
Effective verification of Replicated Data Types using
Later Appearance Records (LAR)

MadhavanMukund, Gautham Shenoy R, and S P Suresh

Chennai Mathematical Institute, India
{madhavan,gautshen,spsuresh}@cmi.ac.in

Abstract

Replicated data types store copies of identical data across multiple servers in
a distributed system. For the replicas to satisfy strong eventual consistency, these
data types should be designed to guarantee conflict free convergence of all copies
in the presence of concurrent updates. This requires maintaining history related
metadata that, in principle, is unbounded.

While earlier work such as [2] and [9] has concentrated on declarative
frameworks for formally specifying CRDTs and conditions that guarantee the ex-
istence of finite-state (distributed) reference implementations, there has not been
a systematic attempt so far to use the declarative specifications for effective verifi-
cation of CRDTs.

In this work, we propose a simple global reference implementation for
CRDTs specified declaratively, and simple conditions under which this is guar-
anteed to be finite. Our implementation uses the technique of Later Appearance
Record (LAR). We also outline a methodology for effective verification of CRDT
implementations using CEGAR.

1 Introduction

Replicated data types are used by web services that maintain multiple copies of the same
data across different servers to provide better availability and fault tolerance. Clients can
access and update data at any copy. Replicated data types cover a wide class of data stores
that include distributed databases and DNS servers, as well as NoSQL stores such as Re-
dis and memcached. The CAP theorem [4] shows that it is impossible for replicated data
types to provide both strong consistency and high availability in the presence of network
and node failures. Hence, web services that aim to be highly available in the presence
of faults opt for a weaker notion of consistency known as eventual consistency. Eventual
consistency allows copies to be inconsistent for a finite period of time. However, the web

1

servicemust ensure that conflicts arising due to concurrent updates acrossmultiple copies
are resolved to guarantee that all the copies eventually agree. Conflict-free Replicated Data
Types (CRDTs), introduced in [11,12], are a subclass of replicated data types that are even-
tually consistent and conflict free.

An abstract specification of a data type describes its properties independent of any imple-
mentation. Such aspecification plays a crucial role in formal verification of the correctness
of any implementation of the data type. Most of the early work onCRDTs described these
data types through implementations [1, 8, 11, 12]. Recently, a comprehensive framework
has been proposed in [2] to provide declarative specifications for a wide variety of repli-
cated data types, alongwith amethodology to prove the correctness of an implementation
via replication aware simulations. Unfortunately this strategy does not lend itself to effec-
tive formal verification of the implementations.

In [9], we describe a bounded reference implementation of a CRDT generated from a
declarativespecification. This construction produces a distributed implementationwhere
each replica only has a local view of the overall computation, obtained through the mes-
sages that it receives. This requires an intricate distributed timestamping protocol [7, 10]
to reuse timestamps in order to bound the implementation. Moreover, strong assump-
tions about the underlying operating environment have to be directly incorporated into
the reference implementation.

The main aim of generating a reference implementation is to come up with an effective
verification procedure for generic CRDT implementations. The key observation of this
paper is that a global reference implementation is sufficient for this purpose. In a global
reference implementation, we can directly keep track of causality between update events
without exchanging additional information between replicas. In fact, we show that we can
maintain a local sequential history for each replica in terms of a later appearance record
(LAR) [5], from which we can faithfully reconstruct the causality relation. This greatly
simplifies the construction. Moreover, the LAR-based construction is independent of any
assumptions on the environment required to bound the size of the reference implementa-
tion.

The paper is organized as follows. In the next section, we define CRDTs and introduce
declarative specifications. Section 3 describes how the construction of a reference im-
plementation. In the next section, we describe an effective technique for CRDTs using
CEGAR [3]. We conclude with a summary and a discussion of future research directions.

2 CRDTs, traces and Specifications

We consider distributed systems consisting of a setR of N replicas, denoted [1..N]. We
use p,q, r, s and their primed variants to range overR . These replicas are interconnected
through an asynchronous network. We assume that replicas can crash and recover in-

2

finitely often. However, when a replica recovers from a crash it is expected to resume op-
eration from some safe state that it was in before the crash. We are interested in replicated
data types that are implemented on top of such distributed systems.

A replicated data type exposes a set of side-effect-free operations known as queries for
clients to obtain information contained in the data type. It makes available a set of state-
modifying operations known as updates to allow clients to update the contents of the data
type. For example, in a replicated set, contains is a query method, while add and delete are
update methods.

At any point, a client can interact with any one of theN replicas. The replica that services
a query (respectively, update) request from the client is said to be the source replica for that
query (respectively, update). The source replica uses its local information to process the
query. On receiving an update request from the client, the source replica modifies its local
state appropriately.

In this paper, we restrict our attention to a class of replicated data types calledConflict-free
Replicated Data Types (CRDTs), introduced in [11]. In these data types, each time a replica
receives an update request from a client, it applies the update locally and broadcasts to
all the other replicas a message containing the data that they require to apply this update.
On receiving this broadcast, each replica performs a local update using the data sent by
the source replica. We now define some terminology from [11, 12] to reason about these
data types.

