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Regression Model

> Given a vector of inputs X,xp, = ((Xjj)), we predict the
output y via model

Ynx1 = XnxpBpx1 + €nx1-

Y1 X11 X12 *** Xip €1
y2 X21 X22 "+ X2p €2
y= ) X= . , €=
Yn/ 1 Xnl Xp2 *** Xnp nxp €n/ x1

> Xpxp known as design matrix typically are considered as
deterministic and n > p.
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Model Assumptions

> Given a vector of inputs X,x, = ((Xjj)), we predict the
output y via model

Ynx1 = Xn><p/6p><1 + €nx1-

» Xnxp known as design matrix typically are considered as
deterministic and n > p.

> €, (also known as error / residuals) for all i are random
variables, i =1,2,--- . n
1. E(e) =0,V i
2. Var(e;) = E(¢?) = 02, V i Homoscedasticity

i

3. Cov(ej,€¢j) = E(ejej) =0,V i # j Independence
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Model Assumptions in Matrix Notation

> Given a vector of inputs X, = ((Xjj)), we predict the
output y via model

Ynx1 = X"XP/Bpxl + €nx1-

» Xpxp known as design matrix typically are considered as
deterministic.

> €, (also known as error / residuals) for all i are random
variables, i =1,2,---.n
1. E(e) = 0,

2. Cov(e) = o?l,
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Implication of the Assumptions

» Assumption:
1. E(e) =0,

2. Cov(e) = o,
» It induces distribution on y, such that

E(y) = E(XB + €) = X8 + E(e) = X3

and
Cov(y) = Cov(XB + €) = °l,

> Note that we have not made any distributional assumption on
€ yet.

» We will introduce that assumption little later. cmi



Implication of the Assumptions

» What is the expected value of cy? If ¢ is a constant.
Result 1 We know
E(y) = X8,
then
E(cy) = cXp.

» Now consider the ordinary least square estimator (OLS)
estimator of 37
B=(XTX)"XTy

E(B) = E(X"X)'XTy)
= (XTX)"IXTE(y) = (X"X)"IX"XB
-7 cm;j

Result 2 OLS estimator 3 is an unbiased estimator of 3.



Implication of the Assumptions

» Suppose we are interested in some linear combination of the
regression corefficients, like f(3) = ¢’ .

Result 3 Then the unbiased estimatior of ¢’ 3 is CTLA"J, i.e.,
E(c"B)=c"8,

» Suppose ¢ = xp is a test point. Then we are interested in
prediction f(xg) = x4 (3 are of this form.
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Gauss Markov Theorem

> If we have any other linear estimator § = a’y is unbiased for
¢’ 3, that is

E(a"y) =c'B,
then
Var(c"B) < Var(a'y)

» Proof is home work problem.

Note OLS estimates of the parameters (3 have the smallest variance
among all linear unbiased estimates.
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Notes on Gauss Markov Theorem

» Consider the mean squared error (MSE) of an estimator 4 in
estimating 6:

MSE(f) = E(0 —6)?

Var(0) + [E(§) — 6]
= Var(f) + [bias]?

» The Gauss-Markov theorem implies that the least squares
estimator has the smallest MSE of all linear estimators with
no bias.

» However, there may well exist a biased estimator with smaller
MSE. For example: (i) Ridge estimator or (i) James-Stein .
shrinkage estimator of 3 trade a little bias for reduction o (4
variance and its MSE are lowere than the OLS estimator.



Why Mean Square Error?

v

MSE is directly related to prediction accuracy.

v

Consider the prediction of the new response at input xg

yo = f(x0) + €o-

The expected prediction error of an estimate ?(xo) = XOTB is

v

E(yo — F(x0))* = o” +E(x B - f(x0))?
= o2+ MSE(x{ B)

v

Expected prediction error and MSE differ
only by the constant o2,



In the next part...

> We will discuss the some examples...



