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Class of Ill-Posed Problems

I A class of problem is known as ill-posed problem - if either of
the following feature exits

1. Unique solution does not exist
2. Unique solution exists - but computationally not feasable
3. Unique solution exists - but unreliable

1 Problem of variable selection in “large p, small n” setup
considered as ill-posed problems

2 Problem of variable selection in large p is considered as
ill-posed problems for model complexity.

3 Problem of multicollinearity also considered
ill-posed problems.



Class of Ill-Posed Problems 1

I Unique solution does not exist

1 Problem of variable selection in “large p, small n” setup
considered as ill-posed problems

I Such problems are common in medical sciences.

I For example, in a study of the efficacy of treatment; suppose
the study randomly chose to observe 100 patients. It means
the sample size n is 100.

I Now scientist collects 1000 of test results from each patient,
from regular glucose level to genetic marker, etc. It means the
number of features p is 1000.



Class of Ill-Posed Problems 1

I Unique solution does not exist

1 Problem of variable selection in “large p, small n” setup
considered as ill-posed problems

I Such problems are common in medical sciences.

I In such kind of problem, you have infinitely many solutions; in
fact, β = 0 is also a possible true solution.

I It means none of the features of your study has any significant
effect on your target variable y, say efficacy. Certainly, it is
not a desirable solution.



Class of Ill-Posed Problems 2

I Unique solution exists - but computationally not feasable

2 Problem of variable selection in large p is considered as
ill-posed problems for model complexity.

I Suppose you are working in a credit rating group; where you
are working with customer databases.

I The number of customers in the database is more than
100,000, and for each customer, you have 1000 features.



Class of Ill-Posed Problems 2

I Unique solution exists - but computationally not feasable

2 Problem of variable selection in large p is considered as
ill-posed problems for model complexity.

I For such large dataset, if you apply a stepwise feature
selection algorithm; then it has to fit 1 + p(p+1)

2 = 500, 501
many models.

I It may take several days to complete the job.

I However, often time in the corporate environment you do not
have several days and upper management wants the result by
the end of the day.

I These are scenarios, where theoretically you have a unique
and good solution. But computationally not feasible.



Class of Ill-Posed Problems 3

I Unique solution exists - but unreliable

3 Problem of multicollinearity also considered ill-posed problems.

I Multicollinearity is an interesting problem. In a sense, you
have an unique solution. However, it is not reliable - because
the standard error become so large that you cannot do a
reliable statistical inference.



Regularization of Ill-posed Problems

I How to regularize an “Ill-posed problems”? So that we can
have a solution !

I Tikhonov Regularization (1943) tries to find a solution for
ill-posed problems by imposing certain restrictions, or
conditions on the solution space.

I If a solution can be obtained, then we can say that process as
the regularization of the ill-posed problem.



Penalizing Objective Function

I The class of functions is controlled by explicitly penalizing
RSS(f ) with a roughness penalty

PL2 = PRSS(f ;λ) = RSS(f ) + λP(f )

I The amount of penalty is controlled by λ ≥ 0.

I λ = 0 means no-penalty

I Typically λ is estimated from data.

As we take f (X) = Xβ

PL2 = PRSS(β;λ) = RSS(β) + λP(β)

= (y − Xβ)T (y − Xβ) + λP(β)



Penalizing Objective Function

I What about penalizing L1-norm error? Can we penalize
L1-norm error?

I Yes we can. The model is:

PL1 = ||y − Xβ||1 + λP(f )

I For now we focus on L2-norm error.



What penalty to choose?

I For the model,

PL22(β) = (y − Xβ)T (y − Xβ) + λP(β),

one possible choice is L2-norm penalty.

I That is

P(β) = (β − β0)T (β − β0)

I Typical case β0 = 0 and the penalty looks like

P(β) = βTβ



Analysis with L2-penalty

I We want to minimize the L2-penalized loss

PL22(β) = (y − Xβ)T (y − Xβ) + λβTβ,

and we can obtained the Ridge solution as,

β̂Ridge = argminβ

[
(y − Xβ)T (y − Xβ) + λβTβ

]
I An equivalent way to write the ridge problem is

β̂Ridge = argminβ

[
(y − Xβ)T (y − Xβ)

]
subject to βTβ ≤ t,

which makes explicit the size constraint on the parameters.

I There is a one-to-one correspondence between the parameters
λ and t.



Ridge Regression

I Solving the following minimization problem,

β̂Ridge = argminβ

[
(y − Xβ)T (y − Xβ) + λβTβ

]
,

we have the Ridge solution as

β̂Ridge = (XTX + λI)−1XTy,

where I is the p × p identity matrix.

I Ridge solution is a special case of Tikohonov solution.



LASSO Regression

I Least Absolute Shrinkage and Selection Operator (LASSO)

I The lasso is a shrinkage method like ridge, with subtle but
important differences.

I The lasso estimate is defined as

β̂lasso = argminβ
[
(y − Xβ)T (y − Xβ) + λ||β||1

]
I Equivalently can be expressed as

β̂lasso = argminβ(y − Xβ)T (y − Xβ)

subject to

p∑
j=1

|βj | ≤ t



Remark

I LASSO doenot have closed form solution like Ridge.

I Computing the lasso solution is a quadratic programming
problem.

I Efficient algorithms are available for computing the entire
path of solutions as λ is varied, with the same computational
cost as for ridge regression.



Remark

I Because of the nature of the constraint, making t sufficiently
small will cause some of the coefficients to be exactly zero.

I Thus the lasso does a kind of continuous subset selection.

I Ridge takes care of multicollinearity kind of issues.

I compromise between ridge and lasso was give Zou and Hastie
(2005), known as Elastic Net penalty

PEN(β) = λ

p∑
j=1

(αβ2j + (1− α)|βj |)



LASSO, Ridge and Elastic Net

Source: figure from ”Elements of Statistical Learning”
by Hastie and Tibshirani



Tikohonov Regularization for multicollinearity and feature
selection

I Ridge Regression takes care of multicollinearity (Hoerl and
Kennard (1970))

I LASSO Regression takes care of feature selection (Tibshirani,
1996)

I ElasticNet Regression takes care of feature selection (Zou and
Hastie, 2006)



In the next part..

I We will resume some hands-on.
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