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Sampling distribution of β

I Consider the standard linear model

y = Xβ + ε,

where ε ∼ N(0, σ2In) and n > p

I This implies y ∼ N(Xβ, σ2In)

I The least square estimator of β is β̂ = (XTX)−1XTy

I The sampling distribution of β̂ is

β̂ ∼ Np(β, σ2(XTX)−1)



Sampling distribution of β

Result If yp ∼ Np(µ,Σ), and cq×p matrix. Then

z = cy ∼ Nq(cµ, cΣcT )

You can use this result to argue that the sampling distribution
of β̂ is

β̂ ∼ Np(β, σ2(XTX)−1)



Sampling distribution for β0 and β1

mpg=β0+β1wt+ε
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mpg=β0+β1wt+ε

0 10 20 30 40

−
8

−
6

−
4

−
2

0
2

β0

β 1

 2 

 5 

 10 



Sampling distribution for β0 and β1

mpg=β0+β1wt+ε
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Sampling distribution

I y = Xβ + ε, where ε ∼ N(0, σ2In)

I OLS estimator is β̂ = (XTX)−1XTy

I Sampling distribution of β̂ is

β̂ ∼ N(β, σ2(XTX)−1)

I Residual Sum of Square is

RSS = (y − Xβ̂)T (y − Xβ̂)

In addition,
RSS ∼ σ2χ2

n−p



Statistical Inference for β

I For i th predictor,

β̂i − βi
σ
√

(XTX)−1
ii

∼ N(0, 1)

I From the χ2 distribution of RSS we have

(n − p)s2

σ2
∼ χ2

n−p,

where s2 = RSS
n−p , this implies

E
(

RSS

n − p

)
= σ2,

i.e., s2 is an unbiased estimator of σ2.



Statistical Inference for β

I Note that in the sampling distribution of β̂, the σ2 is unknown

I As we estimate the σ2 by its corresponding unbiased estimator
s2 = RSS

n−p ,

t =
β̂i − βi

s
√

(XTX)−1
ii

∼ tn−p,

where s
√

(XTX)−1
ii is the standard error of β̂i

I To test null hypothesis H0 : βi = 0 (predictor Xi has no impact
on the dependent variable y) - we can use the statistic t.



Statistical Inference for β

I To test null hypothesis H0 : βi = 0

(predictor Xi has no impact on the dependent variable y)

I Alternate hypothesis HA : βi 6= 0

(predictor Xi has impact on the y)

I Under the H0, test statistics is

t =
β̂i − 0

s
√

(XTX)−1
ii

∼ tn−p

At 100× α%, level of significane, if tobserved > tn−p(α) or
tobserved < −tn−p(α) then we reject null hypothesis.



Statistical Inference for β

I H0 : βi = 0 vs HA : βi 6= 0

I Under the H0, test statistics is

t =
β̂i − 0

s
√

(XTX)−1
ii

=
β̂i − 0

se(β̂i )
∼ tn−p

I The p-value is the probability of obtaining test results at least
as extreme as the observed result, assuming that the null
hypothesis is correct.

I P-value = 2 ∗ P(t > |toberved ||H0 is true)

I If the P-value is too small – we reject the null hypothesis.

I Otherwise we say we fail to reject null hypothesis



Does wt has statistically significant effect on mpg?

I mpg=β0 + β1wt+ε

I H0 : β1 = 0 vs HA : β1 6= 0

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.285 1.878 19.858 0

wt -5.344 0.559 -9.559 0

I β̂1 = −5.344 and se(β̂1) = 0.559, and

β̂1 − 0

se(β̂1)
=
−5.344− 0

0.559
= −9.559

and p-value < 0.01

I weight has statistically significant effect on mpg.



Does wt, and/or hp has statistically significant effect on
mpg?

I mpg=β0 + β1wt+β2hp+ε

I H0 : β1 = 0 vs HA : β1 6= 0

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.227 1.599 23.285 0.000

wt -3.878 0.633 -6.129 0.000

hp -0.032 0.009 -3.519 0.001

I β̂1 = −3.878 and se(β̂1) = 0.633, and under H0,

t-value =
β̂1 − 0

se(β̂1)
=
−3.878− 0

0.633
= −6.129

and p-value < 0.01

I weight has statistically significant effect on mpg.



Does wt, and/or hp has statistically significant effect on
mpg?

I mpg=β0 + β1wt+β2hp+ε

I H0 : β2 = 0 vs HA : β2 6= 0

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.227 1.599 23.285 0.000

wt -3.878 0.633 -6.129 0.000

hp -0.032 0.009 -3.519 0.001

I β̂2 = −0.032 and se(β̂2) = 0.009, and under H0,

t-value =
β̂2 − 0

se(β̂2)
=
−0.032− 0

0.009
= −3.519

and p-value < 0.01

I hp has statistically significant effect on mpg.



Compare the two models

Model 1 mpg=β0 + β1wt+ε

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.285 1.878 19.858 0

wt -5.344 0.559 -9.559 0

Model 2 mpg=β0 + β1wt+β2hp+ε

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.227 1.599 23.285 0.000

wt -3.878 0.633 -6.129 0.000

hp -0.032 0.009 -3.519 0.001

1. Model 1 is a 2D model, and Model 2 is a 3D model: Are they
comparable?

2. The se(β̂1) in Model 2 is higher than Model 1. Why?

I We will discuss these issues later.



In the next part of this lecture...

I we will discuss how to check the model assumptions!

I Because if model assumptions does not hold true then any
inference you do, technically those are not valid.


