EFFICIENT VERIFICATION OF
REPLICATED DATATYPES USING LATER
APPEARANCE RECORDS (LAR)

Madhavan Mukund

ATVA 2015, Shanghai, China, 14 October 2015

Distributed systems

* N nodes connected by asynchronous network

Distributed systems

* N nodes connected by asynchronous network

* Nodes may fail and recover infinitely often

Distributed systems

* N nodes connected by asynchronous network
* Nodes may fail and recover infinitely often

* Nodes resume from safe state before failure

Replicated datatypes

* Each node replicates the data structure

Replicated datatypes

* Each node replicates the data structure
* Queries / updates addressed to any replica
* Queries are side-effect free

* Updates change the state of the data structure

Replicated datatypes ...

* [ypical applications
* Amazon shopping carts
* (Google docs

* Facebook “like” counters

Replicated datatypes ...

* Typical data structure — Sets
* Query : is x a member of S?

* Updates : add x to S, remove x from S

Clients and replicas

* Clients issue query/update requests

* Each request is fielded by an individual source
replica

add(x,Si; ~remove(y,S) /;emove(x,S)

Processing query requests

* Queries are answered directly by source replica,
using local state

EEE =
XinS? ~ ~Yes

Processing updates

Processing updates

* Source replica first updates its own state

Processing updates

* Source replica first updates its own state
* Propagates update message to other replicas

* \With auxiliary metadata (timestamps etc)

add(x,S,Y) add(x,S,Y)

TTEL.

add(x S

Strong eventual consistency

* Replicas may diverge while updates propagate
* All messages are reliably delivered

* Replicas that receive the same set of updates must
be query equivalent

* After a period of quiescence, all replicas converge

* Any stronger consistency requirement would negate
availability or partition tolerance (Brewer’'s CAP
theorem)

Facebook example (2012

http://markcathcart.com/2012/03/06/eventually-consistent/

SODT -

ar
at

Mike Gillespie
Has anyone else noticed that the FB locator is squiffy.... Iam
no where near Inkberrow....

Like - Comment - Share * 2 hours ago near Inkberrow,

Crnaland -
dialnud

Mark Cathcart are you on a wired network? They get it from
the ISP based on the IP address...

2 hours ago - Like

Mike Gillespie I know.... Actually this might interest you... I didn't
realise until today that there are actually two sets of recognised
gps co ordinates used on the web - OSGB36 and WGS84... and
depending on which set you use (given that we use post codes
here and zip codes elsewhere) a post code can be as much as 100
metres out.....

about an hour ago - Like

Martin Jenkins and that matters because?
15 minutes ago * Like

Mark Cathcart well its of passing interest because Mike has a
business that could benefit from being able to accurately locate
properties based on the location of the people looking...

4 minutes ago - Like - &4 1

Write a comment...

Mike Gillespie commented on his
own status: "When you run a
business that r..."

! Jen Mathe commented on her own
' , status: "Jenni Plane This is probably

] ‘.lt "

M8 Hugo Garza's birthday is today
(1] 4 events this week

Sponsored Create an Ad

Outdoor Lanterns

Light up your outdoor
space with these wireless
lanterns. Join Fab.com
and save 25%

159,998 people like Fab.com.

Join Al Franken

alfranken.com

Republicans think your
employer should decide
what health care you get.
Sign here if you think they

http://markcathcart.com/2012/03/06/eventually-consistent/

Facebook example (2012

http://markcathcart.com/2012/03/06/eventually-consistent/

SODT -

Mike Gillespie
Has anyone else noticed that the FB locator is squiffy.... Iam

2 no where near Inkberrow....

at

Like - Comment * Share * 2 hours ago near Inkberrow,

4 Enaland

Mark Cathcart are you on a wired network? They get it from
the ISP based on the IP address...

2 hours ago - Like

Mike Gillespie I know.... Actually this might interest you... I didn't
realise until today that there are actually two sets of recognised
gps co ordinates used on the web - OSGB36 and WGS84... and

depending on which set you use (given that we use post codes
here and zip codes elsewhere) a post code can be as much as 1
metres out.....

about an hour ago - Like

Martin Jenkins and that matters because?
15 minutes ago * Like

Mark Cathcart well its of passing interest becayfe Mike has a
business that could benefit from being able to g€curately locate
properties based on the location of the peopl#looking...

4 minutes ago - Like - &4 1

Write a comment...

Mike Gillespie commented on his
y own status: "When you run a
business that r..."

Sponsored Create an Ad

Outdoor Lanterns

Light up your outdoor
space with these wireless
lanterns. Join Fab.com
and save 25%

159,998 people like Fab.com.

Join Al Franken

alfranken.com

Republicans think your
employer should decide
what health care you get.
Sign here if you think they

http://markcathcart.com/2012/03/06/eventually-consistent/

CRDT: Conflict Free Data Types

* |ntroduced by Shapiro et al 2011

* |mplementations of counters, sets, graphs, ... that
satisfy strong eventual consistency by design

* No independent specifications
* Correctness?
* Formalisation by Burkhardt et al 2014

* \lery detalled, difficult to use for verification

Need for specifications

* How to resolve conflicts?

* \What does it mean to concurrently apply add(x,S) and
remove(x,S) to a set S7?

