Predictive Analytics Regression and Classification Lecture 2 : Part 4

Sourish Das

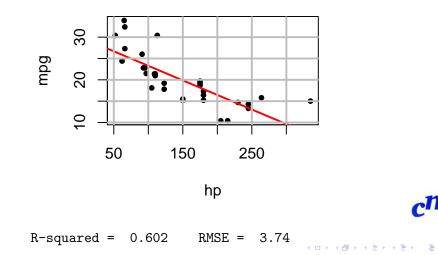
Chennai Mathematical Institute

Aug-Nov, 2020

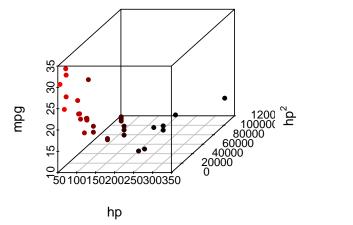
c^mi

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Linear Regression: $mpg = \beta_0 + \beta_1 hp + \epsilon$



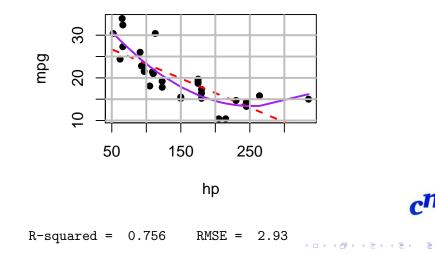
Quadratic Regression: $mpg = \beta_0 + \beta_1 hp + \beta_2 hp^2 + \epsilon$



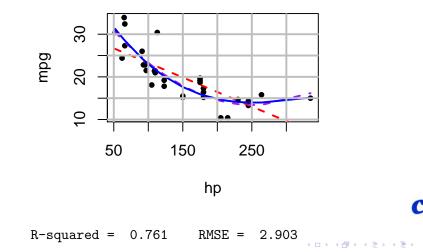
<ロト <回ト < 注ト < 注ト

æ

Quadratic Regression: $mpg = \beta_0 + \beta_1 hp + \beta_2 hp^2 + \epsilon$



Polynomial Regression of order 3: mpg = $\beta_0 + \beta_1 hp + \beta_2 hp^2 + \beta_3 hp^3 + \epsilon$



э

Model 1	R-squared =	0.602	RMSE =	3.74
Model 2	R-squared =	0.756	RMSE =	2.93
Model 3	R-squared =	0.761	RMSE =	2.903

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Model Complexity

M1 Regression Line $mpg = \beta_0 + \beta_1 hp + \epsilon$

- M2 Regression Plane $mpg = \beta_0 + \beta_1 hp + \beta_2 hp^2 + \epsilon$
- M3 Regression 3-dimension hyper plane $mpg = \beta_0 + \beta_1 hp + \beta_2 hp^2 + \beta_3 hp^3 + \epsilon$
- M3' Regression 3-dimension hyper plane $mpg = \beta_0 + \beta_1 hp + \beta_2 wt + \beta_3 disp + \epsilon$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Higher order Regression with High Model Complexity

 $1\,$ Terms for curvature in linear regression

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_p x_i^p + \epsilon_i$$

is a polynomial of order p

2 sine cosine functions of incresing frequencies

$$y_i = \beta_1 + \beta_2 \sin(\omega x_i) + \beta_3 \cos(\omega x_i) + \beta_4 \sin(2\omega x_i) + \dots + \epsilon_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Such model is also known as Fourier model

Remarks

- The simple LS method can be adopted for any model which is linear in parameters.
- As p the number of predictor or the order of the polynomial increases the model complexity increases.
- What happens when the model complexity increases too much?
- In order to find the answer for this question; first we try to understand two concepts; (1) Bias and (2) Variance

Bias and Variance

What is Bias? If θ is and unknown parameter and θ̂ is an estimator of θ, then

$$\mathbb{E}(\hat{ heta}) = heta + b,$$

where *b* is known as **bias**. If b = 0, then $\hat{\theta}$ is known as **unbiased estimator** of θ

• What is Variance? The variance of $\hat{\theta}$ is

$$\mathbb{V}ar(\hat{\theta}) = \mathbb{E}(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2,$$

Consider the prediction of the new response at input x₀

$$y_0 = f(x_0) + \epsilon_0.$$

 $\hat{f}(x_0) = x_0^T \hat{\beta}$ is an estimator of $f(x_0) = x_0^T \beta.$

Bias and Variance



Bias-Variance Tradeoff

Consider the prediction of the new response at input x₀

$$y_0=f(x_0)+\epsilon_0.$$

 $\hat{f}(x_0) = x_0^T \hat{\beta}$ is an estimator of $f(x_0) = x_0^T \beta$.

The MSE of
$$\hat{f}(x_0) = x_0^T \hat{\beta}$$
 is

$$MSE(\hat{f}(x_0)) = \mathbb{E}(\hat{y}_0 - f(x_0))^2$$

$$= \mathbb{E}(\hat{y}_0 - \mathbb{E}(\hat{y}_0))^2 + [\mathbb{E}(\hat{y}_0) - f(x_0)]^2$$

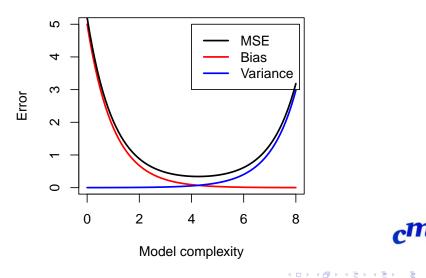
$$= \mathbb{V}ar(\hat{y}_0) + Bias^2(\hat{y}_0)$$

$$= \mathbb{V}ar(x_0^T \hat{\beta}) + Bias^2(x_0^T \hat{\beta})$$

C

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Bias-Variance Tradeoff



æ

In the next part of this lecture...

 We will discuss the technique of variable selection (aka., feature selection) to achieve a parsimonious model with reasonable complexity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