Predictive Analytics Regression and Classification Lecture 1 : Part 4

Sourish Das

Chennai Mathematical Institute

Aug-Nov, 2019

c^mi

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Regression Model

▶ Given a vector of inputs X_{n×p} = ((X_{ij})), we predict the output y via model

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times p} \boldsymbol{\beta}_{p\times 1} + \boldsymbol{\epsilon}_{n\times 1}.$$
$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{n\times 1}, \quad \mathbf{X} = \begin{bmatrix} x_{11} \ x_{12} \ \cdots \ x_{1p} \\ x_{21} \ x_{22} \ \cdots \ x_{2p} \\ \vdots \ \vdots \ \ddots \ \vdots \\ x_{n1} \ x_{n2} \ \cdots \ x_{np} \end{bmatrix}_{n\times p}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \vdots \\ \boldsymbol{\epsilon}_n \end{pmatrix}_{n\times 1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

► X_{n×p} known as design matrix typically are considered as deterministic and n > p.

Model Assumptions

▶ Given a vector of inputs X_{n×p} = ((X_{ij})), we predict the output y via model

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times p}\boldsymbol{\beta}_{p\times 1} + \boldsymbol{\epsilon}_{n\times 1}.$$

- ► X_{n×p} known as design matrix typically are considered as deterministic and n > p.
- ϵ, (also known as error / residuals) for all i are random variables, i = 1, 2, · · · , n
 1. E(ϵ_i) = 0, ∀ i
 2. Var(ϵ_i) = E(ϵ²_i) = σ², ∀ i Homoscedasticity
 - 3. $\mathbb{C}ov(\epsilon_i, \epsilon_j) = \mathbb{E}(\epsilon_i \epsilon_j) = 0, \forall i \neq j$ Independence

(日)(1)<p

Model Assumptions in Matrix Notation

► Given a vector of inputs X_{n×p} = ((X_{ij})), we predict the output y via model

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times p}\boldsymbol{\beta}_{p\times 1} + \boldsymbol{\epsilon}_{n\times 1}.$$

- ► X_{n×p} known as design matrix typically are considered as deterministic.
- ϵ, (also known as error / residuals) for all i are random variables, i = 1, 2, · · · , n
 1. E(ϵ) = 0_n
 2. Cov(ϵ) = σ²l_n

Implication of the Assumptions

Assumption:

1.
$$\mathbb{E}(\epsilon) = \mathbf{0}_n$$

2.
$$\mathbb{C}ov(\epsilon) = \sigma^2 \mathbf{I}_n$$

It induces distribution on y, such that

$$\mathbb{E}(\mathsf{y}) = \mathbb{E}(\mathsf{X}eta + \epsilon) = \mathsf{X}eta + \mathbb{E}(\epsilon) = \mathsf{X}eta$$

and

$$\mathbb{C}ov(\mathbf{y}) = \mathbb{C}ov(\mathbf{X}\boldsymbol{eta} + \boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}_n$$

- Note that we have not made any distributional assumption on *\epsilon* yet.
- We will introduce that assumption little later.

Implication of the Assumptions

▶ What is the expected value of cy? If c is a constant. Result 1 We know

$$\mathbb{E}(\mathbf{y}) = \mathbf{X} \boldsymbol{eta},$$

then

$$\mathbb{E}(c\mathbf{y}) = c\mathbf{X}\boldsymbol{eta}.$$

Now consider the ordinary least square estimator (OLS) estimator of β?

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}$$

$$\begin{split} \mathbb{E}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}((\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}) \\ &= (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbb{E}(\mathbf{y}) = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta} \\ &= \boldsymbol{\beta} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Result 2 OLS estimator $\hat{\beta}$ is an unbiased estimator of β .

Implication of the Assumptions

Suppose we are interested in some linear combination of the regression corefficients, like $f(\beta) = c^T \beta$.

Result 3 Then the unbiased estimation of $c^T \beta$ is $c^T \hat{\beta}$, i.e.,

$$\mathbb{E}(c^{T}\hat{\beta})=c^{T}\beta,$$

Suppose c = x₀ is a test point. Then we are interested in prediction f(x₀) = x₀^Tβ are of this form.

Gauss Markov Theorem

► If we have any other linear estimator $\tilde{\theta} = a^T \mathbf{y}$ is unbiased for $c^T \beta$, that is

$$\mathbb{E}(\boldsymbol{a}^{\mathsf{T}}\mathbf{y}) = \boldsymbol{c}^{\mathsf{T}}\boldsymbol{\beta},$$

then

$$\mathbb{V}ar(c^{T}\hat{oldsymbol{eta}}) \leq \mathbb{V}ar(a^{T}\mathbf{y})$$

Proof is home work problem.

Note OLS estimates of the parameters β have the smallest variance among all linear unbiased estimates.

c^mi

Notes on Gauss Markov Theorem

Consider the mean squared error (MSE) of an estimator θ̃ in estimating θ:

$$egin{aligned} \mathcal{MSE}(ilde{ heta}) &= & \mathbb{E}(ilde{ heta}- heta)^2 \ &= & \mathbb{V}\mathit{ar}(ilde{ heta}) + [\mathbb{E}(ilde{ heta})- heta]^2 \ &= & \mathbb{V}\mathit{ar}(ilde{ heta}) + [\mathit{bias}]^2 \end{aligned}$$

- The Gauss-Markov theorem implies that the least squares estimator has the smallest MSE of all linear estimators with no bias.
- However, there may well exist a biased estimator with smaller MSE. For example: (i) Ridge estimator or (ii) James-Stein shrinkage estimator of β trade a little bias for reduction of variance and its MSE are lowere than the OLS estimator.

(日) (日) (日) (日) (日) (日) (日) (日)

Why Mean Square Error?

MSE is directly related to prediction accuracy.

Consider the prediction of the new response at input x₀

$$y_0=f(x_0)+\epsilon_0.$$

• The expected prediction error of an estimate $\hat{f}(x_0) = x_0^T \hat{\beta}$ is

$$\begin{split} \mathbb{E}(y_0 - \hat{f}(x_0))^2 &= \sigma^2 + \mathbb{E}(x_0^T \hat{\beta} - f(x_0))^2 \\ &= \sigma^2 + MSE(x_0^T \hat{\beta}) \end{split}$$

 Expected prediction error and MSE differ only by the constant σ².

In the next part...

▶ We will discuss the some examples...

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @