
Sensitivity, Block Sensitivity and Certificate Complexity of Boolean

Functions
(Master’s Thesis)

Sourav Chakraborty
Thesis Advisor: László Babai

February, 2005

Abstract

We discuss several complexity measures for Boolean functions: sensitivity, block sensitivity,
`-block sensitivity, certificate complexity, average sensitivity and average block sensitivity. We
survey various known bounds for these measures and relations between these measures for different
classes of functions. For a general Boolean function our understanding of these measures is still
very limited. Many of the relations that we have are far from being tight. For example, the
best known upper bound on block sensitivity in terms of sensitivity is exponential [Simon 1983,
Kenyon-Kutin 2004] while the largest known gap is quadratic [Rubinstein 1995].

For certain classes of functions (like functions with certain amount of symmetries) our un-
derstanding is much better. We discuss how the various measures perform on these classes of
functions. The classes of functions we discuss are monotone functions, symmetric functions,
graph properties, functions closed under some transitive group action and minterm-transitive
functions. For monotone functions and symmetric functions we have quite a clear understanding
of the measures. For graph properties we have almost tight bounds [Turan 1984].

Our main new contributions concern minterm-transitive functions defined by Chakraborty(2005).
This class is a subclass of the class of functions invariant under some transitive group action. We
establish a tight lower bound of n1/3 for sensitivity of functions in this class. Using similar tech-
niques we try to prove similar tight bounds for functions invariant under some transitive group
action.

Most of these measures were initially defined to give nice bounds for the decision tree com-
plexity for various models of computation. So we also review how these measures are related to
decision tree complexity for deterministic, randomized and quantum model.

1 Introduction

In the last few decades computation of Boolean functions has been a major area of research in com-
puter science. Various models of machines are used to compute Boolean functions. Some examples
of machine models are deterministic model, non-deterministic model, randomized model, quantum
model and parallel computing model. Complexity theory tries to understand the computational

1

power of these models like finding tight bounds on the amount of time, space and query needed for
computing a particular function. Unfortunately for many important problems no good bounds are
known.

Decision tree complexity of a function is the minimum number of bits of the input that the optimal
algorithm has to check (query) to be able to calculate the value of the function on that input.
Sensitivity, block sensitivity, certificate complexity, average sensitivity and block sensitivity and degree
of representing polynomials are some complexity measures on Boolean functions that are used to
obtain good lower and upper bounds for decision tree complexity for various machine models. For
example certificate complexity is exactly same as decision tree complexity for non-deterministic
model, sensitivity gives tight bounds for CREW PRAM model while block sensitivity is used to
compute lower bounds for the quantum model for cyclically invariant functions. So it is important
to understand the properties of these measures.

We are interested in knowing the lower and upper bounds of these measure and how these measures
relate to one another for certain classes of functions. Unfortunately in most classes of functions
our knowledge is very limited. But for functions with certain amount of symmetry we have good
bounds. The classes of functions that we survey are monotone functions, symmetric functions, graph
properties, functions closed under some transitive group actions and minterm-transitive functions.
For monotone functions, symmetric functions and graph properties we already have bounds which
are tight (up to a factor of 4 for graph properties). But for functions closed under some transitive
group actions the bounds we have seems to be far from being tight. Minterm-transitive is a subclass
of functions closed under some transitive group actions. This class was introduce very recently in
[8] and proved some tight bounds for this class. In this survey we will also try to extend the proofs
of [8] to the bigger class of functions. We also try to extend the proof of [21] for graph properties
to k-uniform hyper graph properties. We survey the known relations between the various measures
and we also look at a number of examples that gives the best known gaps between the measures.
For important theorems we have given sketches of proofs.

In this survey we focus mainly on the properties of sensitivity, block sensitivity, `-block sensitivity,
certificate complexity and average sensitivity and block sensitivity. Our main contribution in this
survey is a detailed study on functions closed under transitive group actions. At the end we give
an brief description of some of the other measures like degree of representing polynomials. We also
study how some of these measures are related to the decision tree complexity for various machine
models. But we will not go into details. A more detailed study on these topics are found in the
survey of Harry Buhrman and Ronald de Wolf [6]. In their survey they gave more attention to how
these measures are related to the decision tree complexity and quantum query complexity. Wegener
[24] wrote a book called “Complexity of Boolean functions”. Section 13.4 is on the complexity of
PRAMs. There he has looked at sensitivity and certificate complexity.

The organization of this survey is as follows: In Section 2 we set up some notations that will be
used later on. In Section 3 we look at some examples of Boolean functions. Later on in the survey
we will study these examples for various measures. In Section 4 we define the measures and survey
how they relate to each other for an arbitrary Boolean functions. In Section 5 we define several
classes of functions and survey the known best bounds and relations of the measures for the classes
of functions. Finally we have a quick survey on related topics. Through out the survey we point out

2

various open problems.

2 Notations

We use the notation [n] = {1, 2, 3, ..., n}. In the rest of the survey (unless otherwise stated) f, g, h
denotes boolean functions on n variables, i. e., f, g, h : {0, 1}n → {0, 1}. We call the elements of
{0, 1}n “words” of length n. Also otherwise stated x, y, z denotes words of length n. For a word x
we denote the ith bit as xi. So x is actually x1x2 · · ·xn.

For any word x and 1 ≤ i ≤ n we denote by xi the word obtained by switching the ith bit of x. For
a word x and A ⊆ [n] we use xA to denote the word obtained from x by switching all the bits in A.

For a word x = x1x2...xn we define supp(x) as {i |xi = 1}. Weight of x, denoted wt(x), is | supp(x)|,
i. e., number of 1s in x.

For a word x = x1x2 · · ·xn and for i ≤ n we denote by x|[i] the word x1x2 · · ·xi, i. e., the i length
word formed by the first i bits of x.

The obvious ordering on the words is the lexicographic ordering. So unless otherwise stated when
we speak of x ≤ y we mean by the lexicographic ordering.

Definition 2.1 Given a function f : {0, 1}n → {0, 1} we call the ith variable effective if there exist
some word x for which f(x) 6= f(xi).

Effectively the effective variables are the variables that matter to us. So a function can easily to
modified to a function defined on smaller inputs such that all the variables in the input are effective.

We define something called partial function. It is used a lot in rest of the survey.

Definition 2.2 A partial assignment is a function p : S → {0, 1} where S ⊆ [n]. We call S the
support of this partial assignment. The weight of a partial assignment is the number of elements
in S that is mapped to 1. We call x a (full) assignment if x : [n] → {0, 1}. (Note than any word
x ∈ {0, 1}n can be thought of as a full assignment.) We say p ⊆ x if x is an extension of p, i. e., the
restriction of x to S denoted x|S = p.

3 Examples

Before going any further with our survey we would look at some examples of interesting Boolean
functions. These functions comes again and again in the finding lower bounds and upper bounds for
various measures.

Example 3.1 k-Threshold:- If x is a word of size n then k − Threshold(x) = 1 iff wt(x) ≥ n
2 .

3

Example 3.2 Parity:- Given word x ∈ {0, 1}n we define parity(x) = 1 iff |supp(x)| is even.

Example 3.3 AND-of-OR:- Given a word x of length k2 we can think x = x(1)x(2) · · ·x(k) where
each x(i) is a word of length k. Now let ci be the OR of all the bits in x(i). Then f is called
AND-of-OR if it outputs AND of all the ci’s.

