Predictive Analytics Regression and Classification Lecture 3 : Part 2

Sourish Das

Chennai Mathematical Institute

Aug-Nov, 2020

c^mi

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A class of problem is known as ill-posed problem if either of the following feature exits
 - 1. Unique solution does not exist
 - 2. Unique solution exists but computationally not feasable
 - 3. Unique solution exists but unreliable
- 1 Problem of variable selection in "large *p*, small *n*" setup considered as ill-posed problems
- 2 Problem of variable selection in large *p* is considered as ill-posed problems for model complexity.
- 3 Problem of multicollinearity also considered ill-posed problems.

c^mi

- Unique solution does not exist
- 1 Problem of variable selection in "large *p*, small *n*" setup considered as ill-posed problems
- Such problems are common in medical sciences.
- ▶ For example, in a study of the efficacy of treatment; suppose the study randomly chose to observe 100 patients. It means the sample size *n* is 100.
- Now scientist collects 1000 of test results from each patient, from regular glucose level to genetic marker, etc. It means number of features p is 1000.

- Unique solution does not exist
- 1 Problem of variable selection in "large *p*, small *n*" setup considered as ill-posed problems
- Such problems are common in medical sciences.
- In such kind of problem, you have infinitely many solutions; in fact, β = 0 is also a possible true solution.
- It means none of the features of your study has any significant effect on your target variable y, say efficacy. Certainly, it is not a desirable solution.

- Unique solution exists but computationally not feasable
- 2 Problem of variable selection in large *p* is considered as ill-posed problems for model complexity.
- Suppose you are working in a credit rating group; where you are working with customer databases.
- The number of customers in the database is more than 100,000, and for each customer, you have 1000 features.

- Unique solution exists but computationally not feasable
- 2 Problem of variable selection in large *p* is considered as ill-posed problems for model complexity.
- ▶ For such large dataset, if you apply a stepwise feature selection algorithm; then it has to fit $1 + \frac{p(p+1)}{2} = 500,501$ many models.
- It may take several days to complete the job.
- However, often time in the corporate environment you do not have several days and upper management wants the result by the end of the day.
- These are scenarios, where theoretically you have a unique and good solution. But computationally not feasible.

- Unique solution exists but unreliable
- 3 Problem of multicollinearity also considered ill-posed problems.
- Multicollinearity is an interesting problem. In a sense, you have an unique solution. However, it is not reliable - because the standard error become so large that you cannot do a reliable statistical inference.

c^mi

Regularization of III-posed Problems

How to regularize an "Ill-posed problems"? So that we can have a solution !

 Tikhonov Regularization (1943) tries to find a solution for ill-posed problems by imposing certain restrictions, or conditions on the solution space.

If a solution can be obtained, then we can say that process as the regularization of the ill-posed problem.

c^mi

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Penalizing Objective Function

The class of functions is controlled by explicitly penalizing RSS(f) with a roughness penalty

$$PL_2 = PRSS(f; \lambda) = RSS(f) + \lambda P(f)$$

- The amount of penalty is controlled by $\lambda \ge 0$.
- $\lambda = 0$ means no-penalty
- Typically λ is estimated from data.
 As we take f(X) = Xβ

$$PL_2 = PRSS(\beta; \lambda) = RSS(\beta) + \lambda P(\beta)$$

= $(\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda P(\beta)$

Penalizing Objective Function

- What about penalizing L₁-norm error? Can we penalize L₁-norm error?
- Yes we can. The model is:

$$PL_1 = ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_1 + \lambda P(f)$$

▶ For now we focus on *L*₂-norm error.

cmi

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What penalty to choose?

For the model,

$$PL_2^2(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda P(\boldsymbol{\beta}),$$

one possible choice is L_2 -norm penalty.

