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Regression Model

I Given a vector of inputs Xn×p = ((Xij)), we predict the
output y via model

yn×1 = Xn×pβp×1 + εn×1.

y =


y1
y2
...
yn


n×1

, X =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp


n×p

, ε =


ε1
ε2
...
εn


n×1

I Xn×p known as design matrix typically are considered as
deterministic and n > p.



Model Assumptions

I Given a vector of inputs Xn×p = ((Xij)), we predict the
output y via model

yn×1 = Xn×pβp×1 + εn×1.

I Xn×p known as design matrix typically are considered as
deterministic and n > p.

I ε, (also known as error / residuals) for all i are random
variables, i = 1, 2, · · · , n

1. E(εi ) = 0, ∀ i

2. Var(εi ) = E(ε2i ) = σ2, ∀ i Homoscedasticity

3. Cov(εi , εj) = E(εiεj) = 0, ∀ i 6= j Independence



Model Assumptions in Matrix Notation

I Given a vector of inputs Xn×p = ((Xij)), we predict the
output y via model

yn×1 = Xn×pβp×1 + εn×1.

I Xn×p known as design matrix typically are considered as
deterministic.

I ε, (also known as error / residuals) for all i are random
variables, i = 1, 2, · · · , n

1. E(ε) = 0n

2. Cov(ε) = σ2In



Implication of the Assumptions

I Assumption:

1. E(ε) = 0n

2. Cov(ε) = σ2In

I It induces distribution on y, such that

E(y) = E(Xβ + ε) = Xβ + E(ε) = Xβ

and
Cov(y) = Cov(Xβ + ε) = σ2In

I Note that we have not made any distributional assumption on
ε yet.

I We will introduce that assumption little later.



Implication of the Assumptions

I What is the expected value of cy? If c is a constant.

Result 1 We know
E(y) = Xβ,

then
E(cy) = cXβ.

I Now consider the ordinary least square estimator (OLS)
estimator of β?

β̂ = (XTX)−1XTy

E(β̂) = E((XTX)−1XTy)

= (XTX)−1XTE(y) = (XTX)−1XTXβ

= β

Result 2 OLS estimator β̂ is an unbiased estimator of β.



Implication of the Assumptions

I Suppose we are interested in some linear combination of the
regression corefficients, like f (β) = cTβ.

Result 3 Then the unbiased estimatior of cTβ is cT β̂, i.e.,

E(cT β̂) = cTβ,

I Suppose c = x0 is a test point. Then we are interested in
prediction f (x0) = xT0 β are of this form.



Gauss Markov Theorem

I If we have any other linear estimator θ̃ = aTy is unbiased for
cTβ, that is

E(aTy) = cTβ,

then
Var(cT β̂) ≤ Var(aTy)

I Proof is home work problem.

Note OLS estimates of the parameters β have the smallest variance
among all linear unbiased estimates.



Notes on Gauss Markov Theorem

I Consider the mean squared error (MSE) of an estimator θ̃ in
estimating θ:

MSE (θ̃) = E(θ̃ − θ)2

= Var(θ̃) + [E(θ̃)− θ]2

= Var(θ̃) + [bias]2

I The Gauss-Markov theorem implies that the least squares
estimator has the smallest MSE of all linear estimators with
no bias.

I However, there may well exist a biased estimator with smaller
MSE. For example: (i) Ridge estimator or (ii) James-Stein
shrinkage estimator of β trade a little bias for reduction of
variance and its MSE are lowere than the OLS estimator.



Why Mean Square Error?

I MSE is directly related to prediction accuracy.

I Consider the prediction of the new response at input x0

y0 = f (x0) + ε0.

I The expected prediction error of an estimate f̂ (x0) = xT0 β̂ is

E(y0 − f̂ (x0))2 = σ2 + E(xT0 β̂ − f (x0))2

= σ2 + MSE (xT0 β̂)

I Expected prediction error and MSE differ
only by the constant σ2.



In the next part...

I We will discuss the some examples...