Example 3.4 AND-OR tree Let C be a complete Boolean tree of depth k with AND gates at all the
odd depth nodes and OR gates at the even depth nodes. Now f be the function corresponding to the
circuit C with inputs as the leaves. The function f : {0, 1}2k → {0, 1} is called the AND-OR tree.

Example 3.5 Addressing Function:- Let x be a word of size n + 2n. Thus x has two parts; first
part is the first n bits of x and the second part is the remaining of x. The first part corresponds to
a number i between 0 and 2n. So f(x) = 1 iff the ith bit of the second part is 1. Since the first part
acts as an address for the second part it is called the addressing function.

Example 3.6 k-Monotone Address function:- This is a modified version of the previous function.
The input is a word of size n + 2n. Just as in the last example we can divide the input x into two
parts: first part x(1) of size n and the second part x(2) of size 2n. Let 0 ≤ k ≤ n. Now f(x) = 0
if wt(x(1)) < k and f(x) = 1 if wt(x(1)) > k. If wt(x(1)) = k then it acts as the usual address function.

Note that the number of effective variables is n +
(
n
k

)
. Because if wt(x(1)) > k or < k then the

variables in x(2) is not used in computation of f and if wt(x(1)) = k then only
(
n
k

)
number of bits in

x(2) can be addressed.

Example 3.7 Modified Rubinstein’s function Let g : {0, 1}k → {0, 1} be such that g(x) = 1 iff x
contains two consecutive ones and the rest of the bits are 0. In function f ′ : {0, 1}k2 → {0, 1}
the variables are divided into groups B1, . . . , Bk each containing k variables. f ′(x) = g(B1) ∨
g(B2) ∨ · · · ∨ g(Bk). Using f ′ we define the function f : {0, 1}k2 → {0, 1} as f(x1x2 · · ·xn) = 1
iff f ′(xixi+1 · · ·xnx1x2 · · ·xi) = 1 for some 1 ≤ i ≤ n.

A slightly simplified version of this example was first given by Rubinstein [16]. This example has
some nice properties that we will see later.

4 Various Measures on Boolean functions

4.1 Sensitivity

4.1.1 Definition

Cook, Dwork and Reischuk [9] originally introduced sensitivity as a simple combinatorial complexity
measure for Boolean functions providing lower bounds on the time needed by a CREW PRAM.

4

Although the definition is very simple, only for a few simple classes of function the sensitivity is
understood somewhat properly. It may be noted that initially this measure was called the critical
complexity. In most of the earlier papers it is called by this name.

Intuitively, as the name suggests, the sensitivity of a function computes the number of bits of the
input on which the function is sensitive. The formal definition is given below.

Definition 4.1 The sensitivity of f on the word x is defines as the number of bits on which the
function is sensitive: s(f, x) = |{i : f(x) 6= f(xi)}|.

We define the sensitivity of f as s(f) = max{s(f, x) : x ∈ {0, 1}n}

We define 0-sensitivity of f as s0(f) = max{s(f, x) : x ∈ {0, 1}n, f(x) = 0}

We define 1-sensitivity of f as s1(f) = max{s(f, x) : x ∈ {0, 1}n, f(x) = 1}.

4.1.2 Properties of Sensitivity

By definition for any function f : {0, 1}n → {0, 1} sensitivity is less than n. Also it is trivially
observed that this upper bound is tight, i. e., there are functions with sensitivity n.

For example the Parity function(Example 3.2) has sensitivity n. The k-Threshold function (Example
3.1) has sensitivity max{k, n− k}. The AND-of-OR function (Example 3.3) has sensitivity k when
the input size is k2. The addressing function (Example 3.5) has sensitivity (n + 1) when the input
size is (n + 2n). The Rubinstein’s function (Example 3.7) has sensitivity 2k when the input size is
k2.

Wegener [23] proved the following theorem.

Theorem 4.2 The k-monotone addressing function (Example 3.6) with k = bn
2 c has sensitivity dn

2 e
while the effective number of variables is n +

(
n

bn/2c
)
.

Proof: If x is an input of size (n+2n) with k = bn
2 c then in the case of monotone addressing function

the number of effective variables is n +
(
n
k

)
= n +

(
n

bn/2c
)
.

Let x be broken up into two parts. The first part x′ be the address and |x′| be n. Then if wt(x′) < bn
2 c

(or wt(x′) > bn
2 c) s(f) is less than the number of 1 (or 0) in x′, i. e.dn

2 e.

If wt(x′) = bn
2 c and f(x) = 0 then to change the value of f we either have to increase the number

of 1s in x′ (bn
2 c possibilities) or we have to change the value at the position corresponding to the

address (only one possibility). So s(f) < dn
2 e. Similarly if f(x) = 1 we can see s(f) < dn

2 e.

Hence in any case sensitivity is less than s(f) < dn
2 e.

5

Lemma 4.3 If m = n +
(

n
bn/2c

)
then dn

2 e = 1
2 log m + 1

4 log log m + O(1).

From Lemma 4.3 and Theorem 4.2 the following theorem follows.

Theorem 4.4 ([23]) There is a Boolean function f : {0, 1}m → {0, 1} with sensitivity less than
1
2 log m + 1

4 log log m + O(1).

Wegener [23] proved that for the (bn/2c)-monotone address the sensitivity is 1
2 log m + 1

4 log log m +
O(1). Among any known functions this function in fact has the lowest sensitivity in terms of effective
variable. Hans-Ulrich Simon [18] proved the following theorem:

Theorem 4.5 For any boolean function f : {0, 1}n → {0, 1} we have s(f) ≥ (1
2 log n− 1

2 log log n+ 1
2),

where n is the number of effective variables.

Thus the (bn/2c)-monotone addressing function comes quite close to the possible lowest bound.

For various restricted classes of functions better bounds are known. We will have a look at the special
classes in the next section.

4.2 Block sensitivity

4.2.1 Definitions

Nisan [12] introduced the concept of block sensitivity and demonstrated the remarkable fact that
block sensitivity and CREW PRAM complexity are polynomially related.

Definition 4.6 The block sensitivity bs(f, x) of a function f on an input x is the maximum number
of disjoint subsets B1, B2, ..., Br of [n] such that for all j, f(x) 6= f(xBj).

The block sensitivity of f , denoted bs(f), is maxx bs(f, x).

Although the definition of block sensitivity is very similar to that of sensitivity it is surprising that
no good relation is known between block sensitivity and sensitivity.

4.2.2 Properties of Block Sensitivity

Again by definition, for a function f : {0, 1}n → {0, 1} the block sensitivity is less than n and clearly
this upper bound is tight for any arbitrary function.

The definition of sensitivity is a special case of block sensitivity that is when all the blocks are of size
1. So block sensitivity is always more than sensitivity. But for an arbitrary Boolean function the

6

best known upper bound on block sensitivity in terms of sensitivity is exponential. The lower bound
on sensitivity of function f , given by H.-U. Simon [18], gives an upper bound of O(s(f)4s(f)) on
block sensitivity where s(f) is the sensitivity of the function f . Kenyon and Kutin [11] gave the best
known upper bound on block sensitivity in terms of sensitivity; their bound is O

(
e√
2π

es(f)
√

s(f)
)
.

