Predictive Analytics Regression and Classification Lecture 1 : Part 2

Sourish Das

Chennai Mathematical Institute

Aug-Nov, 2019

c^mi

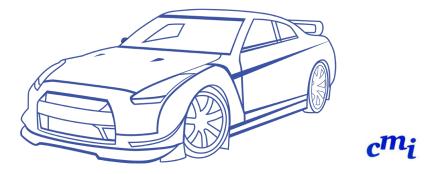
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Regression

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Motivating Examples of Linear Regression

Ex 1 Given the different features of a new prototype car, can you predict the mileage or 'miles per gallon' of the car?



Motivating Examples of Regression

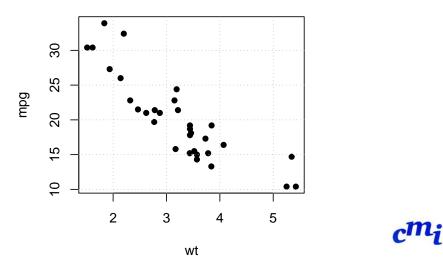
Ex Given the different features of a new prototype car, can you predict the mileage or 'miles per gallon' of the car?

•	mpg	cyl	disp	hp	wt
Mazda RX4	21.0	6	160	110	2.620
Mazda RX4 Wag	21.0	6	160	110	2.875
Datsun 710	22.8	4	108	93	2.320
Hornet 4 Drive	21.4	6	258	110	3.215
Prototype	?	4	120	100	3.200

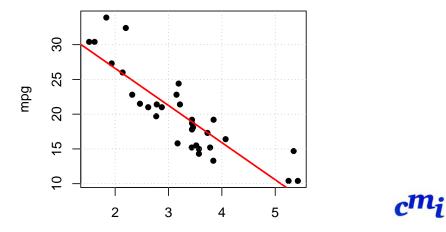
Note that your objective is to predict the variable mpg.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Plot the data



$\begin{array}{c} \text{Regression Line} \\ \texttt{mpg} = \beta_0 + \beta_1 \texttt{wt} + \epsilon \end{array}$



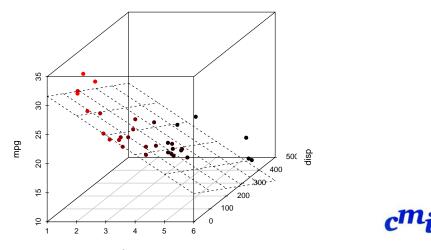
wt

ヘロト ヘロト ヘヨト ヘヨト

æ

Regression Plane

 $\texttt{mpg}{=}\beta_0{+}\beta_1\texttt{wt}{+}\beta_2 \texttt{ disp}{+}\epsilon$



(日)

wt

Regression Model

► Given a vector of inputs X^T = (X₁, X₂,..., X_p), we predict the output Y via model

$$Y = \beta_0 + \sum_{j=1}^p X_j \beta_j + \epsilon.$$

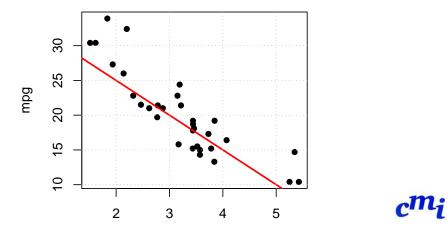
The term β_0 is the intercept, also known as the *bias* in machine learning.

Often it is convenient to include the constant variable 1 in X, include β₀ in the vector of coefficients β = (β₁, · · · , β_p)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We have data about y and X
- How can we estimate $\beta = (\beta_1, \cdots, \beta_p)$?

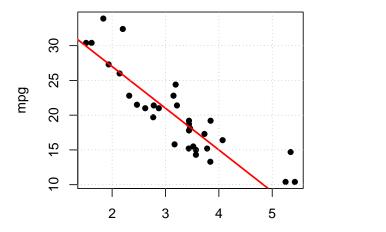
Regression Line mpg=35 - $5wt+\epsilon$



wt

▲□▶ ▲圖▶ ▲国▶ ▲国▶

æ

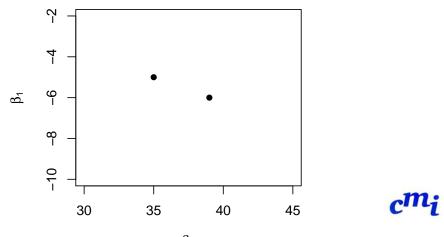


wt

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

_cm_i

Choice of β ($\beta_0 = 35$, $\beta_1 = -5$) and ($\beta_0 = 39$, $\beta_1 = -6$)



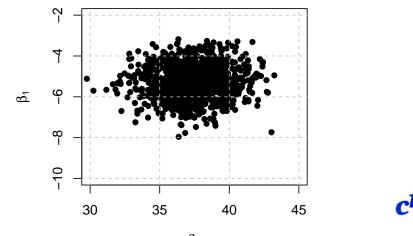
・ロト ・四ト ・ヨト ・ヨト

Ξ.

βo

Choice of β

However, thousands of choices are there, which one is best?



β0

<ロト < 回下 < 回下

э

How do we fit Linear Regression Models?

Consider the model

$$\mathbf{y}_{n imes 1} = \mathbf{X}_{n imes p} \boldsymbol{\beta}_{p imes 1} + \boldsymbol{\epsilon}_{n imes 1}$$

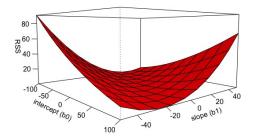
Many different methods, most popular is least squares.

minimize the residual sum of squares

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$
$$= \sum_{i=1}^n (y_i - x_i^T \beta)^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Residual Sum of Square : Surface



- RSS(β) is a quadratic function of the parameters
- Its minimum always exists, but may not be unique.

э

(日)

How do we fit Regression models?

• Differentiate $RSS(\beta)$ with respect to β and equate to 0

$$\frac{\partial RSS(\beta)}{\partial \beta} = 0$$

$$\implies \quad \frac{\partial}{\partial \beta} (\mathbf{y} - X\beta)^T (\mathbf{y} - \mathbf{X}\beta) = 0$$

$$\implies \quad -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\beta) = 0$$

$$\implies \quad \mathbf{X}^T \mathbf{X}\beta = \mathbf{X}^T \mathbf{y} \text{ Normal Equations}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- $\mathbf{X}^T \mathbf{X}$ is $p \times p$ matrix,
- So normal equations have p unknown and p equations.

In the next part...

We will discuss how can we solve the normal equations and fit linear regression model....

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thank You

sourish@cmi.ac.in

