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Classify the three species of the Iris Flower



How the dataset looks like?

Sepal Length (X1) Sepal Width (X2) Species Group/Label (k)

5.1 3.5 setosa 1
7.0 3.2 versicolor 2
6.7 3.3 verginica 3

...
...

...
...
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Classify the three species of the Iris Flower

I Suppose Xk=1 = (X1,X2) is the vector of features of species
setosa

I Similarly, Xk=2 = (X1,X2) is the vector of features of species
versicolor

I And, Xk=3 = (X1,X2) is the vector of features of species
virginica

I We can assume Xk = (X1,X2) follows joint probability
distribution with pdf as fk(x)

I Given a new test point X = (X1,X2), we want to classify
the new flower into one of the three species.
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Discriminant Analysis

I Suppose fk(x) is the class-conditional density of X in class
G = k

I πk be the prior probability of class k, with
∑K

k=1 πk = 1.

I Using Bayes Theorem:

P(G = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

I In terms of ability to classify, having the fk(x) is almost
equivalent to having the quantity P(G = k|X = x).
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Discriminant Analysis

I Many techniques are there to model fk(x)

I linear and quadratic discriminant analysis use Gaussian
densities

I Finite mixture models (some what complicated)

fk(x) =
I∑

i=1

piN(µi ,Σi )

I Nonparametric density estimation (very complicated)

fk(x) =
∞∑
i=1

piN(µi ,Σi ) = lim
I→∞

I∑
i=1

piN(µi ,Σi )



Linear Discriminant Analysis

I We model each class density as multivariate Gaussian

fk(x) =
1

(2π)p/2|Σk |1/2
e−

1
2

(x−µk )T Σ−1
k (x−µk)

I Linear discriminant analysis (LDA) arises in the special case
when we assume

Σk = Σ ∀k



Linear Discriminant Analysis

I We want to compare two classes k and l ,

I Let’s look at the ratio

log
P(G = k|X = x)

P(G = l |X = x)
= log

fk(x)

fl(x)
+ log

πk
πl

= log
πk
πl
− 1

2
(µk + µl)

TΣ−1(µk − µl)

+xTΣ−1(µk − µl)

is an equation linear in x .



Linear Discriminant Analysis

I Σk = Σ ∀k cause the normalization factors to cancel, as well
as the quadratic part in the exponents.

I The decision boundary between classes k and l is linear

I From above the linear discriminant functions

δk(x) = xTΣ−1µk −
1

2
µTk Σ−1µk + log πk

I Best decision rule:

G (x) = argmaxk δk(x)



Linear Discriminant Analysis
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Linear Discriminant Analysis

I In practice we do not know the parameters of the Gaussian
distributions

I Need to estimate using our training data

I π̂k = fk
n , where fk is the number of class-k observations

I µ̂k =
∑

gi=k xn/fk

I Σ̂ =
∑K

k=1

∑
gi=k(xi − µ̂k)(xi − µ̂k)T/(n − K )

I These estimates are MLE



Two Classes LDA

I The LDA for two classes are very simple.

I The LDA rule classifies to class 2 if

xT Σ̂−1(µ̂2 − µ̂1) > c

where

c =
1

2
µ̂T2 Σ̂−1µ̂2 −

1

2
µ̂T1 Σ̂−1µ̂1 + log(f1/n)− log(f2/n)



Quadratic Discriminant Analysis

I Σk 6= Σ at least for one k

I Convinient cancellation will not work any more

I Then QDA function is

δk(x) = −1

2
log |Σk | −

1

2
(x − µk)TΣ−1

k (x − µk) + log πk .

I The decision boundary between each pair of classes k and l is
described by quadratic equation {x : δk(x) = δl(x)}



LDA or QDA

source: ”Introduction to Statistical Learning” by James, Witten,
Hastie and Tibshirani
https://faculty.marshall.usc.edu/gareth-james/ISL/

https://faculty.marshall.usc.edu/gareth-james/ISL/
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