Their proof uses some other measure called ”ell-Block Sensitivity”. In the next section we will define
`-block sensitivity.

But surprisingly the largest known gap between block sensitivity and sensitivity is quadratic, as shown
by Rubinstein [16]. The Modified Rubinstein’s function (example 3.5) demonstrates the quadratic
gap. It has sensitivity of f is 2k while the block sensitivity is bk2

2 c.

There is a strong feeling that for an arbitrary function block sensitivity is polynomially related to
sensitivity, in fact quadratically related.

Open Problem 4.7 Is there a function f : {0, 1}n → {0, 1} such that bs(f) = ω(s(f)2).

Open Problem 4.8 Is there a constant c such that for any function f : {0, 1}n → {0, 1} we have
bs(f) = O(s(f)c).

The following lemma follows from some simple observations.

Lemma 4.9 Let f : {0, 1}n → {0, 1} be a Boolean function and let x ∈ {0, 1}n with z = f(x).
Let B1, B2, · · · , Bk be the minimal set of blocks corresponding to the block sensitivity for x. Then
∀1 ≤ i ≤ k, |Bi| ≤ s1−z(f).

Proof: So f(x) = z while f(xBi) = (1 − z). Now all the bits in Bi must be sensitive for xBi ,
otherwise there is B′ ⊂ Bi such that f(xB′

) = (1− z) contradicting the minimality condition.

4.3 `-Block Sensitivity

4.3.1 Definition

In the definition of block sensitivity (Definition 4.5) if we restrict the block size to be at most ` then
we obtain the concept of `-block sensitivity of the function f , denoted bs`(f). In [11] Kutin and
Kenyon introduced this concept.

Definition 4.10 The `-block sensitivity bs`(f, x) of a function f on an input x is the maximum
number of disjoint subsets B1, B2, ..., Br of [n] of size less than or equal to ` (i. e., for all 1 ≤ j ≤ r,
|Bj | ≤ `) such that for all j, f(x) 6= f(xBj).

The block sensitivity of f , denoted bs`(f), is maxx bs`(f, x).

7

Similar to the definition of 0-sensitivity and 1-sensitivity we can define 0-`-Block Sensitivity and
1-`-Block Sensitivity denoted bs0

`(f) and bs1
`(f) respectively.

4.3.2 Properties of `-Block Sensitivity

Kenyon and Kutin [11] proved the following theorems.

Theorem 4.11 For 2 ≤ ` ≤ s(f), and z ∈ {0, 1},

bsz
` (f) ≤ 4

`
s1−z(f)bsz

`−1(f).

Also
bsz

` (f) ≤ c`s
z(f)

(
s1−z(f)

)`−1
,

where,

c` =

(
1 + 1

`+1

)`−1

(`− 1)!
<

e

(`− 1)!
.

Corollary 4.12 s(f) ≥ (bs`(f)
cell

)1/`, where c` is the constant of the previous Theorem.

The above theorem helps us to prove the following relation between block sensitivity and sensitivity.

Theorem 4.13 If bs(f) ≥ Kn then s(f) = Ω(nK/2).

Theorem 4.14 bs(f) ≤ e√
2Π

es(f)
√

s(f).

This is the currently the best known upper bound on block sensitivity in terms of sensitivity for
general Boolean functions.

One important open problem here is asked by Kenyon and Kutin in their paper.

Open Problem 4.15 Can the constant in the upper bound on `-block sensitivity be improved? Ac-
tually a slight improvement in the constant can actually give us a sub-exponential bound on bock
sensitivity in terms of sensitivity.

8

4.4 Certificate Complexity

4.4.1 Definition

Certificate complexity was first introduced by Vishkin and Wigderson [22]. This measure was initially
called sensitive complexity. In many of the earlier papers it is referred to by this name.

Definition 4.16 For b = {0, 1}, we define b-certificate as a partial assignment, p : S → {0, 1}, which
forces the value of the function to 1. Thus if x|S = p then f(x) = 1.

Definition 4.17 The certificate complexity of a function f on x, denoted cx(f), is the size of the
smallest f(x)− certificate that can be extended to x.

The certificate complexity of f is maxx cx(f). For b = {0, 1}, we define the b-certificate complexity
of f as maxx:f(x)=b cx(f).

Just like 0-sensitivity and 1-sensitivity, we can define 0-certificate complexity c0(f) and 1-certificate
complexity c1(f).

There is a way of looking at certificate complexity in terms of hyper cubes. We can think of a Boolean
function as coloring the vertex on a n-dimension hyper cube using just two colors. Then certificate
complexity is n minus the dimension of the largest monochromatic hypercube in the n-dimensional
hypercube.

One interesting thing to note is that certificate complexity is exactly the decision tree complexity for
non-deterministic machine model. That is because the non-deterministic machine can just guess the
certificate that the input might have and it has to verify it and that will take at most c(f) queries.

4.4.2 Properties of Certificate Complexity

Let x be a word for which the block sensitivity bsx(f) = bs(f). Note that any certificate for x must
have at least one variable from each of the sensitive blocks of x. So bs(f) ≤ c(f) for all Boolean
function f .

Hence the relation between sensitivity and block sensitivity and certificate complexity is

s(f) ≤ bs(f) ≤ c(f)

.

We have this slightly stronger result.

Lemma 4.18 For z ∈ {0, 1}, bsz(f) ≤ cz(f).

9

Proof: Let x ∈ {0, 1}n with B1, B2, · · · , Bk be the minimal blocks corresponding to the block
sensitivity of x. Let Cx be the certificate for x. Then Cx must intersect all the Bi. If not there is
some block Bj which does not intersect with Cx. Then consider xBj . It contains Cx, so f(xBj) = f(x).
While by definition of the blocks f(xBj) = 1− f(x). Hence a contradiction.

Nisan [12] gave the upper bound on certificate complexity in terms of sensitivity and block sensitivity.

Theorem 4.19 If f : {0, 1}n → {0, 1} is a boolean function on n variables then c(f) ≤ bs(f)s(f).

This theorem follows from the following lemma.

Lemma 4.20 For x ∈ {0, 1}, c(f, x) ≤ bs(f, x)s1−f(x)(f).

Proof: Let x ∈ {0, 1} with B1, B2, · · · , Bk be the minimal blocks corresponding to the block sensi-
tivity of x. Then B = ∪iBi is a certificate of x. If not there is a y such that y is an extension of B
but still f(x) 6= f(y). Let y = xA. Since y extends B, so A is disjoint from B. So by definition of
block sensitivity A\B is a sensitive block and hence A ⊂ B, a contradiction.

So c(f, x) ≤B≤ bs(f, x)s1−f(x)(f) (from Lemma 4.8).

This gives a quadratic bound on certificate complexity in terms of block sensitivity. But no example
is known which has quadratic gap between certificate complexity and block sensitivity. It is thus an
interesting open problem.

Open Problem 4.21 Is there a boolean function for which there is a quadratic gap between certifi-
cate complexity and block sensitivity.

Another interesting thing to investigate is how large can the ratio of certificate complexity to sen-
sitivity be with respect to the input size. Simon’s [18] lower bound on sensitivity tells us that
c(f)
s(f) = Ω(n

log n). In [25] they constructed an example for which c(f)
s(f) ≥ n0.29248.