A CRDTD is a tuple (V ,Q,U ,Ret) where:

• V is the underlying set of values stored in the datatype and is called the universe of
a replicated datatype. For instance, the universe of a replicated read-write register
is the set of integers that the register can hold.

• Q denotes the set of query methods exposed by the replicated data type.

• U denotes the set of update methods.

• Ret is the set of all return values for queries.

We assume that⊥ is a designated “empty value”, belonging to both V amd Ret.

Definition 1 (Operations). An operation of a CRDT D = (V ,Q,U ,Ret) is a tuple o =
(m, r,args, ret) where m �Q∪U ∪{receive} is the action, r �R is the source replica, args is a
tuple of arguments from V , and ret � Ret is the return value, satisfying the following conditions:

• if m �U , ret=⊥.
• if m= receive, args= ret=⊥.

3

For an operation o = (m, r,args, ret), we define Op(o) = m, Args(o) = args, Rep(o) = r, and
Ret(o) = ret. We call o a query operation if m � Q , an update operation if m � U and a
receive operation if m= receive.

We denote the set of operations ofD by Σ(D).
Definition 2 (Run). A run of a replicated data type is a pair (ρ,ϕ) where

• ρ is a sequence o1o2 . . .on of operations from Σ(D).
• ϕ is a partial function from [1..n] to [1..n] such that

– dom(ϕ) = {i≤ n | oi is a receive operation}.
– if ϕ(i) = j then j< i, oj is an update operation and Rep(oi) ̸= Rep(oj).

For a sequence ρ = o1o2...on, we denote by ρ[i] the operation oi, and we denote by ρ[i : j] the
subsequence oioi+1..oj.

Definition 3. Let (ρ,ϕ) be a run with ρ= o1 · · ·on. An update operation oi is said to be deliv-
ered if (∀r �R)�r ̸= Rep(ρ[i]) =⇒ (∃j)[r= Rep(ρ[j])∧ ϕ(j) = i]

�
.

Definition 4 (Events). Let (ρ,ϕ) be a run of a replicated data type. We associate an event
with each update and receive operation performed in ρ. Formally, the set Eρ is a set of events
associated with the operations in ρ is given by

Eρ = {ei | 1≤ i≤ |ρ|,Op(ρ[i]) �U ∪{receive}}.

Each ei � Eρ corresponds to the operation ρ[i] in ρ. We define Rep(ei), Op(ei) and Args(ei) to be
Rep(ρ[i]), Op(ρ[i]) and Args(ρ[i]).

We extend ϕ toEρ as follows. For ei � Eρ, let ρ[i] be the corresponding event in ρ. Then, ϕ(ei) = ej
if ϕ(ρ[i]) = j.

Definition 5 (Happened before). For a run (ρ,ϕ) and a replica r, we denote by E rρ the set of
r-events {e � Eρ | Rep(e) = r}. The total order {(ei, ej) | ei, ej � E rρ , i < j} is denoted by≤r

ρ. We
denote by≤receive

ρ the relation {(ϕ(e), e) | e � Eρ,Op(e) = receive}.
The happened before relation on (ρ,ϕ), denoted⪯ρ, is defined by∪

r�R
(≤receive

ρ ∪≤r
ρ)
+

For a pair of update events e, e′ we say that e has happened before e′ if e ⪯ρ e
′. We say that

a pair of events e, e′ � E are concurrent (denoted by e ∥ρ e′) when neither e ⪯ρ e
′ nor e′ ⪯ρ e

holds.

4

The definition of ⪯ρ is subtle. If a replica r receives information about an update at r′, r
continues to know about this update even after it performs more local actions. But r does
not necessarily know about events at r′ prior to this update. Hence, ⪯ρ is not transitive,
though it is always acyclic. If we have a strong delivery criterion like causal delivery along
with the assumption that each update is broadcast to every replica, then one can show that
⪯ρ is transitive.

We now define the trace associated with a run.

Definition 6 (Trace). The trace associated with a run (ρ,ϕ) is the triple (Eρ,ϕ,⪯ρ). (The term
trace is borrowed from Mazurkiewicz trace theory [6]). We denote the trace of a run (ρ,ϕ) by
trace(ρ,ϕ). The set of all traces is denoted byT .

Given a trace (E ,ϕ,⪯) and a subset of events X ⊆ E , the subtrace induced by X is given by
(X,ϕX,⪯X), where ϕX and⪯X are the obvious restrictions of ϕ and⪯ to the set X.

