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My current research interests are in various subjects in Theoretical Computer Science. In the past
few years I have mostly worked on the area of property testing.

Other than property testing I have also worked on other areas such as coding theory[CRRS06,
CFM11, BC], graph algorithms[CFMY11, CFLY10], algorithmic game theory[CL12, CDK10, CD09],
combinatorial measures of Boolean functions[Cha11] and combinatorics[CRR05, CGSM11a].

1 Summary of My Work in Property Testing

Many data sets that arise in the fields of biology, geology, astronomy, climatology, artificial intelli-
gence, etc are massive. In fact they are so huge that even reading the whole data requires impossibly
large resources. At the same time we need to analyze and have a good estimate of whether the data
has certain property. We can use statistical methods to analyze the data. But statistical methods
has it limitations. One alternative is “property testing”: looking at a very small (ideally constant)
part of the data and use combinatorial techniques to decide whether the data has a predetermined
property or is “far” from satisfying the property.

This way of analyzing the data started in the late eighties and early nineties [BLR90, BFL91, RS96].
Subsequently it had important application in the fields of probabilistically checkable proofs (PCP)
[AS98, ALM+98] and learning and approximation [GGR98]. In recent years the field of combinatorial
property testing has enjoyed a rapid growth (see, e. g., [AFNS09, AS], cf. [Ron08, Fis01])

The query complexity for a given property is a measure of the fraction of data that has to be
accessed/read/queried to determine if the data has the property or is “far” from satisfying the
property. I have worked on both classical and quantum query complexity (when the queries are made
by a quantum computer) and have designed effective algorithms as well as proved lower bounds on
the query complexity for various important properties.

The better understanding of the query complexity for different problems also has applications to
other areas in theoretical computer science like learning theory, online algorithms and coding theory.

1.1 Testing of Graph Isomorphism and its Generalizations

Graphs are combinatorial objects that are used to represent relations over a data set. Graph iso-
morphism is one of the most important and well studied problems in mathematics and theoretical
computer science. The problem is to check whether two given graphs are isomorphic to each other.
There is no known fast algorithm for testing graph isomorphism.
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In the case of property testing the problem is to distinguish between the case where the graphs are
isomorphic and the case where we need to change at least a constant fraction of the adjacency matrix
to make the graphs isomorphic.

In [BC10] we study a natural and important generalization of the graph isomorphism: testing iso-
morphisms under group actions. Given two n bit strings x and y and a permutation group G we
want to test whether there is a permutation π in G such that by permuting the indices of x by the
π we obtain the string y. This abstract generalization has applications in many fields. For example,
in image recognition if we want to check whether one images is a shifts of another we consider the
group of all shifts of the pixels of the images and test for isomorphism under this group action. Also
graph and hyper-graph isomorphism are special cases.

With Babai [BC10] we study this problem when G is a primitive group. Primitive groups acts as
building blocks for other permutation groups. Hence understanding query complexity under primitive
group action is the first but significant step toward the main problem. In fact various finite geometric
transformations (like projective, orthogonal, symplectic, etc) corresponds to primitive groups. Graph
and hyper-graph isomorphism also corresponds to primitive groups actions. Eldar and Matsliah
[FM08] obtained the exact bounds on the query complexity for testing graph isomorphism. We
generalize their results to obtain tight bounds on the query complexity for testing isomorphism
under the action of a primitive permutation group G.

In [CFMdW10] with Fischer, Matsliah and de’Wolf we study the problem of testing of graph iso-
morphism when the graph is accessed by a quantum computer (instead of a classical computer).
Quantum computers is known is be much more powerful than classical computers. Property testing
using quantum computer has been studied earlier. We show that in case of graph isomorphism also
the quantum computer does significantly better that the classical computers - that is the quantum
computer can make much less number of queries to the graphs to determine if they are isomorphic
or far from isomorphic.

1.2 Testing of Function Isomorphism

Two n-variate functions are said to be isomorphic if both the functions are isomorphic up to a
permutation of the input variables. This is a very important problem and has connections to learning
theory, artificial intelligence and many other areas in computer science. In property testing we are
interested in distinguishing the case when the two functions are isomorphic from the case when the
function value has to be changed at least a ε fraction of the domain space to make them isomorphic.