In Section 5.5 we construct a function for which sensitivity is Θ(n1/3) and certificate complexity
is Θ(n2/3). So for this function c(f)

s(f) is Θ(n1/3). But presently the largest gap known is for the

Rubinstein’s function or the AND-of-OR function. For that c(f)
s(f) is

√
n. But still we are far from the

upper bound we have.

Open Problem 4.22 How large can c(f)
s(f) be?

10

4.5 Average Sensitivity and Block sensitivity

4.5.1 Definitions

One interesting measure to look at is the average sensitivity and average block sensitivity.

Definition 4.23 We define average sensitivity ŝ(f) as

ŝ(f) =
1
2n

∑
x

s(f, x) = E[s(f, x)]

.

In case of block sensitivity there are two notions of average block sensitivity. They are called the
average-block sensitivity and pseudo-average block sensitivity. But before we can define these we
have to give a different way of looking at block sensitivity.

Let D be the set of all partitions of [n]. Let d ∈ D. Let d be {S1, S2, · · · , Sk}. We define the block
sensitivity of function f on word x with respect to the partition d as

bsd(f, x) =
k∑

i=1

[f(x)− f(xSi)]2

.

From this is can be observed that the block sensitivity bs(f, x) of f on word x is maxd∈D bsd(f, x).

Using this notion of block sensitivity we have the following definitions.

Definition 4.24 For d ∈ D we define d-average block sensitivity as

b̂sd(f) = E[bsd(f, x)] =
1
2n

∑
x

bsd(f, x)

.

Definition 4.25 Average block sensitivity is defined as

b̂s(f) = E[bs(f, x)] =
1
2n

∑
x

bs(f, x)

.

Definition 4.26 Pseudo-average block sensitivity β̂s(f) is defined as maxd∈D ̂bsd(f, x).

11

4.5.2 Properties of average sensitivity and average block sensitivity

Bernasconi [4] proved two very nice results involving these measure.

Theorem 4.27 (1) ∀d ∈ D, b̂sd(f) ≤ ŝ(f).

(2) β̂s(f) = ŝ(f).

In case of sensitivity and block sensitivity the largest known gap is quadratic (for the Rubinstein’s
function). In fact it is widely conjectured to be the largest possible gap. Surprisingly in the average
setting Bernasconi [4] showed that for the Rubinstein’s function average block sensitivity is greater
that

√
n, where as the average sensitivity has limit 0 as the input size goes to infinity. Thus in the

average setting no upper bound on average block sensitivity in terms of average sensitivity can be
expected.

Other interesting results relating to average sensitivity has also been proved. Ehud Friedgut [10]
proved that functions with low average sensitivity depends on very few coordinates. More precisely
functions with average sensitivity k can be approximated by functions depending on only ck variables
where c is a constant depending solely on the accuracy of approximation.

5 Simple classes of functions

We saw in the last section that for an arbitrary function our knowledge about how the various mea-
sures behave is quite limited. Also the relation between the measures is mostly far from understood.
So we would like to restrict our attention to some much smaller class of functions which have a lot
of nice properties. Unfortunately our knowledge in this classes is also not complete in many cases.

This section contains our main new contributions (Sections 5.3 - 5.5).

5.1 Monotone function

We call a function monotone if f(x) ≥ f(y) for x ≥ y where the ordering is lexicographic. Thus in
other words if f(x) = 1 then by switching some of the 0s to 1s the values of the function does not
change. Among the examples we saw in Section 3 k-Threshold and k-Monotone addressing functions
are the only two monotone functions.

Nisan[12] proved the following proposition:

Proposition 5.1 If f : {0, 1}n → {0, 1} is a monotone function then s(f) = bs(f) = c(f).

Proof Let x be an input and C be the minimal certificate. Without loss of generality we can assume
that f(x) = 0. Then by definition monotonicity C will not have any 1. Now let y be a word obtained

12

by extending the partial function C with 1s. Now in y every bit of S is sensitive because if it is not
then that bit can be dropped from the certificate. So s(f, y) = |S| = c(f). Hence the proposition
follow.

Wegener[23] proved the following theorem which we have already proved earlier in Section 4.1.

Theorem 5.2 The k-monotone addressing function (Example 3.5) on inputs of size n has sensitivity
1
2 log n + 1

4 log log n + O(1).

This is in fact the lowest known sensitivity and its sensitivity is very close to the lower bound on
sensitivity of an arbitrary function given by Simon[18]. Also since monotone address function is a
monotone function so from what Nisan pointed out it follows that the block sensitivity of monotone
address function is 1

2 log n + 1
4 log log n + O(1). So we also have an example of a function that has

very low block sensitivity.

5.2 Symmetric function

A function f : {0, 1}n → {0, 1} is symmetric if the value of f only depends on the weight of the
input, i. e., the number of 1s in the input. So symmetric functions are very simple functions. Among
the examples we saw in Section 3 only Parity and k-Threshold are symmetric functions.

Proposition 5.3 [21] For non-constant symmetric functions on inputs of size n sensitivity is greater
than dn+1

2 e.

Proof: Let f : {0, 1}n → {0, 1} be a symmetric function. Since symmetric functions only depends
on the weight of the inputs, so let f(x) = 1 if wt(x) = k and f(x) = 0 if wt(x) = (k − 1). Then
s(f, x) ≥ k if wt(x) = k and s(f, x) ≥ (n− (k − 1)) if wt(x) = (k − 1).

So s(f) ≥ max{k, (n− k + 1)} = dn+1
2 e.

In fact the proposition is tight as sensitivity of the bn
2 c-Threshold function(Example 3.1) is dn+1

2 e.

Thus certificate complexity and block sensitivity are within a factor of two of sensitivity for symmetric
functions.

5.3 Graph Property

Graph properties is a class of very natural functions. In short these are problems like whether a
graph (encoded as a word) has a particular property that is invariant under isomorphism. So let
f : {0, 1}m → {0, 1} be a Boolean function that takes as input the encoding (i. e. the upper tri angle

13

of the adjacency matrix) of a simple undirected graphs G. Now f evaluates to 1 iff the graph G has
a given property. So the input size m is

(|V |
2

)
− |V | where |V | is the number of vertices in the graph

G. Also f(G) = f(H) whenever G and H are isomorphic as graphs. Such a function f is called a
graph property. When talking about graph property we will call the input G = (V,E). So size of
input is

(|V |
2

)
which is asymptotically equal to |V |2.

Note that we take only the upper triangle of the adjacency matrix so that each undirected edge
corresponds to only one 1 in the input. We can also define graph properties for simple directed
graphs with self-loops. Then the input is the whole adjacency matrix of size |V |2.

As observed by Turán [21] graph property is a class of functions that has a lot of symmetry but
still not symmetric. The symmetry comes from the fact that the function is same for all isomorphic
copies of graphs.

Let us look at some simple examples.

Example 5.4 Let f(G) = 1 iff the graph G is connected.

Example 5.5 Let f(G) = 1 iff the graph G has an isolated vertex.

Example 5.6 f(G) = 1 iff the graph is 2-colorable.

Example 5.7 f(G) = 1 iff the graph is planar.

Clearly the example are very common examples and hence of great interest. Many of the functions
are well known NP-complete functions.

György Turán [21] gave almost a tight bound for the sensitivity of graph properties. He proved the
following theorems.

Theorem 5.8 There is a graph property which has sensitivity |V | − 1.