* Different replicas see these updates in different orders

* Observed-Remove (OR) sets: add wins

remove(y,S) /;emove(x,S)

“‘Operational” specifications

* My implementation uses timestamps, ... to detect
causality and concurrency

* |[f my replica received <add(x,S),t> and
<remove(x,S),t’> and t and t’ are related by ..., then
answer Yes to “x in S?”, otherwise No

add(x,Si; ~remove(y,S) /;emove(x,S)

Declarative specification

* Represent a concurrent computation canonically
* Say a labelled partial order
* Describe effect of a query based on partial order

* Reordering of concurrent updates does not
matter

* Strong eventual consistency is guaranteed

CRDTs

* Conflict-free Replicated Data Type: D = (V,Q,U)
* \/ — underlying universe of values
* Q — query operations
* U — update operations

* For instance, for OR-sets,
Q = {member-of}, U = {add, remove}

Runs of CRDTs

* Recall that each update is

* |ocally applied at source replica,

* followed by N-1 messages to other replicas
add(x,S,Y) add(x,S,Y)

TTEL.

add(x S

Runs of CRDTs ...

* Sequence of query, update and receive operations

o2 13 2 ort-ordox2 or3orlord o3 12 o3 rl-o14

Runs of CRDTs

* |gnore query operations

* Associate a unique event with each update and
receive operation

M r2 3 r1 r4d r3 r2 r1

Runs of CRDTs ...

* Replica order: total order of each replica’s events

BN -
N B -1
\ >

>.

-

Runs of CRDTs ...

* Delivery order: match receives to updates

Runs of CRDTs ...

* Happened before order on updates: Replica + Delivery

* Need not be transitive

* Causal delivery of messages makes it transitive

Runs of CRDTs ...

* Local view of a replica

* \Whatever Is visible below its maximal event

Runs of CRDTs ...

* Local view of a replica

* \Whatever Is visible below its maximal event

Runs of CRDTs ...

* Local view of a replica

* \Whatever Is visible below its maximal event

Runs of CRDTs ...

* Local view of a replica

* \Whatever Is visible below its maximal event

Runs of CRDTs ...

* Local view of a replica

* \Whatever Is visible below its maximal event

Runs of CRDTs ...

* Even if updates are received locally in different
orders, “happened before” on updates is the same

Runs of CRDTs ...

* Even if updates are received locally in different
orders, “happened before” on updates is the same

>.
>.

Declarative specification

* Define queries in terms of partial order of updates
In local view

* For example: add wins in an OR-set

* Report “x in S” to be true if some maximal
update is add(x,S)

* Concurrent add(x,S), remove(x,S) will both be
maximal

Bounded past

* Jypically do not need entire local view to answer a
query

* Membership in OR-sets requires only maximal
update for each element

* N events per element

Verification

* Given a CRDT D = (V,Q,U), does every run of D
agree with the declarative specification?

* Strategy

* Build a reference implementation from
declarative specification

* Compare the behaviour of D with reference
Implementation

Finite-state Implementations

* Assume universe Is bounded

* Can use distributed timestamping to build a
sophisticated distributed reference implementation
[VMCAI 2015]

* Asynchronous automata theory

* Requires bounded concurrency for timestamps
to be bounded

Global implementation

* A simpler global implementation suffices for
verification

* Each update event is labelled by the source replica
with an integer (will be bounded later)

* Maintain sequence of updates applied at each
replica

* either local update from client

* or remote update received from another replica

| ater Appearance Record

* Each replica’s history is an LAR of updates

* (U1,l1) (ug,lo) ... (uk,lk)

* U; has detalls about update: source replica,
arguments

* | Is label tagged to u; by source replica

* | abels are consistent across LARs — (u;,l) in r1 and
(u,l) In r2 denote same update event

* Maintain LAR for each replica

Causality and concurrency

* Suppose r3 receives (u,l) from r1 and (u’,I’) from r2

* |f (u,l) is causally before (u’,I’), (u,l) must appear
in r2’s LAR before (U’,l’)

* |f (u,l) iIs not causally before (u’,I’) and (u’,I’) is not
causally before (u,l), they must have been
concurrent

* Can recover partial order and answer queries
according to declarative specification

Pruning LARS

* Only need to keep latest updates in each local
view

* |f (u,l) generated by r is not latest for any other
replica, remove all copies of (u,l)

* o prune LARs, maintain a global table keeping
track of which updates are pending (not yet
delivered to all replicas)

* | abels of pruned events can be safely reused

Qutcome

* Simple global reference implementation that
conforms to declarative specification of CRDT

* Reference implementation is bounded if we make
suitable assumptions about operating environment

* Bounded universe

* Bounded message delivery delays

Verification strategy

* Counter Example Guided Abstraction Refinement
(CEGAR)

* Build a finite-state abstraction of given CRDT

* Compute synchronous product with reference
implementation

* |f an iIncompatible state is reached, trace out
corresponding bad run in CRDT

* |f we find a bad run, we have found a bug

* |If not, refine abstraction and repeat

Future work

* Build a tool!
* Extend formalisation of CRDTs to wider classes
* Composite CRDTs : Hash maps, graphs

* Multiple CRDTs with internal consistency
constraints

* Partially replicated data — local sync in
Dropbox, Google Drive

