Predictive Analytics Regression and Classification

Lecture 4: Part 2

Sourish Das

Chennai Mathematical Institute

Aug-Nov, 2020

Bootstrap Statistics

- ► Bootstap statistics is an algorithmic strategy, which typically resort to SRSWR scheme
- ▶ It falls under the braoder class of resampling strategy.
- Bootstrap was introduced by Brad Efron (1979). The idea though apparently simple revolutionized statistics by its ability to replace analytical derivation by brute computing force.

Bootstrap Statistics

- ▶ Suppose $\{Y_1, Y_2, \dots, Y_n\}$ are iid observations with cdf F() and $T_n = T_n(Y_1, Y_2, \dots, Y_n)$ is a statistic which estimates a parameter θ .
- ▶ The sampling distribution of T_n would depend on $F(\cdot)$
- ▶ The bootstrap idea in its simplest form is to estimate the cdf $F(\cdot)$ by empirical cdf $F_n(\cdot)$.

Result The empirical cdf $F_n(\cdot)$ is the non-parametric MLE of cdf $F(\cdot)$.

▶ Bootstraping based on $F_n(\cdot)$ is called nonparametric bootstrap.

Bootstrap Statistics

▶ Suppose $\{Y_1, Y_2, \dots, Y_n\}$ are iid observations with cdf F() and $T_n = T_n(Y_1, Y_2, \dots, Y_n)$ is a statistic which estimates a parameter θ .

Result The empirical cdf $F_n(\cdot)$ is the non-parametric MLE of cdf $F(\cdot)$.

- ▶ We can draw sample from $F_n(\cdot)$.
- ▶ Drawing sample from $F_n(\cdot)$ is same as draw iid samples from $\{Y_1, Y_2, \cdots, Y_n\}$
- ▶ That is draw resamples from $\{Y_1, Y_2, \dots, Y_n\}$.

Hence we can draw as many times as we want.

- ▶ $\mathbf{Y}_n = \{Y_1, Y_2, \dots, Y_n\}$ are iid random samples from $F(\cdot)$.
- $ightharpoonup T_n = T_n(\mathbf{Y}_n)$ is a statistic for parameter θ
- Since $F(\cdot)$ is unknown. We don't know that sampling distribution of T_n .
- ▶ Hence we don't know the variance of T_n , i.e., $Var(T_n)$ and confidence interval of T_n , i.e., $CI(T_n)$.
- ▶ Resample $\mathbf{Y}_{nb}^* = \{Y_1^*, Y_2^*, \cdots, Y_n^*\}_b$ from \mathbf{Y}_n using SRSWR scheme; $b = 1, 2, \cdots, B$
- ► For each resample *b*, we can compute T_{nb}^* ; $b = 1, 2, \dots, B$

- $ightharpoonup Y_n = \{Y_1, Y_2, \cdots, Y_n\}$ are iid random samples from $F(\cdot)$.
- $ightharpoonup T_n = T_n(\mathbf{Y}_n)$ is a statistic for parameter θ
- Since $F(\cdot)$ is unknown. We don't know that sampling distribution of T_n .
- ▶ Hence we don't know the variance of T_n , i.e., $Var(T_n)$ and confidence interval of T_n , i.e., $Cl(T_n)$.

- ▶ Resample $\mathbf{Y}_{nb}^* = \{Y_1^*, Y_2^*, \cdots, Y_n^*\}_b$ from \mathbf{Y}_n using SRSWR scheme; $b = 1, 2, \cdots, B$
- ▶ For each resample b, we can compute T_{nb}^* ; $b = 1, 2, \dots, B$
- We can compute:

$$\bar{T}_{n}^{B} = \frac{1}{B} \sum_{b=1}^{B} T_{nb}^{*}; \quad Var(T_{n})^{B} = \frac{1}{B} \sum_{b=1}^{B} (T_{nb}^{*} - \bar{T}_{n}^{B})^{2}$$

$$CI(T_{n})^{B} = \{T_{n} + G_{B}^{-1}(\alpha/2)\sqrt{Var(T_{n})^{B}}, T_{n} + G_{B}^{-1}(1 - \alpha/2)\sqrt{Var(T_{n})^{B}}\},$$

where $\frac{T_{nb}^*-T_n}{\sqrt{Var(T_n)^B}}\sim G_B$.

▶ Due to SLLN, one can show, as $B \longrightarrow \infty$

$$ar{\mathcal{T}}_n^B \longrightarrow \mathcal{T}_n$$
 almost surely; $Var(\mathcal{T}_n)^B \longrightarrow Var(\mathcal{T}_n)$ almost surely $CI(\mathcal{T}_n)^B \longrightarrow CI(\mathcal{T}_n)$ almost surely,

$$G^B \longrightarrow F_{T_n}(\cdot)$$
 in law

Bootstrap Regression

Consider the model

$$\mathbf{y}_n = \mathbf{X}_{n \times p} \boldsymbol{\beta}_p + \boldsymbol{\epsilon}_n,$$

where $\mathbb{E}(\epsilon) = 0$, $\mathbb{V}ar(\epsilon) = \sigma^2 \mathbf{I}_n$, and $\epsilon \stackrel{iid}{\sim} F(\cdot)$, $F(\cdot)$ is unkniwn cdf

- ► OLS estimator: $\hat{\boldsymbol{\beta}}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$; and $\mathbb{V}ar(\hat{\boldsymbol{\beta}}_n) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$.
- ▶ Residuals: $\epsilon = \mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}}_n$ or $\epsilon_i = y_i \mathbf{x}_i^T\hat{\boldsymbol{\beta}}_n$, $i = 1, 2, \dots, n$.