Proof: The Example 5.5 has sensitivity (|V | − 1).

Theorem 5.9 If f is a graph property then s(f) ≥ b |V |
2 c.

One interesting generalization is hyper-graph property for k-uniform hyper-graph. In this case the
input is of size

(
n
k

)
.

Turán’s theorem can be naturally generalized to k-uniform hyper-graph to prove the following theo-
rem:

14

Theorem 5.10 If f is a k-uniform graph property then sensitivity of f is Ω(|V |).

But can we prove anything better? The example, ”Is there an isolated vertex”, has sensitivity((|V |−1)
(k−1)

)
.

Open Problem 5.11 For k-hyper-graph property is it true that sensitivity is Ω(
√

n).

Even finding examples of hyper-graph properties for which sensitivity is quite low is interesting.

5.4 Cyclically invariant function

One very interesting class of functions is the class of cyclically invariant functions. A slightly general
class of functions is the class of functions invariant under transitive group actions. Most of the works
in this section has been our contribution [8].

The definition of cyclically invariant function is simple. Let f : {0, 1}n → {0, 1} be a Boolean
function and let x = x1x2 · · ·xn be any input. Then f is cyclically invariant if for all x we have
f(x) = f(x′), where x′ = x2x3 · · ·xnx1.

Now we give the definition of functions invariant closed under transitive group action.

Definition 5.12 Let G be a permutation group on [n]. G is called transitive if for all 1 ≤ i, j ≤ n
there exists a π ∈ G such that π(i) = j.

Definition 5.13 Let S ⊆ [n] and let π ∈ Sn. Then we define Sπ to be {π(i) | i ∈ S}.

Let G be a permutation group acting on [n]. Then the sets Sπ, where π ∈ G, are called the G-shifts
of S. If p : S → {0, 1} is a partial assignment then we define pπ : Sπ → {0, 1} as pπ(i) = p(π−1i).

Definition 5.14 Let G be a subgroup of Sn, i. e., a permutation group acting on [n]. A function
f : {0, 1}n → {0, 1} is said to be invariant under the group G if for all permutations π ∈ G we have
f(xπ) = f(x) for all x ∈ {0, 1}n.

Definition 5.15 Let x = x1x2...xn ∈ {0, 1}n be a word. Then for 0 < ` < n, we denote by cs`(x)
the word x`+1x`+2...xnx1x2...x`, i. e., the cyclic shift of the variables of x by ` positions.

Definition 5.16 A function f : {0, 1}n → {0, 1} is called cyclically invariant if f(x) = f(cs1(x))
for all x ∈ {0, 1}n .

Note that a cyclically invariant function is invariant under the group of cyclic shifts.

15

Cyclic invariant functions have many interesting properties and has been studied for many years.
Various interesting observations have been posed as open problems earlier. Since cyclic invariant
functions have a lot of symmetry in them it is believed that sensitivity of these functions are quite
large.

Turán [21] after proving that for graph property sensitivity is 0(
√

input size) asked the following
question.

Problem (Turán, 1984): Does a lower bound of similar order hold still if we generalize graph
properties to Boolean functions invariant under a transitive group of permutations?

In the next section we give a cyclically invariant function with sensitivity Θ(n1/3). This example
gives a negative answer to Turán’s question.

Kenyon and Kutin [11] observed that for “nice” functions the product of 0-sensitivity and 1-sensitivity
tends to be linear in the input length. Whether this observation extends to all “nice” functions was
given as a (vaguely stated) open problem in that paper. In the next section we also construct
a cyclically invariant Boolean function for which the product of 0-sensitivity and 1-sensitivity is
Θ(
√

n). Thus our function also gives a counterexample to Kenyon and Kutin’s suggestion.

Certain other interesting things can be proved about functions invariant under transitive group
actions.

Theorem 5.17 For a non-constant boolean function f : {0, 1}n → {0, 1} invariant under some
transitive group action, certificate complexity c(f) ≥

√
n. And this inequality is tight. In the next

section we will look at an example when the equality holds.

Proof: We proove by contradiction. Let c(f) ≤
√

n. This means for all words x ∈ {0, 1}n we have
cx(f) ≤

√
n. Since f is non-constant so there is a 0-certificate and a 1-certificate of size less than√

n. Since f is cyclic and since product of the 0-certificate and 1-certificate is less than n so we can
have a word with both the certificates. Then it will be a contradiction as the word will have both
0-certificate and 1-certificate.

Corollary 5.18 For a function f : {0, 1}n → {0, 1} invariant under some transitive group action
the block sensitivity bs(f) ≥ n1/4.

Proof: Since c(f) ≤ bs(f)2.

The inequality in the theorem is tight. In the next section we construct an function for which the
equality holds. But the inequality in the corollary may not be tight. In the next section we come
across an example for which the block sensitivity is Θ(

√
n).

Open Problem 5.19 Does a function invariant under transitive group action have block sensitivity
Ω(
√

n).

16

It is widely believed that sensitivity of any cyclically invariant function is Ω(n1/3). The following
lemmas may help us prove it.

Lemma 5.20 If S is a subset of [n], |S| = k then there exist at least n
k2 disjoint G-shifts of S.

Proof: Let T be a maximal union of G-shifts of S. Since T is maximal T intersects with all G-shifts
of S. So we must have |T | ≥ n

k . So T must be a union of at least n
k2 disjoint G-shifts of S. And this

proves the lemma.

Lemma 5.21 Let f |{0, 1}n → {0, 1} be a function invariant under a transitive group action. Let c

be a f(x)-certificate for some x ∈ {0, 1}n. Then s
¯f(x)(f) = Ω(n

k2).

Proof: Without loss of generality assume that f(x) = 1. By Lemma 5.20 we can have Ω(n
k2)

disjoint G-shifts of c. The union of these disjoint G-shifts of c defines a partial assignment. Let
S = {s1, s2, ..., sr} be the support of the partial assignment. And let Ysi be the value of the partial
assignment in the si-th entry.

Since k 6= 0 the function f is not a constant function. Thus there exists a word z such that f(z) = 0.
The i-th bit of z is denoted by zi. We define,

T = {j | zj 6= Ysm , sm = j}

Now let P ⊆ T be a maximal subset of T such that f(zP) = 0. Since P is maximal, if we switch any
other bit in T\P the value of the function f will change to 1.

So s(f, zP) ≥ |(T\P)|. Now since f(zP) = 0 we note that zP does not contain any G-shift of c. But
from Lemma 5.20 we know that zT contains Ω(n

k2) disjoint G-shifts of y. So |(T\P)| is Ω(n
k2) and

thus s0(f) ≥ s(f, zP) = Ω(n
k2).

Now if the following conjecture is true then we can prove sensitivity of any cyclically invariant
function is Ω(n1/3).

Conjecture 5.22 For any function f invariant under some transitive group action there is a word
x such that s(f) ≥ c(f, x)/d for some constant d.

5.5 Minterm-cyclic function

In this section we first define two new class of functions called minterm-transitive and minterm-
cyclic. The functions in the classes are functions invariant under some transitive group. This class
was defined in [8].

17

Then we look at two examples that solves the open problems of Turán and Kenyon-Kutin.

Finally we prove that for the class minterm-transitive sensitivity is Ω(n1/3). This class of function
is actually very simple but quite a big class of functions.