Definition 7 (View). Let t = (E ,ϕ,⪯) be a trace. For a replica r �R , the maximal r-event
in t is denoted by maxr(t). The view of r in t, denoted ∂r(t), is the subtrace induced by the subsetE ′ = {e′ � E | e′ ⪯maxr(t)}.
Definition 8 (Declarative Specification and Permitted Runs). LetD = (V ,Q,U ,Ret) be
a CRDT. A declarative specification ofD is a function f : T ×Q×V ∗→ Ret that determines
the return value of any query q �Q with arguments args � V ∗ in a trace t.
If f is a declarative specification ofD , the set of permitted runs ofD , denoted Runs(D, f), consists
of allD-runs (ρ,ϕ) such that for allquery operations ρ[i] = (q, r,args, ret), ret= f(∂r(trace(ρ[i],ϕ)),q,args).

If a CRDT is specified declaratively, all responses to queries are determined by the trace
generated by a run, and not the specific interleaving of operations in the run. Even this is
an overkill—typically, the response to a query is determined not by the entire trace but by
the subtrace generated by a set of relevant events whose size is bounded, independent of
the length of the trace. Further, this set can usually be computed easily. We now formalize
this intuition.

Definition 9 (Computablespecification). LetD be aCRDTand f be a declarativespecification
ofD . f is said to be computable if there exist computable functions g :T ×Q×V ∗→T and
h :T ×Q×V ∗→ Ret such that:

• g(t,q,args) is a subtrace of t containing only update events.

• f(t,q,args) = h(g(t,q,args),q,args).

• If g(t,q,args)⊆ t′ ⊆ t then g(t′,q,args) = g(t,q,args).

• If t and t′ are isomorphic, h(t,q,args) = h(t′,q,args).

In such a situation, we say that f is computable via g and h.

5

Thesubtrace g(t,q,args) can be thought of as the relevant informationneeded to compute f(t,q,args).
The function h computes the desired value of f using the subtrace identified by g. The third condi-
tion captures a monotonicity constraint: information that has become irrelevant now will never
reappear as relevant information later.

Example 10 OR-Set is a CRDT implementation of sets. The operations are given by
DOR-Set = (V ,{contains},{add,delete},{True,False}).
Themain issue is resolving concurrent add and delete operations. In OR sets, addwins in
such a situation, so contains returns true.

The declarative specification f capturing this behaviour, given via computable functions g
and h, is defined as follows:

• (∀x � V)(∀t �T) g(t,contains,x) is the set of maximal events in the subtrace tx of
twhere tx = {e |Op(e) � {add,delete} ∧Args(e) = x}.

• (∀x � V)(∀t � T) h(t,contains,x) is True iff there is a maximal event e of t with
Op(e) = add and Args(e) = x. ⊣

Definition 11 (Bounded specification). If a specification function f is computable via g and h
and there is a bound K such that |g(t,q,args)| ≤ K for all t, q and args, we say that f is a bounded
specification (with bound K).

Example 12 The specification of OR-Sets provided in Example 10 is bounded with a
bound N = |R| since g(t,contains,x) contains the maximal x-events and there can be at
most one maximal x-event in g(t,contains,x) per replica. ⊣

3 CRDT Implementation

Recall that a run is a pair (ρ,ϕ) where ρ is a sequence of operations of D and ϕ is a func-
tion that identifies the update (at a remote replica) corresponding to each receive opera-
tion in ρ. When we consider an implementation of a CRDT, its runs will typically be just
sequences of operations. The function ϕ is not provided along with the run, but it is rea-
sonable to assume that the implementation has enough extra information to identify the
update operation corresponding to each receive event. One way to model this abstractly
is to timestamp each operation by a natural number and assign the same timestamp to
a receive and its matching update. Since we are interested in finite-state CRDT imple-
mentations also, we would like to use a bounded linearly ordered set ID of identifiers as
timestamps. It is simplest to assume that ID⊆N.

For a time-stamped operation o′ = (o, id) � Σ(D)× ID, we define Id(o′) = id and ψ(o′) =
ψ(o) for ψ() � {Rep(),Op(),Ret(),Args()}.

6

We say that a timestamped run ρ′ � (Σ(D)×ID)∗ iswell-formed if timestamps are assigned
sensibly, as follows.

• for every receive operation ρ′[j], there is i< j such that Id(ρ′[i]) = Id(ρ′[j]),Op(ρ′[i]) �
U and for all k � [i+ 1..j− 1],

Op(ρ′[k]) = receive =⇒ Rep(ρ′[k]) ̸= Rep(ρ′[j])∨ Id(ρ′[k]) ̸= Id(ρ′[j]).

• For i < j, if ρ′[i] and ρ′[j] are update operations and Id(ρ′[i]) = Id(ρ′[j]), then for
every replica r ̸= Rep(ρ′[i]), there is a k � [i+1..j−1] such thatOp(ρ′[k]) = receive,
Rep(ρ′[k]) = r and Id(ρ′[k]) = Id(ρ′[i]).

The first condition captures the fact that timestamps unambiguouslymatch receive events
to update operations. The second condition prevents a timestamp from being reused be-
fore it has been received by all replicas.