Residual Bootstrap Regression

- ▶ Suppose $F_n(\cdot)$ is the empirical cdf of ϵ
- $m{\epsilon}_b^* \stackrel{iid}{\sim} F_n$ (i.e., $m{\epsilon}_b^*$ is resampled from $m{\epsilon}$ using SRSWR), $b=1,2,\cdots,B$
- ► Calculate:

$$\mathbf{y}_b^* = \mathbf{X}\hat{oldsymbol{eta}}_n + \epsilon_b^*$$

• Estimate resample coefficients $\hat{\beta}_{n:b}^*$ as

$$\begin{array}{rcl} \hat{\boldsymbol{\beta}}_{n:b}^* & = & (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}_b^* \\ & = & \hat{\boldsymbol{\beta}}_n + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \boldsymbol{\epsilon}_b^* \\ \mathbb{E}(\hat{\boldsymbol{\beta}}_{n:b}^*) & = & \hat{\boldsymbol{\beta}}_n \end{array}$$

- lacktriangle Bootstrap Estimate: $ar{eta}_B = rac{1}{B} \sum_{b=1}^B \hat{eta}_b^*$
- ▶ Bootstrap variance: $\mathbb{V}ar(\bar{\beta}_B) = \frac{1}{B} \sum_{b=1}^{B} (\hat{\beta}_b^* \bar{\beta}_B)^2$

Paired Bootstrap Regression

Consider the model

$$\mathbf{y}_n = \mathbf{X}_{n \times p} \boldsymbol{\beta}_p + \boldsymbol{\epsilon}_n,$$

where $\mathbb{E}(\epsilon) = 0$, $\mathbb{V}ar(\epsilon) = \Sigma$, and $(y_i, \mathbf{x}_i) \stackrel{iid}{\sim} F(\cdot)$, $F(\cdot)$ is unkniwn cdf

- ▶ Suppose $\{(y_i^*, \mathbf{x}_i^*), i = 1, 2, ...n\}_b = \mathcal{D}_b$ are iid samples from empirical $F_n(\cdots)$, where $b = 1, 2, \cdots, B$
- ▶ The estimates of β from b^{th} resample:

$$\hat{\boldsymbol{\beta}}_b^* = (\mathbf{X}_b^{*T} \mathbf{X}_b^*)^{-1} \mathbf{X}_b^{*T} \mathbf{y}_b^*$$

▶ Bootstrap Estimate: $\bar{eta}_B = \frac{1}{B} \sum_{b=1}^B \hat{eta}_b^*$

cmi

▶ Bootstrap variance: $Var(\bar{\beta}_B) = \frac{1}{B} \sum_{b=1}^{B} (\hat{\beta}_b^* - \bar{\beta}_B)^2$

Bootstrap Regression

- ▶ If the residuals are heteroscadastic, then paired Bootstrap is still a consistent estimator.
- ► However in case of heteroscadastic residual; the residual Bootstrap is not consistent estimator.

Paired Bootstrap Regression

OLS Estimates of alpha and beta

```
Estimate Std. Error t value Pr(>|t|)
alpha 0.0046 0.0025 1.8773 0.0641
beta 0.7999 0.1556 5.1399 0.0000
```

Paired Bootstrap Estimates of alpha and beta

```
Estimate Std.Error 2.5% 97.5% alpha 0.0044 0.0026 -0.0005 0.0095 beta 0.8071 0.1541 0.5379 1.1297
```


Paired Bootstrap Regression

Residual Bootstrap Regression

OLS Estimates of alpha and beta

```
Estimate Std. Error t value Pr(>|t|)
alpha 0.0046 0.0025 1.8773 0.0641
beta 0.7999 0.1556 5.1399 0.0000
```

Residual Bootstrap Estimates of alpha and beta

```
Estimate Std.Error 2.5% 97.5% alpha 0.0045 0.0026 -0.0006 0.0097 beta 0.7982 0.1370 0.5300 1.0742
```

Paired Bootstrap Estimates of alpha and beta

Estimate Std.Error 2.5% 97.5% alpha 0.0044 0.0026 -0.0005 0.0095 beta 0.8071 0.1541 0.5379 1.1297

Residual Bootstrap Regression

Bootstrap Regression

```
OLS methods R-Squared = 0.239

Paired Bootstrap R-Squared CI = (0.128 0.366)

Residual Bootstrap R-Squared CI = (0.115 0.39)
```


Residual Bootstrap

The idea of Bootstrap Statistics

The idea of Bootstrap Statistics or Resampling Technique can be found in

- Random Forest
- Ensamble model
- Bagging etc.

Thank you...

▶ Wish you a happy weekend. Stay Safe.

Thank You

sourish@cmi.ac.in