Definition 5.23 If F is a set of partial assignments then we define mF : {0, 1}n → {0, 1} as
mF (x) = 1 ⇐⇒ (∃p ∈ F) such that (p ⊆ x).

Note that each member of F is a 1-certificate for mF and mF is the unique smallest such function.
(Here the ordering is pointwise, i. e., f ≤ g if for all x we have f(x) ≤ g(x)).

Definition 5.24 A minterm is a minimal 1-certificate, that is, no sub-assignment is a 1-certificate.

Proposition 5.25 Let G be a permutation group. Let p : S → {0, 1} be a partial assignment and
let F = {pπ |π ∈ G}. Then p is a minterm for the function mF .

The function mF will be denoted pG. Note that the function pG is invariant under the group G.
When G is the group of cyclic shifts we denote the function pcyc. The function pcyc is cyclically
invariant.

Proof of Proposition 5.25: If p has k zeros then for any word x with fewer than k zeros mF (x) = 0,
since all the element of F has same number of 1s and 0s. But if q is a 1-certificate with fewer than k
zeros we can have a word x by extending q to a full assignment by filling the rest with 1s, satisfying
f(x) = 1 (since q ⊆ x). But x contains fewer than k zeros, a contradiction. So no minterm of mF
has fewer than k zeros.

Similarly no minterm of F has weight less than p. So no proper sub-assignment of p can be a
1-certificate. Hence p is a minterm of mF .

Definition 5.26 Let C(n, k) be the set of Boolean functions f on n variables such that there exists a
partial assignment p : S → {0, 1} with support k(6= 0) for which f = pcyc. Let C(n) = ∪n

k=1C(n, k).
We will call the functions in C(n) minterm-cyclic. These are the simplest cyclically invariant
functions.

Definition 5.27 Let G be a permutation group on [n]. We define DG(n, k) (for k 6= 0) to be
the set of Boolean functions f on n variables such that there exists a partial assignment p : S →
{0, 1} with support k for which f = pG. We define DG(n) to be ∪n

k=1DG(n, k). This is a class
of simple G-invariant Boolean functions. We define D(n) to be ∪GDG(n) where G ranges over all
transitive groups. We call these functions minterm-transitive. Note that the class of minterm-
cyclic functions is a subset of the class of minterm-transitive functions.

18

5.5.1 The new functions

In this section we will construct a cyclically invariant Boolean function which has sensitivity Θ(n1/3)
and a cyclically invariant function for which the product of 0-sensitivity and 1-sensitivity is Θ(

√
n).

Theorem 5.28 There is a cyclically invariant function, f : {0, 1}n → {0, 1}, such that, s(f) =
Θ(n1/3).

Theorem 5.29 There is a cyclically invariant function, f : {0, 1}n → {0, 1}, such that, s0(f)s1(f) =
Θ(
√

n).

For proving the above theorems we will first define an auxiliary function g on k2 variables (k2 ≤ n).
Then we use g to define our new minterm-cyclic function f on n variables. If we set k = bn2/3c,
Theorem 5.28 will follow. Theorem 5.29 follows by setting k = b

√
nc.

The auxiliary function

We first define g : {0, 1}k2 → {0, 1} where k2 ≤ n. We divide the input into k blocks of size k each.
We define g by a regular expression.

g(z) = 1 ⇐⇒ z ∈ 110k−2︸ ︷︷ ︸
k

11111{0, 1}k−5︸ ︷︷ ︸
k

11111{0, 1}k−5︸ ︷︷ ︸
k

· · · 11111{0, 1}k−8111︸ ︷︷ ︸
k

· · · (1)

In other words, let z ∈ {0, 1}k2
and let z = z1z2...zk, where each zi ∈ {0, 1}k for all 1 ≤ i ≤ k, i. e.,

z is broken up into k blocks of size k each. Then g(z) = 1 iff z1 = (11 00...0︸ ︷︷ ︸
k−2

) and for all 2 ≤ j ≤ k

the first five bits of zj are 1 and also the last 3 bits of zk are 1. Note that g does not depend on the
rest of the bits.

The new function

Now we define the function f using the auxiliary function g. Let x|[m] denote the word formed by
the first m bits of x. Let us set

f(x) = 1 ⇐⇒ ∃` such that g
(
cs`(x)|[k2]

)
= 1.

In other words, viewing x as laid out on a cycle, f(x) = 1 iff x contains a contiguous substring y of
length k2 on which g(y) = 1.

In other words, let z ∈ {0, 1}k2
and let z = z1z2...zk, where each zi ∈ {0, 1}k for all 1 ≤ i ≤ k, i. e.,

z is broken up into k blocks of size k each. Then g(z) = 1 iff z1 = (11 00...0︸ ︷︷ ︸
k−2

) and for all 2 ≤ j ≤ k

19

the first five bits of zj are 1 and also the last 3 bits of zk are 1. Note that g does not depend on the
rest of the bits.

Properties of the new function

It follows directly from the definition that f is a cyclically invariant Boolean function.

It is important to note that the function g is so defined that the value of g on input z depends only
on (6k − 2) bits of z.

Also note that the pattern defining g is so chosen that if g(z) = 1 then there is exactly one set of
consecutive (k − 2) zeros in z and no other set of consecutive (k − 4) zeros.

Claim 5.30 The function f has (a) 0-sensitivity Θ(n
k2) and (b) 1-sensitivity Θ(k).

Proof of Claim: (a) Let x be a word such that the first k2 bits are of the form (1) and the rest of
the bits are 0. Now clearly f(x) = 1. Also it is easy to see that on this input x 1-sensitivity of f is
(6k − 2) and therefore s1(f) = Ω(k).

Now let x ∈ {0, 1}n be such that f(x) = 1 and there exists 1 ≤ i ≤ n such that f(xi) = 0. But
f(x) = 1 implies that some cyclic shift of x contains a contiguous substring z of length k2 of the
form (1) (i. e., g(z) = 1). But since g depends only on the values of (6k− 2) positions so one of those
bits has to be switched so that f evaluates to 0. Thus s1(f) = O(k).

Combined with the lower bound s1(f) = Ω(k) we conclude s1(f) = Θ(k).

(b) Let b n
k2 c = m and r = (n − k2m). Let x = (100k−2(111110k−5)k−2111110k−8111)m0r. Then

f(x) = 0 since no partial assignment of the form (1) exists in x. But if we switch any of the
underlined zero the function evaluates to 1. Note that the function is not sensitive on any other bit.
So on this input x the 0-sensitivity of f is m = b n

k2 c and therefore s0(f) = Ω(n
k2).

Now let x ∈ {0, 1}n and assume f(x) = 0 while f(xi) = 1 for some 1 ≤ i ≤ n. By definition, the
0-sensitivity of f is the number of such values of i. For each such i there exists a partial assignment
zi ⊆ xi of the form (1). So zi

i is a contiguous substring of xi (or some cyclic shift of xi) of length
k2. Now consider the zi

i ⊆ x (recall zi
i denotes the partial assignment obtained by switching the

ith bit of zi). Due to the structure of the pattern (1) zi has exactly one set of consecutive (k − 2)
zeros. So zi

i has exactly one set of consecutive (k− 2) bits with at most one of the bits being 1 while
the remaining bits are zero. So the supports of any two zi

i either have at least (k2 − 1) positions in
common or they have at most two positions in common (since the pattern (1) begins and ends with
11). Hence the number of distinct zi

i is at most Θ(n
k2). Hence we have s0(f) = O(n

k2).