The runassociatedwith awell-formed timestamped run ρ′ = ((o1,ℓ1), (o2,ℓ2), . . . , (om,ℓm))
is a pair (ρ,ϕ) such that ρ = o1o2 . . .om and for any i ≤ |ρ′|, if oi is a receive operation,
ϕ(i) =max{j< i | ℓj = ℓi and Op(oj) �U}.
In what follows, we consider only well-formed timestamped runs.

Lemma 13. For every run (ρ,ϕ) ofD , we can identify a set ID such that there is a well-formed
timestamped run ρ′ � (Σ(D)× ID)∗ whose associated run is (ρ,ϕ).

Proof All query operations can be labelled with a fixed identifier (say 0, for concrete-
ness). Each update operation ρ[i] is labelled with the smallest identifier in ID that does
not label any undelivered update operation in ρ[1 : i− 1]. Every receive operation ρ[i] is
labelled by the same identifier that labels ρ[j], where ϕ(i) = j. ⊣
Definition 14 (CRDT Implementation and its runs). An implementation of a CRDTD is
a tupleDI = (S,s

0, ID,→) where:

• S is set the global states.

• s0 � S is the initial state.
• ID⊆N is the set of identifiers, which serve as timestamps.

• →⊆ S× (Σ(D)× ID)× S is the transition relation.

A timestamped run ρ′ = o′1 · · ·o′n is accepted by DI if there exists a sequence of states s0s1 · · · sn
such that s0 = s0, and for every i ≤ n, si−1

o′i−→ si. (ρ,ϕ) is a run ofDI if it is the run associated
with a well-formed timestamped run ρ′ accepted by DI. We denote the set of all runs of DI by
Runs(DI).

7

Definition 15 (Correctness of aCRDTImplementation). LetD be aCRDTwith declarative
specification f. An implementation of CRDTDI is correct if Runs(DI)⊆ Runs(D, f).

We now present a canonical implementation of a CRDT D = (V ,U ,Q,Ret) with a
declarativespecification f. The canonical implementation, denotedDref, satisfies the prop-
erty that Runs(Dref) = Runs(D, f).

3.1 Reference Implementation

Before we describe the reference implementation, we present the ingredients needed. The
aim is to maintain as little information as possible to respond to each query. The key ob-
servation is that the reference implementation is global—it can pool together information
stored at all replicas without paying the cost of synchronization. If we have a declarative
specification f of D that is computable via g and h, then each replica needs to maintain∪

q,args g(t,q,args), where t is the view of r at any point in time. The important ingredient
in g is the precedence relation between events, and hence the reference implementation
needs to store enough information to recover this. The implementation also needs to in-
telligently discard information that will no longer prove useful. All these considerations
complicate the description of our reference implementation, so we approach it through a
series of definitions.

LetL be a (potentially infinite) set of labels, equipped with a total order ≤. We use la-
bels to distinguish between multiple occurrences of the same update method at the same
replica with the same arguments. Operations equipped with labels are called nodes.

Definition 16 (Node). A node is a tuple (u, r,args, l) � U ×R × V ∗ × L . For v =
(u, r,args, l), we define Op(v) = u, Rep(v) = r, Args(v) = args and Label(v) = l. The set of
all nodes is denoted byN .

Definition 17 (Later Appearance Record). A Later Appearance Record (LAR) is a sequence
of distinct nodes. For a node v and an LAR A, we write v � A to denote that v appears in the
sequence of nodes in A.

For nodes v1,v2 � A, v1 ≤A v2 if v1 occurs earlier than v2 in A. If A is an LAR and V is a set
of nodes then A−V is the subsequence of A consisting of nodes not in V. The set of all LARs is
denoted byA .

Each replica uses the LAR to record the order in which it has seen updates, originating lo-
cally aswell at remote sites. In an actual implementation, updates are generated at replicas,
and information about them is passed to other replicas by the network, whose behaviour is
not under the control of the implementation. But it is assumed thatwhen a replica receives
information about an update, it can determine which update is being mentioned. The
network might sometimes provide additional guarantees about message delivery (such as
causal delivery or FIFO delivery), and we can sometimes make use of these facts to simplify

8

the implementation. Here we present the general case, without any assumptions about
the network.

When information about an update has been passed to all other replicas, we would like to
be able to discard this information from every replica. For this, it becomes important to
record the set of replicas to which information about an update has been communicated.
This is modelled using a network node. Recall that a node is an update operation along with
an identifying label. A network node attaches to a node a timestamp as well information
about the state of replicas that have received the update.

Definition 18 (Network node). A network node is a member ofN × ID× 2R . The set of all
network nodes is denoted byNnet. For a network node vnet = (v, id,R) we define Node(vnet) to
mean v, Id(vnet) to mean id and define Rep(vnet), Id(vnet), Args(vnet) and Label(vnet) to be the
corresponding functions applied on v. We use Delivered(vnet) to denote R.

