other columns
are labeled by sets of agents. The entries in the matrix denote the number of runs which were
informative for the corresponding set of agents.

If we look at the tables for 〈4,4,4,0〉, (that is, Tables 1, 2 and 3) we notice that, as we increase
hSize, the number of runs which are informative for any agent increases. This reflects our in-
tuition that more information is transferred when each part of the announcment reveals more
details about the hand. Another expected outcome is that the number of cards revealed to E also
increases with increasing hSize, as observed in Figure 2. Note that the number of cards revealed
toE is not represented in the tables butwas computed independently using the same set of runs.

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0
2 355 24 27 34 17 19 22 1 1
3 9 2 6 1 36 30 35 0 381

Table 1: Executions with annLen= 3 for 〈4,4,4,0〉 (500 per entry).

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0
2 434 23 19 16 0 4 3 1 0
3 12 2 8 8 41 38 42 4 345

Table 2: Executions with annLen= 5 for 〈4,4,4,0〉 (500 per entry).
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Figure 2: Infomation leakage to E

Notice that for 〈4,4,4,0〉, setting annLen = 7 and hSize = 3, we obtained about 20 runs that
were informative and safe. For the same configuration, we obtained a larger number of runs
(about 169 runs or about 33% of the runs) that were informative for 2 of the agents.

Onemotivation for running these experiments is to identify parameters for which the prob-
ability of hitting an informative run is high. Once we identify informative runs, the next step
would be to validate these runs with respect to second order reasoning of E in order to design or
search for informative and safe protocols. We can alsouse these experiments to guideus towards
impossibility proofs when a protocol does not exist.

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0
2 480 7 8 5 0 0 0 0 0
3 12 12 13 10 55 59 55 20 264

Table 3: Executions with annLen= 7 for 〈4,4,4,0〉 (500 per entry).
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hSize ∅ C A,B A,C B,C A,B,C,E

2 250 0 0 0 0 0
4 243 0 4 2 1 0
6 38 1 30 19 31 131

Table 4: Executions with annLen= 3 for 〈8,8,8,0〉 (250 per entry)

6 Discussion
We have attempted to describe a framework for quantifying information flow in protocols in
terms of discrete items of knowledge. We have used card playing protocols because the cards
themselves act as natural units of knowledge.

We have identified two kinds of knowledge propositions: A knows that B has card i and A knows
that B does not have card i. In the Russian Cards Problem where there are only two honest agents,
these two are dual to each other. However, in the SADI framework, the second type of knowledge
is strictly weaker than the first. Positive information about where a card is implies negative
information about where the card is not to be found, but not vice versa.

We can thus impose a partial order ondifferent knowledge states of the eavesdropper anduse
this to rankdifferent protocols according the amount of information that they reveal. A challenge
would then be to synthesize an optimal protocol with respect to this information ordering.

A more ambitious extension would be to extend our analysis to settings such as bidding in
the game of bridge. In the bridge bidding process, each pair tries to understand the strength
of the team’s hand without revealing too much to the opponent. Bids are restricted to be an
ascending sequence of announcements and the number of such announcements is fixed a priori.
Hence, the goal is to maximize the information shared between partners while minimizing the
information revealed to the opponents.
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