Combined with the lower bound s0(f) = Ω(n
k2) we conclude that s0(f) = Θ(n

k2).

Proof of Theorem 5.28: From Claim 5.30 it follows s(f) = max
{
Θ(k),Θ(n

k2)
}

(since s(f) =

20

max s0(f), s1(f)). So if we set k = bn2/3c we obtain s(f) = Θ(n1/3).

Proof of Theorem 5.29: From Claim 5.30 we obtain s0(f)s1(f) = Θ(n
k). So if we set k = b

√
nc

we have s0(f)s1(f) = Θ(
√

n).

Theorem 5.28 answers Turán’s problem [21] (see the Introduction) in the negative. In [11], Kenyon
and Kutin asked whether s0(f)s1(f) = Ω(n) holds for all “nice” functions f . Although they do not
define “nice,” arguably our function in Theorem 5.29 is nice enough to answer the Kenyon-Kutin
question is the negative.

Claim 5.31 The function f has block sensitivity and certificate complexity Θ(max{k, n
k }).

Hence for this function the gap between the sensitivity and block sensitivity is still quadratic.

In the next section we prove that for a minterm-transitive function, sensitivity is Ω(n1/3) and the
product of 0-sensitivity and 1-sensitivity is Ω(

√
n). Hence our examples are tight.

5.5.2 Minterm-transitive functions have sensitivity Ω(n1/3)

Theorem 5.32 If f is a minterm-transitive function on n variables then s(f) = Ω(n1/3) and
s0(f)s1(f) = Ω(

√
n).

To prove this theorem we will use the following three lemmas. Since f is a minterm-transitive
function, i. e., f ∈ D(n), we can say f ∈ DG(n, k) for some transitive group G and some k 6= 0.

Lemma 5.33 If f ∈ DG(n, k) then s1(f) ≥ k
2 .

Proof: Let y be the minterm defining f . Without loss of generality wt(y) ≥ k
2 . Let us extend y to

a full assignment x by assigning zeros everywhere outside the support of y. Then switching any 1 to
0 changes the value of the function from 1 to 0. So we obtain s(f, x) ≥ k

2 . Hence s1(f) ≥ k
2 .

Lemma 5.34 If f ∈ DG(n, k) then s0(f) = Ω(n
k2).

Proof: Follows from the Lemma 5.21.

Proof of Theorem 5.32: From the Lemma 5.33 and Lemma 5.34 we obtain,

s(f) = max{s0(f), s1(f)} = max
{

Ω
(n

k2

)
,
k

2

}
.

21

This implies s(f) = Ω(n1/3).

Now since s0(f) and s1(f) cannot be smaller than 1, it follows from the Lemma 5.33 and 5.34 that

s0(f)s1(f) = max
{

Ω
(n

k

)
,
k

2

}
.

So s0(f)s1(f) = Ω(
√

n).

The new function we looked at in Theorem 5.28 is minterm-transitive and has sensitivity Θ(n
1
3).

Thus this lower bound on sensitivity is tight for minterm-transitive functions. Similarly for the
function in Theorem 5.29 the product of 0-sensitivity and 1-sensitivity is tight.

We can even give tight upper bound on block sensitivity for minterm-transitive functions in terms
of sensitivity.

Theorem 5.35 For a minterm-transitive function f : {0, 1}n → {0, 1} we have s(f) ≥ bs(f)
k , where

k is the size of the minterm.

Proof: Let x is the word for which the block sensitivity is bs(f). Now let the minimal blocks be
B1, B2, · · · , Bbs(f). By definition f(xBi) 6= f(x). That means xBi has atleast a minterm. Choose any
minterm. Now that minterm can intersect at most k of the blocks. Drop those blocks from the set
of blocks. Do it for all the blocks. Finally atleast bs(f)

k of the blocks are left. Let the union of these
blocks be B. The blocks have the property that if we switch any block a minterm will be formed
that does not intersects any other block.

Now let A ⊂ B be the maximal set such that f(xA) = f(x). So xA has sensitivity more than B\A.
And B\A must have have atleast one bit from all the blocks because if any block is switched fully
then a minterm is formed because the minterm does not intersect any other block. So |B\A| ≥ (bs(f)

k .
Hence s(f, xA) ≥ bs(f)

k .

Corollary 5.36 For miniterm-transitive function, bs(f) ≤ s(f)2.

Hence for minterm-transitive functions, sensitivity and block sensitivity does not have a gap of more
than quadratic. And this is tight.

6 Other Related Topics

In this section we will do a quick survey on some of the related materials. We will look at two com-
monly used measures: degree of representing polynomials and degree of approximating polynomials.
Here we define these measures and just state some of the main results related to them.

22

We also give an informal definition of three models of computation: deterministic, randomized
and quantum. We have a quick look at how the various measures are related to the decision tree
complexity of these three models of computation. We just state the main results. Much more
elaborate survey for these things can be found in [6].

Definition 6.1 Given a function f : {0, 1}n → {0, 1}, we call a polynomial P : Rn → R as a
representing polynomial of f if for all x ∈ {0, 1}n, f(x) = P (x). The degree of the representing
polynomial for a function f , denoted deg(f), is the lowest degree that a representing polynomial for
f can have.

Note that since for x ∈ {0, 1}, x2 = x so we can actually only consider multilinear polynomials.

Definition 6.2 A polynomial P is said to approximate f if for all x ∈ {0, 1}n, |f(x) − P (x)| ≤ 1
3 .

Similar to the definition of degree of the representing polynomial we define the concept of degree of
approximating polynomials, denoted d̃eg(f).

Following are the some of the main results about deg(f) and d̃eg(f).

Theorem 6.3 [13]

1. bs(f) ≤ 2deg(f)2.

2. deg(f) ≥ (log n−O(log log n)) for all Boolean function f .

3. bs(f) ≤ 6d̃eg(f)2 for all functions f .

Theorem 6.4 [1] for almost all functions f , we have d̃eg(f) ≥ n
2 −O(

√
n log n).

Now we give the informal definition of three models of computation and survey the main relations
between the decision tree complexity of the various models and the various measures.

6.1 Deterministic Machines

Let f : {0, 1}n → {0, 1} be a Boolean function. Let M be a deterministic machine that computes
f . At every step it queries for a bit in the input. And according to the bit it branches and the
computation tree we obtain is the decision tree.

Definition 6.5 The decision tree complexity of a function for a deterministic machine is the depth
of the decision tree of the optimal deterministic machine computing the functions f . It is denoted
D(f). Basically it is the number of queries the optimal machine will make.

23

Similarly we can define non-deterministic decision tree and non-deterministic decision tree complex-
ity. In this the machine can guess. Note that the decision tree complexity for a non-deterministic
machine is exactly the certificate complexity of the function. Now the decision tree complexity of
a deterministic machine is clearly more than the decision tree complexity of the non-deterministic
machine. So from that is follows:

Theorem 6.6 1. c(f) ≤ D(f).

2. deg(f) ≤ D(f).

Beals et al [2] proved the following upper bound for the D(f).

Theorem 6.7 D(f) ≤ cz(f)bs(f) for any z ∈ {0, 1}.

Hence we obtain a polynomial upper bound on decision tree complexity in terms of both certificate
complexity and block sensitivity.