A configuration consists of the LAR of each replica along with the network nodes pertain-
ing to undelivered updates. The aim is to try to purge nodes from LARs whenever possi-
ble. A consistent configuration is one where these purges have been done safely. Specifically,
replica r does not purge a node pertaining to a local update so long as it is present in the
LAR of some other replica. Also, if information about a local update has not yet been
communicated to all other replicas, r does not purge the corresponding node.

Definition 19 (Configuration). A configuration C is a member ofAR × 2Nnet . For any con-
figuration C= ((A1,A2, . . . ,AN),Vnet), we denote by C[r] the LARAr. We shall denote by Cnet
the set of network nodes Vnet.

We say that a configuration C is consistent iff

• ∀r, r′ if there exists v � C[r] such that Rep(v) = r′ then v � C[r′].
• ∀vnet � Cnet if r � Delivered(vnet) then Node(vnet) � C[r].

The trivial configuration denoted by C0 is one where ∀r � R : C0[r] is the empty LAR and
C0
net = ;. We denote the set of all consistent configurations byC .

Using the LARs of all the replicas, we can reconstruct the happened before relation for all
events that are mentioned in a configuration. Suppose r sees two updates u′ and u′′ origi-
nating at r′ and r′′. Since updates are seen at the originating replica first before being seen
by others, the relation between u′ and u′′ can be determined by their relative order of ap-
pearances in the LARs of r′ and r′′. Here we crucially use the fact that our implementation
is global.

Definition 20 (Precedence and Concurrency). Let C be a consistent configuration. Let r be
a replica and vi,vj � C[r] with Rep(vi) = r′ and Rep(vj) = r′′. We say that vi precedes vj in C,

9

denoted by vi ≤C vj, if (vi � C[r′′]∧ vi ≤C[r′′] vj)∧ (vj � C[r′] =⇒ vi ≤C[r′] vj). (In other
words, both r′ and r′′ locally see vi before vj.)

If neither vi ≤C vj nor vj ≤C vi for any vi,vj � C[r], then we say that vi and vj are concurrent in
C denoted by vi||Cvj.
For a consistent configuration C and replica r, the view of r in C, denoted by ∂r(C), is the trace
(C[r],≤C).

If a node in a trace t contains information about an update that is in g(t,q,args) for a query
q(args), then that node cannot be purged—otherwise the response to that query would be
inaccurate. This is formalized below.

Definition 21 (Relevant node). Let f be a specification ofD computable via g and h. We say
that a node v in a consistent configuration C is relevant with respect to f if there exists a replica r,
query q �Q and args � V ∗, such that v � g(∂r(C),q,args).

3.2 Details of the reference implementation

The reference implementation is formally presented below. Each replica maintains an
LAR to which it appends information pertaining to each local update. On receiving infor-
mation about a remote update, it again appends this to the LAR, and also seeks to purge
from all LARs nodes that have ceased to become relevant and have been seen by all repli-
cas. This enables the reuse of labels. Since at any trace t the relevant nodes subsume all
subtraces of the form g(t,q,args), it follows that the implementation never purges infor-
mation that is needed to answer a query.

Let f be aspecification of a CRDTD computable via g and h. Its reference implementation
is defined to beDref = (C ,C0, ID,→ref) where ID=N and→ref is defined as follows.

Let C,C′ � C and let o = ((m, r,args, ret), id) � Σ(D)× ID. Then C o−→ref C
′ iff one of the

following holds:

• m �Q and ret= f(∂r(C),m,args) and C′ = C.

• m �U , ∀vnet � Cnet : Id(vnet) ̸= id, and C′ is defined as follows:

– ∀r′ �R : r′ ̸= r =⇒ C′[r′] = C[r′].
– C′[r] = C[r].v, with v = (m, r,args, l) where l is a label such that ∀v′ � C[r] :

Label(v′) ̸= l.
– C′net = Cnet ∪{(v, id,{r})}.

• m= receive and there exists a node v andR⊆R such that (v, id,R) � Cnet and r ̸� R,
and C′ is defined as follows:
Let C′′ be a configuration given by

10

– ∀r′ ̸= r : C′′[r′] = C[r′].
– C′′[r] = C[r].v.

– C′′net = Cnet ∪{(v, id,R∪{r})} \ {(v, id,R)}.
If R∪{r} ≠R then C′ = C′′ else

– ∀r′ �R : C′[r′] = C′′[r′]−V, where
V= {v � ∩

r′�R
C′′[r′] | v is not relevant in C′′}.

– C′net = C′′net \ {(v, id,R∪{r})}.

3.3 Correctness of the reference implementation

Lemma 22. Every reachable configuration C ofDref is consistent.

Proof The initial configuration is trivially consistent, and each transition purges only
those nodes that are no longer relevant and are delivered to every replica. This proves the
lemma. ⊣
Lemma 23. Suppose ρ′ � (Σ(D)× ID)∗ is accepted by Dref and that C0

ρ′−→ref C. Let (ρ,ϕ)
be the run associated with ρ′ and t = trace(ρ,ϕ). Then, for all r, q and args, g(∂r(t),q,args) is
isomorphic to g(∂r(C),q,args).