That is

$$P(\beta) = (\beta - \beta_0)^T (\beta - \beta_0)$$

• Typical case $\beta_0 = 0$ and the penalty looks like

$$P(\beta) = \beta^T \beta$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Analysis with L_2 -penalty

▶ We want to minimize the L₂-penalized loss

$$PL_2^2(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta},$$

and we can obtained the Ridge solution as,

$$\hat{\boldsymbol{eta}}_{\textit{Ridge}} = \operatorname{argmin}_{\boldsymbol{eta}} \left[(\mathbf{y} - \mathbf{X} \boldsymbol{eta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \boldsymbol{eta}) + \boldsymbol{\lambda} \boldsymbol{eta}^{\mathsf{T}} \boldsymbol{eta}
ight]$$

An equivalent way to write the ridge problem is

$$\hat{eta}_{\textit{Ridge}} = \operatorname{argmin}_{oldsymbol{eta}} igg[(\mathbf{y} - \mathbf{X}eta)^{ op} (\mathbf{y} - \mathbf{X}eta) igg]$$

subject to $oldsymbol{eta}^{ op} eta \leq t$,

which makes explicit the size constraint on the parameters.

There is a one-to-one correspondence between the parameters λ and t.

Ridge Regression

Solving the following minimization problem,

$$\hat{\boldsymbol{\beta}}_{\textit{Ridge}} = \operatorname{argmin}_{\boldsymbol{\beta}} \Big[(\mathbf{y} - \mathbf{X} \boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X} \boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta} \Big],$$

we have the Ridge solution as

$$\hat{\beta}_{Ridge} = (\mathbf{X}^T \mathbf{X} + \frac{\lambda}{\mathbf{I}})^{-1} \mathbf{X}^T \mathbf{y},$$

where **I** is the $p \times p$ identity matrix.

Ridge solution is a special case of Tikohonov solution.

LASSO Regression

- Least Absolute Shrinkage and Selection Operator (LASSO)
- The lasso is a shrinkage method like ridge, with subtle but important differences.
- The lasso estimate is defined as

$$\hat{\boldsymbol{\beta}}_{\textit{lasso}} = \operatorname{argmin}_{\boldsymbol{\beta}} \left[(\mathbf{y} - \mathbf{X} \boldsymbol{\beta})^{\mathcal{T}} (\mathbf{y} - \mathbf{X} \boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_1 \right]$$

Equivalently can be expressed as

$$\hat{oldsymbol{eta}}_{lasso} = \operatorname{argmin}_{oldsymbol{eta}} (\mathbf{y} - \mathbf{X}oldsymbol{eta})^T (\mathbf{y} - \mathbf{X}oldsymbol{eta})$$

subject to $\sum_{j=1}^p |eta_j| \leq t$

- LASSO doenot have closed form solution like Ridge.
- Computing the lasso solution is a quadratic programming problem.
- Efficient algorithms are available for computing the entire path of solutions as λ is varied, with the same computational cost as for ridge regression.

Remark

- Because of the nature of the constraint, making t sufficiently small will cause some of the coefficients to be exactly zero.
- > Thus the lasso does a kind of **continuous subset selection**.
- Ridge takes care of multicollinearity kind of issues.
- compromise between ridge and lasso was give Zou and Hastie (2005), known as Elastic Net penalty

$$\mathsf{P}_{\mathsf{EN}}(oldsymbol{eta}) = \lambda \sum_{j=1}^p (lpha eta_j^2 + (1-lpha) |eta_j|)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

LASSO, Ridge and Elastic Net

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Source: figure from "Elements of Statistical Learning" by Hastie and Tibshirani

Tikohonov Regularization for multicollinearity and feature selection

- Ridge Regression takes care of multicollinearity (Hoerl and Kennard (1970))
- LASSO Regression takes care of feature selection (Tibshirani, 1996)
- ElasticNet Regression takes care of feature selection (Zou and Hastie, 2006)

In the next part..

We will resume some hands-on.

(ロ)、(型)、(E)、(E)、 E) の(()

Thank You

sourish@cmi.ac.in