Corollary 6.8 D(f) ≤ bs(f)3.

Open Problem 6.9 Is D(f) ≤ bs(f)2.

Also since D(f) ≤ cz(f)bs(f) for both z = 0 and z = 1 and since bs(f) ≤ max{c0(f), c1(f)} so we
obtain the following corollary.

Corollary 6.10 1. D(f) ≤ c0(f)c1(f).

2. In the case of monotone functions c(f) = s(f). So we have: D(f) ≤ s(f)2.

Theorem 6.11 1. [14] D(f) ≤ deg(f)2bs(f) ≤ 2deg(f)4.

2. [2, 13] D(f) = O(d̃eg(f)6).

6.2 Randomized Machines

Just like in the deterministic model we can define a decision tree and decision tree complexity of the
randomized machine that computes the function with bounded error (i. e. with error less than 1

3).
The decision tree complexity is denoted R(f).

Clearly since a randomized machine can also act as a deterministic machine so R(f) ≤ D(f).

Theorem 6.12 [6] d̃eg(f) ≤ R(f).

24

Theorem 6.13 [12] bs(f) ≤ 3R(f).

From the fact that D(f) ≤ bs(f)3 we obtain the following corollary.

Corollary 6.14 [12] D(f) ≤ 27R(f)3.

The obvious question to ask is what is the relation between D(f) and R(f). The largest gap known
is 1.3. The AND-OR-tree (Example 3.4) has D(f) = Θ(R(f)1.3)[17, 19].

Open Problem 6.15 What is the biggest gap between D(f) and R(f)?

6.3 Quantum Machines

Similar to the definition of decision tree complexity we also define the quantum decision tree of
quantum model. We will not give the formal definition.

Similar to the definition of the decision tree complexity quantum query complexity is the number of
quantum queries a optimal quantum machine will make to compute f .

We denote Q(f) to be the number of queries an optimal quantum machine will need to make to
compute the function correctly with probability 1. We also denote Q̂(f) the number of queries an
optimal quantum machine will need to make to compute the function correctly with probability more
than 1

2 .

Now since a quantum machine can also act like a deterministic machine we have the following
theorem.

Theorem 6.16 Q̂(f) ≤ Q(f) ≤ D(f)

Now the obvious question is that how is the quantum query complexity related to the certificate
complexity, block sensitivity and sensitivity.

Theorem 6.17 [2]

1. deg(f) ≤ 2Q(f).

2. d̃eg(f) ≤ 2Q̂(f).

Then combining the above theorem and Theorem 6.3 we obtain

Theorem 6.18 bs(f) ≤ 8Q(f)2 and bs(f) ≤ 72Q̂(f)2.

25

Theorem 6.19 [2, 14] D(f) = O(Q(f)4) and D(f) = O(Q̂(f)6.

But the inequalities are not known to be tight.

Open Problem 6.20 What is the biggest gap between D(f) and Q(f).

For monotone functions we can state the stronger result.

Theorem 6.21 D(f) = O(Q(f)2) and D(f) = O(Q̂(f)4).

In [20] the following theorem is proved.

Theorem 6.22 For a function f invariant under some transitive group action Q(f) ≥ n1/4.

They used block sensitivity to proove the theorem.

It is impossible to state all possible results in this field. In this survey we did not look at all into
related subjects like circuit complexity [24, 3, 5], communication complexity[15, 7], running time
for parallel computing [9, 18, 12, 24] and many others. These subjects have very close relations to
sensitivity, block sensitivity, certificate complexity and other measures.

Acknowledgements

I thank László Babai for introducing me to the subject and helping me with lots of useful ideas and
suggestions. I also thank Lance Fortnow and Nanda Raghunathan for taking pains in reading the
survey and giving useful suggestions. I also thank Samuel Kutin for giving me useful suggestions for
my paper.

References

[1] A. Ambainis. A note on quantum black-box complexity of almost all Boolean functions. Infor-
mation Processing Letters, 71(1):5-7, 1999.

[2] R. Beals, H. Buhrman, R. Cleve, M. Mosca and R. de Wolf. Quantum lower bounds by polyno-
mials In Proceedings of 39th FOCS, 352-361, 1998.

[3] R. Beigel. The polynomial methods in circuit complexity In the Proceedings of the 8th IEEE
Structure in Complexity Theory Conference, 82-95, 1993.

[4] A. Bernasconi. Sensitivity vs. block sensitivity (an average-case study). Information Processing
Letters, vol 59(3):151-157 (1996)

26

[5] R.B.Boppana The average sensitivity of bounded-depth circuits Information Processing Letters,
63(5) 257-261 1997.

[6] H. Burhman and Ronald de Wolf. Complexity Measures and Decision Tree Complexity: A survey
2000.

[7] H. Buhrman and Ronald de Wolf. Communication Complexity Lower bounds by polynomials

[8] S. Chakraborty. On the Sensitivity of Cyclically-Invariant Boolean Functions ECCC Report No.
TR05-020.

[9] Stephen Cook, Cynthia Dwork and Rüdiger Reischuk. Upper and lower time bounds for parallel
random access machines without simultaneous writes. SIAM J.Comput. 15 (1986), no. 1, 87-97.

[10] E. Friedgut Boolean functions with low average sensitivity depends on few coordinates

[11] Claire Kenyon and Samuel Kutin. Sensitivity, block sensitivity, and `-block sensitivity of Boolean
functions. Information and Computation, vol 189 (2004), no. 1, 43-53.

[12] Noam Nisan. CREW PRAMs and decision trees. SIAM J. Comput. 20 (1991), no. 6, 999-1070.

[13] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials Computational
Complexity, 4(4):301-313, 1994.

[14] N. Nisan and R. Smolensky. Unpublished. Cited in [6].

[15] N. Nisan and A. Wigderson. On rank vs. communication complexity Combinatorica, 15(4):557-
565, 1995.

[16] David Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinatorica 15 (1995),
no. 2, 297-299.

[17] M.Saks and A. Wigderson Probabilistic Boolean decision trees and the complexity of evaluating
game trees. Proceedings of 27th FOCS, pages 29-38, 1986.

[18] Hans-Ulrich Simon. A tight Ω(log log n)-bound on the time for parallel RAM’s to compute non-
degenerated Boolean functions. FCT vol 4 (1983), Lecture notes in Comp. Sci. 158.

[19] M. Snir Lower bounds for probabilistic linear decision trees Theoretical Computer Science 38:69-
82, 1985.

[20] Xiaoming Sun, Andrew C. Yao and Shengyu Zhang. Graph Properties and Circular Functions:
How Low Can Quantum Query Complexity Go? IEEE CCC 2004.

[21] György Turán. The critical complexity of graph properties. Inform. Process. Lett. 18 (1984),
151-153.

[22] U. Vishkin and A. Wigderson Trade-offs between depth and width in parallel computation SIAM
J. Comput. 14 (1985) 303-314.

[23] I. Wegener The critical complexity of all (monotone) boolean functions. Information and Control,
67 (1985), Pages 212-222.

27

[24] I. Wegener The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science
(Wiley, New York) 1987.

[25] I. Wegener and Laszlo Zádori. A Note on the Relations Between Critical and Sensitive Com-
plexity Journal of Information Processing and Cybernatics 25(8/9):417-421, 1989.

28

