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Abstract

We make a step towards characterizing the boolean functions to which isomorphism can be
efficiently tested. Specifically, we prove that isomorphism to any boolean function on {0, 1}n
with a polynomial number of distinct permutations can be tested with a number of queries that
is independent of n. We also show some partial results in the converse direction, and discuss
related problems: testing isomorphism up to linear transformations, and testing isomorphism
against a uniform (hyper)graph that is given in advance. Our results regarding the latter topic
generalizes a theorem of Fischer (SICOMP 2005), and in the process we also provide a simpler
proof of his original result which avoids the use of Szemerédi’s regularity lemma.
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1 Overview

We continue the study of property testing of boolean function isomorphism, initiated by Fischer
et. al [FKR+04] and continued in the works of [AB10, BO10, CGM11b] (see also the references
therein). Two boolean functions f, g : {0, 1}n → {0, 1} are said to be isomorphic if they are equal
up to relabelling of the input variables, i.e. if it is possible to permute the n input variables of f
so that the resulting function is equal to g. For in-depth explanations of the motivation and the
state of the art of the problem, refer to the papers cited above. Here we briefly comment that
one of the reasons to study isomorphism between functions is that two functions being isomorphic
means that they are “essentially the same” and have identical realizations. Also, many functional
properties can be reduced to the problem of testing isomorphism or some of its variants [DLM+07];
c.f. [CGM11a]. Finally, as discussed below, this is a natural generalization to hypergraphs of the
task of testing isomorphism between graphs, which is well understood [Fis05, FM08].

For reasons of space, some of the material has been moved into the Appendix. Most of our
notation is standard; refer to Appendix A.1 for details.

1.1 Function isomorphism and the size of invariance groups

For a boolean function f and a permutation π ∈ Sn, denote by fπ the function obtained from f by
permuting its inputs according to π. The automorphism group of f , also known as its symmetry
group or invariance group, is the group of permutations that leave f invariant:

Aut(f) , {π ∈ Sn | fπ = f}.

Clearly Aut(f) is a subgroup of the symmetric group Sn = Sym([n]). Define an equivalence relation
between permutations by π ∼ σ iff fπ = fσ, and let

Isom(f) = {[π1], . . . , [πt]}

be the equivalence classes formed. There is a bijection between Isom(f) and the set Sn/Aut(f)
of cosets of Aut(f); therefore the number |Isom(f)| of distinct permutations of f is equal to the
index of Aut(f) in Sn, i.e. |Isom(f)| = |Sn/Aut(f)| = n!/|Aut(f)|. The size of Aut(f) is a rough
measure of the amount of symmetry that f possesses: the larger Aut(f), the more symmetric f
is. A symmetric function satisfies Aut(f) = Sn and |Isom(f)| = 1, whereas a random function has,
with high probability, a trivial automorphism group Aut(f) = {1} and |Isom(f)| = n!.

Not every group G ≤ Sn can arise as the automorphism group of a boolean function on n
variables; those that can be are called 2-representable. For example, it is not hard to argue that if
the alternating group An (n ≥ 3) is contained in Aut(f), then Aut(f) is indeed the whole of Sn; as
a result, An is not 2-representable. Indeed, take any x, y ∈ {0, 1}n with |x| = |y|. Then there is a
permutation π ∈ Sn mapping x to y; if n ≥ 3 then π can be assumed to be an even permutation by
performing, if necessary, one additional swap between two distinct indices i, j with yi = yj . Then
π ∈ Aut(f) and so f(x) = f(y). Hence An ≤ Aut(f) implies f(x) = f(y) for all |x| = |y|, so f is
actually symmetric. Groups G ≤ Sn that can be represented as Aut(f) for some k-valued function
f : {0, 1}n → [k] are called k-representable; they are studied in [CK91, Kis98] (see also Chapter 3
of [CK02]).

We know that f -isomorphism can always be tested with O(log |Isom(f)|) queries for constant ε
[BO10, CGM11b], so symmetric functions are particularly easy to test isomorphism to (the query
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complexity becomes constant; in fact the problem reduces to testing equality in this case). What
is the smallest size Isom(f) can have for a non-symmetric function? A moment’s thought reveals
that there are non-symmetric functions with only n different permutations, like any dictatorship
f(x1x2 . . . xn) = xi, and indeed this can be shown to be best possible.

Even though the number of queries made by the trivial isomorphism tester is superconstant
for a non-symmetric function, it is also possible to test isomorphism to dictatorships with O(1)
queries [PRS02], and more generally to O(1)-juntas [FKR+04]. However these two classes do not
encompass all known easy-to-test functions. For example, consider the parity function on the first
n− t variables out of n, χ[n−t]

1. The identity χ[n−t](x) = χ[n](x)⊕χ[n]\[n−t](x) makes it possible to
transform the response to every query made for the t-junta χ[n]\[n−t] into the response of a query for
χ[n−t]. This transformation provides a reduction between the two testing problems. In particular,
for constant t we can test isomorphism to (n− t)-parities with Ot(1) queries. In the same vein, the
majority function on the first n − t variables Maj[n−t] (for constant t and n large enough) is very
close to the symmetric majority Maj[n], and it is not hard to see that the constant-query test for
equality between the tested function and Maj[n] yields a tester for isomorphism to Maj[n]−t as well.

