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Logistic Regression

I Logistic Regression with logit-link

log
( p

1− p

)
= xTβ = β0 + β1x1 + · · ·+ xpβp

I Logistic Regression with probit-link

Φ−1(p) = xTβ = β0 + β1x1 + · · ·+ xpβp

I How to estimate β?



Likelihood Function of Probit Model

I Suppose {yi , xi}ni=1 contains n independent samples

I For the single observation, the probit model is

P(yi = 1|xi ) = Φ(xTi β) = pi

P(yi = 0|xi ) = 1− Φ(xTi β) = 1− pi

I The likelihood of a single observation (yi , xi ) is
f (yi , xi |β) = pyii (1− pi )

(1−yi ) = Φ(xTi β)yi [1− Φ(xTi β)](1−yi )

I Since the observations are independent, the joint likelihood of
the entire sample is

L(β; y,X) =
n∏

i=1

(
Φ(xTi β)yi [1− Φ(xTi β)](1−yi )

)



Log-Likelihood Function of Probit Model

I The joint likelihood of the probit model is

L(β; y,X) =
n∏

i=1

(
Φ(xTi β)yi [1− Φ(xTi β)](1−yi )

)

I The log-likelihood function of probit model is

lnL(β; y,X) =
n∑

i=1

(
yi ln Φ(xTi β) + (1− yi ) ln(1−Φ(xTi β))

)

I The negative log-likelihood function of probit model is

− lnL(β; y,X) = −
n∑

i=1

(
yi ln Φ(xTi β)+(1−yi ) ln(1−Φ(xTi β))

)



Likelihood Function of Logit Model

I Suppose {yi , xi}ni=1 contains n independent samples

I For the single observation, the logit model is

P(yi = 1|xi ) =
exp(xTi β)

1 + exp(xTi β)

P(yi = 0|xi ) = 1−
exp(xTi β)

1 + exp(xTi β)
=

1

1 + exp(xTi β)

I The likelihood of a single observation (yi , xi ) is f (yi , xi |β) =

pyii (1− pi )
(1−yi ) =

(
exp(xTi β)

1+exp(xTi β)

)yi
[

1− exp(xTi β)

1+exp(xTi β)

](1−yi )



Likelihood Function of Logit Model

I The likelihood of a single observation (yi , xi ) is

f (yi , xi |β) = pyii (1− pi )
(1−yi )

=

(
exp(xTi β)

1 + exp(xTi β)

)yi
(

1

1 + exp(xTi β)

)(1−yi )

I Since the observations are independent, the joint likelihood of
the entire sample is

L(β; y,X) =
n∏

i=1

(
pyii [1− pi ]

(1−yi )

)
,

where pi =
exp(xTi β)

1+exp(xTi β)



Maximum Likelihood Estimates of β

I The Maximum Likelihood Estimates (MLE) of β is

β̂ = argmax
β

L(β; y,X)

= argmax
β

lnL(β; y,X)

= argmin
β

[− lnL(β; y,X)]

I Gradient Descent Algorithm can be used to minimise negative
log-likelihood function

I This is general recepie of any statistical model

I For simple linear regression one can show that
the OLS estimator of β is also MLE



In practice...

I You don’t have to implement any optimization

I There are two Python module which implement logistic
regression

1. statsmodels

2. sklearn (aka., scikit learn)

I There is a built-in function called glm in R-package named
stats.

I You can use whatever you find suitable to you



In the next video...

I I will discuss the statistical inference with logistic regression...