Proof The proof is by induction on the length of ρ′. The case when ρ′ = ε is trivial. So

let ρ′ = σ′.o. Let C′ be a configuration such that C0
σ′−→ref C

′ o−→ref C. Let (σ,ϕ) be the run
corresponding to σ′ and let t′ = trace(σ,ϕ). We assume by induction hypothesis that for
all r, q and args, g(∂r(t

′),q,args) is isomorphic to g(∂r(C
′),q,args). There are three cases to

be considered.

o is a query operation: In this case C= C′ and t= t′, so the lemma follows.

o is an update operation: Suppose Rep(o) = r. For r′ ̸= r, it is clear from the transition
rules that C[r′] = C′[r′]. It is also the case that ∂r′(t) = ∂r′ (t′), so the lemma still
holds for queries at replicas other than r.

On the other hand, C[r] = C′[r].v where v is a node with a fresh id, corresponding
to o. Since v is the latest node in C[r] and v /� C[r′] for any other r′, it is clear that
v′ ≤C v iff v′ � C[r]. But v′ � C[r] iff v′ corresponds to an update received by r or
originating in r. Thus ∂r(C) = ∂r(C

′)∪{v}, with v as the largest element. It is easy to
see that the maximal r-event in the trace t is greater than all other events in ∂r(t

′).
Thus g(∂r(C),q,args) is isomorphic to g(∂r(t),q,args).

11

o is a receive operation: Suppose Rep(o) = r. We add a node at the end of C[r], but also
purge all theLARsof some irrelevantnodes (those that are receivedby every replica).
Since irrelevant nodes do not feature in g(∂r′ (t),q,args) for any r′ and q(args), all we
need to show is that the order among relevant nodes is captured correctly. But the
order between update events does not change at the point of time of a receive. It
can be checked that≤C=≤C′ , and thus the lemma follows.

⊣
Lemma 24. Suppose a well-formed timestamped run ρ′ � (Σ(D)×ID)∗ is accepted byDref. Let
(ρ,ϕ) be the run associated with ρ′. Then (ρ,ϕ) � Runs(D, f).

Proof Suppose C0
ρ′−→ref C. Let t = trace(ρ,ϕ). Since g(∂r(C),q,args) is isomorphic to

g(t,q,args) and since h returns the same values on isomorphic traces, it easily follows that
for all query operations ρ[i] = (q, r,args, ret), ret= f(∂r(trace(ρ[i],ϕ)),q,args). Thus (ρ,ϕ) �
Runs(D, f). ⊣
Lemma 25. Suppose (ρ,ϕ) � Runs(D, f). Let ρ′ � (Σ(D)× ID)∗ be a well-formed timestamped
run whose associated run is (ρ,ϕ). Then ρ′ is accepted byDref.

Proof We prove the lemma for ρ′[1 : i], by induction on i. The base case, when i = 0
is trivial. So let i > 0. Suppose ρ′[1 : i− 1] is accepted by Dref by an execution ending in
configuration C. Let (σ,ϕ) and (σ′,ϕ) be the runs associated with ρ′[1 : i− 1] and ρ′[1 : i]
respectively. Let t = trace(σ,ϕ) and t′ = trace(σ′,ϕ). Let o = ρ′[i] = ((m, r,args, ret), id).
There are three cases to consider.

m �Q: In this case t = t′. We know that ret = f(∂r(t
′),m,args) = f(∂r(t),m,args). But

we also know that g(∂r(C),m,args) is isomorphic to g(∂r(t),m,args). Thus it follows
that ret= f(∂r(C),m,args). Hence C o−→ C and ρ′[1 : i] is accepted byDref.

m �U : Since ρ′[1 : i] is well-formed, it has to be the case that either id is not used in
ρ′[1 : i− 1], or if it is used in an update operation ρ′[j], every replica has received
that update in ρ′[j+ 1 : i− 1]. Thus, there is no node vnet � Cnet with Id(vnet) = id.
So, o is enabled at C and ρ[1 : i] is accepted byDref.

m= receive: Since ρ′[1 : i] is well-formed, it has to be the case that there is an earlier
update at some other replica with the same identifier that has not yet been commu-
nicated to r. Thus there exists a node v and R ⊆ R such that (v, id,R) � Cnet and
r ̸� R. It follows that o is enabled at C and ρ′[1 : i] is accepted byDref. ⊣

From the previous two lemmas we can conclude the following:

Theorem 26. Runs(Dref) = Runs(D, f)

12

3.4 Bounding the reference implementation

For effective verification, we need to ensure that the set of traces of the CRDT has a finite
representation. The reference implementation constructed in the previous section is not
necessarily finite-state. The unboundedness arises due to several reasons.

• If the size of the universe is not bounded, the number of nodes, and hence the num-
ber of configurations, will not be bounded.

