Predictive Analytics
Regression and Classification
Lecture 4 : Part 2

Sourish Das

Chennai Mathematical Institute

Aug-Nov, 2020



Bootstrap Statistics

> Bootstap statistics is an algorithmic strategy, which typically
resort to SRSWR scheme

» It falls under the braoder class of resampling strategy.

» Bootstrap was introduced by Brad Efron (1979). The idea
though apparently simple revolutionized statistics by its ability
to replace analytical derivation by brute computing force.
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Bootstrap Statistics

» Suppose {Y1, Y2, -, Y} are iid observations with cdf F()
and T, = Tp(Y1, Y2, -, Yy) is a statistic which estimates a
parameter 6.

» The sampling distribution of T, would depend on F(-)

» The bootstrap idea in its simplest form is to estimate the cdf
F(-) by empirical cdf Fp(-).

Result The empirical cdf Fp(+) is the non-parametric MLE of cdf F(-).

» Bootstraping based on F,(-) is called nonparametric

bootstrap. cmi



Bootstrap Statistics

>

Result

Suppose {Y1, Yo, -+, Y,} are iid observations with cdf F()
and T, = Tp(Y1, Ya,- -, Yn) is a statistic which estimates a
parameter 6.

The empirical cdf F,(-) is the non-parametric MLE of cdf F(-).
We can draw sample from Fp(+).

Drawing sample from Fp(+) is same as draw iid samples from
{Y17 Y27'” )Yn}

That is draw resamples from {Y1, Y2, -, Y}
cm;

Hence we can draw as many times as we want.



Bootstrap Framework

>

Y,={Y1, Y2, -, Yy} are iid random samples from F(-).
Tn = To(Yn) is a statistic for parameter

Since F(-) is unknown. We don't know that sampling
distribution of T,,.

Hence we don't know the variance of T,, i.e., Var(T,) and
confidence interval of T,, i.e., CI(Tp).

Resample Y}, = {Y{, Y5, -, Y }p from Y, using SRSWR
scheme; b=1,2,--- ,B
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For each resample b, we can compute 7),; b=1,2,--- B



Bootstrap Framework

v

Y,={Y1, Y2, -, Yy} are iid random samples from F(-).

» T, = Tn(Y,) is a statistic for parameter 6

v

Since F(-) is unknown. We don't know that sampling
distribution of T,,.

Hence we don't know the variance of T,, i.e., Var(T,) and
confidence interval of T,, i.e., CI(T,).
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Bootstrap Framework

» Resample Y, ={Y{, Y5, -+, Y }p from Y, using SRSWR
scheme; b=1,2,--- ,B

» For each resample b, we can compute 7),; b=1,2,--- B

» We can compute:
TB 1y * B_ 1 . x _ TBy2
Ty = Bbz—:lTnb; Var(Th) :Bbz_:l( b= Tn)
CITNE = {Tn+ Ggl(a/2)y/ Var(T,)E,

To+ Ggl(1 — a/2)y/ Var(T,)B},

T T G cin;
\/ Var(T,)E '

where



Bootstrap Framework

» Due to SLLN, one can show, as B — oo

:I',‘? — T, almost surely;
Var(T,)® — Var(T,) almost surely
CI(T,)B — CI(T,) almost surely,

GB — Fr.() in law
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Bootstrap Regression

» Consider the model

Yo = anp/@p + €n,

iid

where E(€) = 0, Var(e) = 21, and € ~ F(-),

unkniwn cdf

» OLS estimator: 3, = (X"X)1XTy;
and Var(3,) = 0?(XTX)™1,

: R e Ly T i
> Residuals: e =y —XB,0re; =y —x; B,, |

F(-)is

=1,2,- ,n.
cmy



Residual Bootstrap Regression

>

Suppose F,(-) is the empirical cdf of €

€} e Fn (i.e., € is resampled from € using SRSWR),

b=1,2,---.B

Calculate:
Yz = Xﬁn + ET)

Estimate resample coefficients B::b as

~ %

Bn:b - (XTX)ileyT)
= B+ (XTX) X7
E(Ign:b) - IBn
Bootstrap Estimate: Bz = & S5 B, Cmi

Bootstrap variance: Var(Bg) = & Zle(,@z — Bg)?



Paired

>

Bootstrap Regression

Consider the model

Yn = Xn><p/6p + €n,
where E(€) = 0, Var(e) = X, and (y;,x/) “ F(-), F(-) is
unkniwn cdf

Suppose {(y/,x¥),i =1,2,...n}, = Dy are iid samples from
empirical Fn(---), where b=1,2,--- /B

The estimates of 3 from bt" resample:

By = (XyTX5) X3y}

Bootstrap Estimate: 35 = % Zle BZ Cmi
Bootstrap variance: Var(8g) = % 2521(32 — Bg)?



Bootstrap Regression

» If the residuals are heteroscadastic, then paired Bootstrap is
still a consistent estimator.

» However in case of heteroscadastic residual; the residual
Bootstrap is not consistent estimator.



Paired Bootstrap Regression

OLS Estimates of alpha and beta

Estimate Std. Error t value Pr(>|t])
alpha 0.0046 0.0025 1.8773 0.0641
beta 0.7999 0.1556 5.1399 0.0000

Paired Bootstrap Estimates of alpha and beta

Estimate Std.Error 2.5% 97.5Y%
alpha 0.0044 0.0026 -0.0005 0.0095
beta 0.8071 0.1541 0.5379 1.1297



Paired Bootstrap Regression

Density
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Residual Bootstrap Regression

OLS Estimates of alpha and beta

Estimate Std. Error t value Pr(>|tl)
alpha 0.0046 0.0025 1.8773 0.0641
beta 0.7999 0.1556 5.1399 0.0000

Residual Bootstrap Estimates of alpha and beta

Estimate Std.Error 2.5% 97.5Y%
alpha 0.0045 0.0026 -0.0006 0.0097
beta 0.7982 0.1370 0.5300 1.0742

Paired Bootstrap Estimates of alpha and beta

Estimate Std.Error 2.5% 97.5Y% Cm-
alpha 0.0044 0.0026 -0.0005 0.0095 l
beta 0.8071 0.1541 0.5379 1.1297



Residual Bootstrap Regression
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Bootstrap Regression

OLS methods R-Squared = 0.239
Paired Bootstrap R-Squared CI = ( 0.128 0.366 )
Residual Bootstrap R-Squared CI =( 0.115 0.39 )
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The idea of Bootstrap Statistics

The idea of Bootstrap Statistics or Resampling Technique can be
found in

» Random Forest
» Ensamble model

> Bagging etc.



Thank you...

» Wish you a happy weekend. Stay Safe.
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