The question of testing isomorphism was first formulated explicitly by Fischer, Kindler, Ron, Safra,
and Samorodnitsky [FKR+04]. They gave a general upper bound on the query complexity by showing
that for every function f that depends on k variables (that is, for every k-junta), the problem of
testing isomorphism to f is solvable with polynomial in k number of queries. They gave a lower
bound of log k for a special function (namely the function that is a parity of k variable). No other
progress was made on the problem of testing isomorphism on boolean functions until recently, when
Blais and O’Donnell [BO10] showed that for every function f that “strongly” depends on k variables
testing isomorphism to f requires log k non-adaptive queries.
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In [CGSM11c] and [ABC+] we improve both the upper and lower bounds for testing function iso-
morphism to a k junta. Our bounds are tight up to a logarithmic factor. These recent results
have opened up the flood gates in this area and a lot of work is being done currently. Using our
results in [CGSM11c] we also obtained improved lower bounds on testing various function properties
[CGSM11b].

The big problem in this area is characterize all function properties that can be tested using “small”
number of queries. While such characterization has been obtained in case of testing of graph prop-
erties [AFNS09], the problem in the case of general function properties is much more challenging. A
crucial component in characterizing testable graph properties was the use of Szemeredi’s regularity
lemma for graphs. In case of general functions no such regularity type theorem is known.

A first step toward the main problem for characterize all testable function properties is to characterize
all the functions f such that isomorphism to f can be tested using small number of queries. Our
recent works in [CGSM11c] and [ABC+] does give some insight into this problem. In a recent paper
[CFGSM12] we gave a possible characterization of functions for which testing isomorphism to can be
tested using small number of queries. We proved various important properties of the characterization
that seems to suggest that this can be the right characterization.

1.3 Testing of Monotonicity of Functions

Testing monotonicity of functions [DGL+99] is one of the oldest and most studied problems in
Property Testing. The problem is defined as follows. Let D be a partially ordered set (poset) and
let R ⊆ Z. A function f : D → R is monotone if for every (comparable) pair x, y ∈ D, x ≤ y implies
f(x) ≤ f(y). A function f is ε-far from monotone if it has to be changed on at least an ε-fraction
of the domain D to become monotone. A (q, ε)-monotonicity tester for domain D and range R is a
probabilistic algorithm that, given oracle access to a function f : D → R, satisfies the following: (a)
it makes at most q queries to f ; (b) it accepts with probability at least 2/3 if f is monotone; (c) it
rejects with probability at least 2/3 if f is ε-far from monotone.

Most of the property tester for monotonicity falls in the category of “edge-testers” where tester
tries to find two neighboring points in the poset where the monotonicity fails. In [BCGSM10] Breit,
Garcia-Soriano, Matsliah and I proved that this kind of tester has a limitation and gave a lower bound
on the query complexity for testing monotonicity with these kind of testers. The main result of this
paper is disproving a 25 year old conjecture by Szymanski [Szy89] on multicuts in the hypercube
graph.

We also prove almost tight lower bound on the number of queries for one-sided non-adaptive testing
of monotonicity over the n-dimensional hypercube, as well as additional bounds for specific classes
of functions and testers.
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1.4 Testing of Graph Properties in Orientation Model

Orientation model for graph property testing was first introduced in [HLNT07]. In this model we
are given an undirected multi-graph and two distinct vertices s and t. We are supposed to get the
orientation of each of the edges by querying. Each edge is oriented in exactly one direction. In
this model we want to query as less as possible and find out whether there is a path from s to t
in the directed graph or we have to change the orientation of a constant fraction of the edges to
get a directed path from s to t. This model is very appropriate for testing properties of sparse and
directed graphs.

In [CFL+07] we test whether in a given directed graph G there is a directed path from a specified
vertex s to a specified vertex t. The problem of st-connectivity is a classical problem is computer
science. We solve the property testing version of this problem. We show that testing st-connectivity
in this model can be done using only a constant fraction of queries.

In [CKP] we have shown that testing whether a random walk on a regular graph has a uniform
stationary distribution in the orientation can be reduced to the problem of testing whether the
graph is Eulerlian. This indicated that in this orientation model a global property such as “the
stationary distribution being uniform” can be tested by testing a very local property.
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ity testing and shortest-path routing on the cube. In APPROX-RANDOM, pages
462–475, 2010.
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