• If there is no bound on the number of undelivered messages, then the number of
network states would be unbounded, and so the size of Cnet of any configuration C
is unbounded.

• If the specification of the CRDT itself is not finite, then the number of relevant
nodes in the configuration is unbounded, even when the universe V is finite.

With some reasonable assumptions, we can ensure that the reference implementation is
finite-state.

1. Universe Size: We assume that the size of the universe is bounded by a parameter
m. This is a reasonable assumption since most CRDT implementations treat the
elements of the universe in a uniformmanner. Hence for the purpose of verification,
it suffices to consider a universe whose size is bounded.

2. Delivery Constraints: We assume that the number of undelivered messages in the
network is bounded by the parameter b. Again, this is a reasonable assumption since
most practical implementations of strong eventual consistency also requires that
messages are reliably delivered to all the replicas. We can pick a sufficiently large b
that correctly characterizes the network guarantee of the actual implementation.

3. Bounded Specification: We assume that the specification function f computable
via g and h comes with a bound K. Let k be the maximum arity of any q � Q . If
the universe if bounded, the number of query instances is bounded by |Q| ×mk.
Since the specification function has a bound K, the size of the relevant nodes in a
configuration is bounded by ℓ= K× |Q|×mk.

For example, in case of OR-sets, to answer the query contains(x) it sufficies to keep
track of the maximal x-events. Since the number of replicasR is bounded byN the
number of maximal x-events is bounded byN. Hence if the universe is bounded by
m then then the number of relevant nodes in a configuration is no more thanm ·N.

We now prove that, with these assumptions, the size of the reference implementation is
bounded. Each configuration ofDref consists of an LAR for each replica, and a set of net-
work nodes. As is clear from the transition rules, the only network nodes we retain are

13

those that are still undelivered to some replicas. Thus, if there is a bound on the number
of undelivered messages, there is also a bound on the number of network nodes present in
each configuration. But the set of network nodes that occur in all configurationsmight still
be unbounded. To bound this, we need to bound the set of all nodes and the set ID. The
size of the set ID can be bounded by b, the number of undelivered messages, as explained
below.

Let C be a reachable configuration ofDref and o an update operation enabled at C. Now it
has to be the case that only if there are at most b− 1 network nodes in Cnet (as otherwise
therewould bemore than bundeliveredmessages in the runupto and including o). Thus as
long ID has b elements, the reference implementation can always attach a fresh timestamp
to o. (Formally this means that we can map any timestamped run ofDref to an equivalent
run which uses at most b timestamps.)

We now turn to bounding the set of all nodes. The only unbounded component in this is
the setL of labels.

Lemma 27. If the number of undelivered messages is bounded by b and the number of relevant
events is bounded by ℓ then it is sufficient to have a label setL of size b+ ℓ.

Proof Let ρ= ρ′.o be any run of the reference implementation such that the number of
undelivered messages in ρ is bounded by b. Let o be an update operation at replica r. Let
C′ be the configuration of the reference implementation at the end of ρ′.

Note that the number of undelivered update operations in ρ′ is strictly less than b, as oth-
erwise ρ would have more than b undelivered messages. It follows that the number of
undelivered nodes in C′ is at most b− 1. (A node v is undelivered in C′ if (v,R) � C′net for
some R⊆R .) A node v is present in some LAR C′[r′] if v is undelivered or v is relevant.
Thus the number of distinct nodes in C′ is at most b+ ℓ− 1. Thus if |L |= b+ ℓ, there is
at least one free label inL to label the new node C[r] \C′[r]. Thus, it is sufficient to have
a label setL of size b+ ℓ. ⊣
From the above, we can conclude that the number of nodes inN is bounded by |U | ×
N×mk′ × (b+ ℓ) (where, as before, k′ is the maximum arity of any u �U).

Since the set ID is also bounded (by b, as already explained), the set of network nodes is
bounded (by |N |× |ID| × 2N).
From Lemma 27 it is clear that the number of distinct nodes in any configuration cannot
exceed b+ℓ. And since the number of undeliveredmessages are bounded by b ,the number
of network nodes is bounded by b. Thus, the set of all configurations C is bounded as
follows:

|C | ≤ |N |(b+ℓ)× |Nnet|b.
Theorem 28. If the number of undeliveredmessages and the size of the universe are bounded and
we have a bounded specification for the CRDT, then the reference implementation is bounded.

14

4 Effective verification using Bounded Reference Implemen-
tation via CEGAR

Verifying CRDT implementations is a challenging task. For instance, consider an imple-
mentation that uses a bounded set of timestamps as we have proposed, except that the
size of this set is too small. Under certain circumstances, a replicamay be forced to reuse a
timestamp even when a previous update with the same timestamp has not been delivered.
To detect such an error, we have to explore a run that exceeds the bound in the imple-
mentation. Unfortunately, we typically do not have access to the internal details of the
implementation, so this bound is not known in advance. This results in an unbounded
verification task.

