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How to compare two models?

Model 1 mpg=β0 + β1wt+ε

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.2851 1.8776 19.8576 0

wt -5.3445 0.5591 -9.5590 0

Model 2 mpg=β0 + β1wt+β2hp+ε

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.2273 1.5988 23.2847 0.0000

wt -3.8778 0.6327 -6.1287 0.0000

hp -0.0318 0.0090 -3.5187 0.0015

Model 3 mpg=β0 + β1hp+β2hp
2 + ε

Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.4091 2.7408 14.7438 0e+00

hp -0.2133 0.0349 -6.1148 0e+00

I(hp^2) 0.0004 0.0001 4.2746 2e-04



compare models: RMSE

I The main purpose of the predictive model is to make accurate
prediction. So we compare them based on their prediction
accuracy.

I Root Mean Square Error

RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi )2,

where yi actual target value, and ŷi predicted value.

I You choose the model with lower RMSE.



compare models: coefficient of determination

I R-squared (the coefficient of determination)

R2 = 1− SSres
SStot

,

where SSres =
∑

i (yi − ŷi )
2, SStot =

∑
i (yi − ȳ)2,

ȳ = 1
n

∑
i yi and SSreg =

∑
i (ŷi − ȳ)2

Choose the model with higher R2.

I “R squared” is the proportion of the variance of the target
variable that is predictable from the feature variable(s).



compare models: coefficient of determination

Result For OLS estimator, SStot = SSreg + SSres , and 0 ≤ R2 ≤ 1.

Note : The result is specific for OLS estimator. For other
estimators like Bayes or LASSO, or Bootstrap estimator this
result is not necessarily true.



compare models: adjusted R-squared

I In least squares regression, the R-squared increases in the
number of feature increase the value of R2.

I R-squared alone cannot be used for comparison of models
with very different numbers of feature variables.

I In order to solve the problem of R-squared, the adjusted
R-square are used:

R2
adjusted = 1− (1− R2)

n − 1

n − p − 1
,

where p is the number of features in the model and n is the
sample size.



compare models: Akaike Information criteron

I AIC is founded on information theory.

I AIC is defined as:

AIC = 2p − 2 ln(L(β̂|y,X)),

where p is the number of features; L(β̂|y,X) is the likelihood
function of regression model evaluated at MLE or OLS
estimator of β.

I Given a set of models, our preferred model is the one with the
minimum AIC value.

Result Show that OLS estimator of β is also MLE.



compare models: Bayesian Information criteron

I Like AIC, BIC also is founded on information theory.

I BIC is defined as:

BIC = p ln(n)− 2 ln(L(β̂|y,X)),

where p is the number of features; n is the sample size,
L(β̂|y,X) is the likelihood function of regression model
evaluated at MLE or OLS estimator of β,

I Given a set of models, our preferred model is the one with the
minimum AIC value.

Result Show that OLS estimator of β is also MLE.



compare models

Model 1 mpg=β0 + β1wt+ε

RMSE = 2.95 , R-sqrd = 0.75 , adj R-sqrd = 0.74

AIC = 166.0294 BIC= 170.4266

Model 2 mpg=β0 + β1wt+β2hp+ε

RMSE = 2.47 , R-sqrd = 0.83 , adj R-sqrd = 0.81

AIC = 156.6523 BIC= 162.5153

Model 3 mpg=β0 + β1hp+β2hp
2 + ε

RMSE = 2.93 , R-sqrd = 0.76 , adj R-sqrd = 0.74

AIC = 167.6023 BIC= 173.4652

I Out of the three models, which one you would like to choose
and why?

I Yes - we will like to choose the Model 2.
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In the next part of this lecture...

I We will try to understand the complexity of models.


