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Class of lll-Posed Problems

» A class of problem is known as ill-posed problem - if either of
the following feature exits

1. Unique solution does not exist
2. Unique solution exists - but computationally not feasable
3. Unique solution exists - but unreliable

1 Problem of variable selection in “large p, small n” setup
considered as ill-posed problems

2 Problem of variable selection in large p is considered as
ill-posed problems for model complexity.

3 Problem of multicollinearity also considered

ill-posed problems. Cmi



Class of lll-Posed Problems 1

» Unique solution does not exist

1 Problem of variable selection in “large p, small n" setup
considered as ill-posed problems

» Such problems are common in medical sciences.

» For example, in a study of the efficacy of treatment; suppose
the study randomly chose to observe 100 patients. It means
the sample size n is 100.

» Now scientist collects 1000 of test results from each patient,
from regular glucose level to genetic marker, etc. It mean%mi
number of features p is 1000.



Class of lll-Posed Problems 1

» Unique solution does not exist

1 Problem of variable selection in “large p, small n" setup
considered as ill-posed problems

» Such problems are common in medical sciences.

> In such kind of problem, you have infinitely many solutions; in
fact, B = 0 is also a possible true solution.

> It means none of the features of your study has any significant
effect on your target variable y, say efficacy. Certainly, it is m:
not a desirable solution. gl |



Class of lll-Posed Problems 2

» Unique solution exists - but computationally not feasable

2 Problem of variable selection in large p is considered as
ill-posed problems for model complexity.

» Suppose you are working in a credit rating group; where you
are working with customer databases.

» The number of customers in the database is more than
100,000, and for each customer, you have 1000 features.
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Class of lll-Posed Problems 2

>

Unique solution exists - but computationally not feasable

Problem of variable selection in large p is considered as
ill-posed problems for model complexity.

For such large dataset, if you apply a stepwise feature
selection algorithm; then it has to fit 1+ 22 — 500,501
many models.

It may take several days to complete the job.
However, often time in the corporate environment you do not
have several days and upper management wants the result by
the end of the day.

m;
These are scenarios, where theoretically you have a uniquec L
and good solution. But computationally not feasible.



Class of lll-Posed Problems 3

> Unique solution exists - but unreliable
3 Problem of multicollinearity also considered ill-posed problems.

» Multicollinearity is an interesting problem. In a sense, you
have an unique solution. However, it is not reliable - because
the standard error become so large that you cannot do a
reliable statistical inference.

cmy



Regularization of Ill-posed Problems

» How to regularize an “lll-posed problems™ So that we can
have a solution !

» Tikhonov Regularization (1943) tries to find a solution for
ill-posed problems by imposing certain restrictions, or
conditions on the solution space.

» If a solution can be obtained, then we can say that process as
the regularization of the ill-posed problem.
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Penalizing Objective Function

v

The class of functions is controlled by explicitly penalizing
RSS(f) with a roughness penalty

PL = PRSS(f; \) = RSS(f) + AP(f)

v

The amount of penalty is controlled by A > 0.

» )\ = 0 means no-penalty

v

Typically A is estimated from data.
As we take f(X) = X3

PL, = PRSS(B;\) = RSS(B)+ AP(B)
= (y—XB8)"(y - XB) + AP(B)

cmy



Penalizing Objective Function

» What about penalizing Li-norm error? Can we penalize
Li-norm error?

» Yes we can. The model is:
PL; = |ly — XB|[1 + AP(f)

» For now we focus on Ly-norm error.



What penalty to choose?

» For the model,

PL5(8) = (y — XB) " (y — XB) + AP(B),

one possible choice is Ly-norm penalty.
> That is

P(B) = (B~ B0) (B~ Bo)
» Typical case By = 0 and the penalty looks like

P(B)=8"8



Analysis with Ly-penalty

» We want to minimize the Ly-penalized loss
PL3(B) = (y — XB)"(y — XB) + A8 B,
and we can obtained the Ridge solution as,
Brigee = argming [(y — X8)T(y — XB) + A7 3]
» An equivalent way to write the ridge problem is
Brige = argming [(y ~XB8)(y ~ XB)]
subject to 378 < t,

which makes explicit the size constraint on the parameters.

» There is a one-to-one correspondence between the param@mi
A and t.



Ridge Regression

» Solving the following minimization problem,
Brigge = argming [(y — XB)T(y ~ XB8) + A87 5,
we have the Ridge solution as
Bridge = (XTX 4+ A)7!XTy,

where | is the p X p identity matrix.

» Ridge solution is a special case of Tikohonov solution.

cmy



LASSO Regression

» Least Absolute Shrinkage and Selection Operator (LASSO)

> The lasso is a shrinkage method like ridge, with subtle but
important differences.

» The lasso estimate is defined as

Blasso = argmin,@ [(y - X/@)T(y - XB) + )\H,@Hﬂ

» Equivalently can be expressed as

lélasso = argminﬁ(y - XIB)T(y - XB)

P
subject toz |Bj] < t Cm.
1

Jj=1



Remark

» LASSO doenot have closed form solution like Ridge.

» Computing the lasso solution is a quadratic programming
problem.

» Efficient algorithms are available for computing the entire
path of solutions as A is varied, with the same computational
cost as for ridge regression.
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Remark

v

Because of the nature of the constraint, making t sufficiently
small will cause some of the coefficients to be exactly zero.

Thus the lasso does a kind of continuous subset selection.

v

v

Ridge takes care of multicollinearity kind of issues.

» compromise between ridge and lasso was give Zou and Hastie
(2005), known as Elastic Net penalty

p
Pen(8) =AY (a7 + (1 - a)|Bi))
=1 Cmi



LASSO, Ridge and Elastic Net

B

B,

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |Bi| + |B2| < t and 87 + B5 < +°, respectively,
while the red ellipses are the contours of the least squares error function.

Source: figure from "Elements of Statistical Learning”
by Hastie and Tibshirani

a=0.2

Elastic Net
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Tikohonov Regularization for multicollinearity and feature
selection

» Ridge Regression takes care of multicollinearity (Hoerl and
Kennard (1970))

» LASSO Regression takes care of feature selection (Tibshirani,
1996)

» ElasticNet Regression takes care of feature selection (Zou and
Hastie, 2006)
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In the next part..

» We will resume some hands-on.



Thank You
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