Alternatively, we have seen that by making reasonable restrictions on the universe of the
datatype and the behaviour of the underlying messasge delivery system, we can generate
a bounded reference implementation. Once we have such a bounded reference imple-
mentation, we can use Counter Example Guided Abstract Refinement (CEGAR) [3] to
effectively verify a given CRDT implementation with respect to the assumptionsmade on
the environment.

More formally, given a implementation of a CRDT with bounded specification, let us as-
sume suitable bounds on the size of the universe, m, and the number of undelivered mes-
sages, b. We fix the bounded set of timestamps ID accordingly. We assume the existence
of an abstraction function that provides a finite state abstraction DI = (SI, s

0, ID,→I) of
the implementation, whose runs are in (Σ(D)× ID)∗.
We then construct the synchronous productMsync =
((SI×C)∪{serr}, (s0,C0), ID,→sync), where→sync is defined as follows:

• The action o � Σ(D)× ID is enabled at the product state (s,C) iff o is enabled at s in
DI. If o is enabled then we define

– (s,C) o−→sync serr, if o is not enabled at C inDref

– (s,C) o−→sync (s
′,C′), if s o−→I s

′ and C o−→ref C
′.

• ∀o � ΣD : o is not enabled at serr

Lemma 29. If ρ is a run ofMsync resulting in the state serr starting from the initial state (s0,C0),
then ρ � Runs(DI) \Runs(D, f).

Thus any run ρ leading to the state serr in the synchronous product is a potential counter
example. As usual, we can use the finite abstraction to try trace an actual run in original
implementation corresponding to ρ. If we succeed in finding such a run, we have found
a bug in the original implementation. If the abstract counterexample turns out to be in-
feasible, then we refine our abstraction using the feedback obtained from our failure to

15

construct a valid run. We repeat this process until a bug is found or we are satisfied with
the level of abstraction to which we have verified the system.

5 Conclusion

In this paper, we have shown how to construct a reference implementation for a CRDT
that is described using a bounded declarative specification. By imposing reasonable con-
straints on the universe of the datatype and the underlying message delivery subsystem,
the reference implementation can bemade finite-state. This can be exploited to verify any
given implementation using CEGAR.

The key observation in this paper is that a global reference implementation suffices for
verification. This greatly simplifies the construction compared to the distributed reference
implementation described in [9], which requires an intricate distributed timestamping
procedure due to the local nature of the information available at each replica.

The other interesting feature of our reference implementation is that the basic construc-
tion using LARs is independent of the assumptions that we make on the set of data values
and the nature ofmessage delivery in order to bound the set of timestamps used. Thus, the
reference implementation relies only on the declarativespecificaton of the CRDT.We can
then separately reason about the size of this implementation under various constraints on
the operating environment.

In future work, we would like to explore further benefits of declarative specifications for
replicated data types. In particular, one challenging problem is to develop a theory in
whichwe can compose suchspecifications to derive complex replicated data types by com-
bining simpler ones.

References

[1] A. Bieniusa, M. Zawirski, N. M. Preguiça, M. Shapiro, C. Baquero, V. Balegas, and
S. Duarte. An optimized conflict-free replicated set. CoRR, abs/1210.3368, 2012.

[2] S. Burkhardt, A. Gotsman, H. Yang, andM. Zawirski. Replicated data types: specifi-
cation, verification, optimality. InThe 41st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, pages 271–284, 2014.

[3] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

[4] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

16

[5] Y. Gurevich and L. Harrington. Trees, automata, and games. In Proceedings of the
Fourteenth Annual ACM Symposium onTheory of Computing, STOC ’82, pages 60–65,
New York, NY, USA, 1982. ACM.

[6] A.Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to Other
Models of Concurrency, pages 278–324. Springer, 1987.

[7] M. Mukund, K. Narayan Kumar, and M. A. Sohoni. Bounded time-stamping in
message-passing systems. Theor. Comput. Sci., 290(1):221–239, 2003.

[8] M. Mukund, G. Shenoy R, and S. P. Suresh. Optimized or-sets without ordering
constraints. In M. Chatterjee, J.-N. Cao, K. Kothapalli, and S. Rajsbaum, editors,
ICDCN, volume 8314 of Lecture Notes in Computer Science, pages 227–241. Springer,
2014.

[9] M.Mukund, G. Shenoy R, and S. P. Suresh. Bounded implementations of replicated
data types. In Proceedings of VMCAI 2015, volume 8931 of LNCS, pages 355–372, 2015.

[10] M. Mukund and M. A. Sohoni. Keeping track of the latest gossip in a distributed
system. Distributed Computing, 10(3):137–148, 1997.

[11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Rapport de recherche RR-
7506, INRIA, Jan. 2011. http://hal.inria.fr/inria-00555588/PDF/techreport.
pdf.

[12] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated
data types. In SSS, pages 386–400, 2011.

17