We introduce a notion generalizing all these cases.

Definition 1.1 (Junto-Symmetric) Let J ⊆ [n]. A function f : {0, 1}n → {0, 1} is called J-
junto-symmetric if it can be written in the form

f(x) = f̂(|x|, x�
J
)

for some f̂ : {0, . . . , n} × {0, 1}|J | → {0, 1}. Equivalently, this means that the restriction of f to
any constant-weight layer of the cube is a junta on J .

The function f is called k-junto-symmetric if it is J-junto-symmetric on some subset J of size
k.

Let JSJ denote the class of J-junto-symmetric functions, and JSk the k-junto-symmetric
functions. Note that the definition requires the junta variables be the same on every layer, but
the junta function is allowed to vary. Also variables outside J can have noticeable influence on a
J-junto-symmetric function f .

Observe that any symmetric function is 0-junto-symmetric, and any k-junta is k-junto-symmetric.
At the other extreme, any function at all is (n − 1)-junto-symmetric. Additional examples of k-
junto-symmetric functions are χ[n−k] and Maj[n−k]; in fact, the reader may verify that any k-junta
whose core function is symmetric must be min(k, n−k)-junto-symmetric (see Appendix A.1 for the
definition of a junta’s core).

Definition 1.2 Let F denote a sequence f1, f2, . . . of boolean functions with fn : {0, 1}n → {0, 1}
for each n ∈ N+.

We say that F is an O(1)-junto-symmetric family if there exists a constant k such that each fi
is k-junto-symmetric.

We will occasionally speak of such a family as an O(1)-junto-symmetric (or poly-symmetric)
function when the intended meaning is clear.

The size of Isom(f) for any k-junto-symmetric f is bounded by
(
n
k

)
k!, which is nO(1) for constant

k. Such families were given a name in [PS10]:

1The symbol χ is usually reserved to a parity taking values in ±1 so it is a character of Zn2 , but here we use it for
{0, 1}-valued functions.
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Definition 1.3 The family F is poly-symmetric if there exists a constant c such that |Isom(fn)| ≤
nc for all n.

As it turns out, these two notions are the same.

Theorem 1.4 Let F = {fn : {0, 1}n → {0, 1}}n∈N. The following are equivalent:

(a) F is a poly-symmetric family;

(b) There are sets An ⊆ [n] of constant size such that Sym([n] \An) ≤ Aut(fn) for all n;

(c) F is an O(1)-junto-symmetric family;

(d) Each fn is a boolean combination of O(1)-many dictators and O(1)-many symmetric functions
(with the same constants for all n).

The proof is given in Appendix C.

One of the main results of this paper is an extension of the junta tester and the isomorphism
tester for juntas:

Theorem 1.5 Let ε > 0 and 1/ε1/4 < k < n1/12. Let f : {0, 1}n → {0, 1} and denote f∗ ∈ JSk
the k-junto-symmetric function closest to f .

There is a poly(k/ε)-query algorithm that takes ε, k and an oracle for f and satisfies:

• If dist(f, f∗) ≤ 1/k5, the algorithm accepts with probability ≥ 2/3.

• If dist(f, f∗) ≥ ε, the algorithm rejects with probability ≥ 2/3.

See Section 3.1 for the proof.

We can also obtain an O(1)-query algorithm for testing isomorphism to O(1)-junto-symmetric
functions.

Theorem 1.6 Let k, ε, f as before. There is a poly(k/ε)-query ε-tester for testing isomorphism
between f and a known function g : {0, 1}n → {0, 1} that is 1/k5-close to k-junto-symmetric, with
constant success probability.

The proof is in Appendix F.1.

Corollary 1.7 Isomorphism to any poly-symmetric function can be ε-tested with poly(1/ε) queries.

With a view toward obtaining a possible classification, it is best to state tolerant versions of
these results. This is possible at the expense of an exponential blowup in the query complexities
(see Appendix F.2).

Theorem 1.8 There is a constant 0 < c < 1 with the following property. Let k, ε, f as before.

There is an exp(k/ε)-query algorithm that, with high probability accepts if f is (cε)-close to JSk
and rejects if it is ε-far from JSk.

Similarly, there is an exp(k/ε)-query algorithm to test isomorphism to a function f that is
(cε)-close to JSk.
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1.2 Hypergraph isomorphism

The problem of testing graph isomorphism was first raised by Alon, Fischer, Krivelevich, and
Szegedy [AFKS00] (see also [Fis01]), who used a lower bound on testing isomorphism of two
unknown graphs to give an example of a non-testable first-order graph property of a certain
type. Later, Fischer [Fis05] studied the problem of testing isomorphism to a given graph G and
characterized the class of graphs to which isomorphism can be tested with a constant number
of queries. He proved that the graphs to which isomorphism can be tested with a constant
number of queries are precisely those that can be approximated by an algebra of constantly many
cliques [Fis05]; i.e. can be obtained from those cliques by applying set intersection, union and
complementation operations. Subsequently Fischer and Matsliah [FM08] gave bounds (tight in
most settings) on the worst-case query complexity of testing isomorphism between two graphs.

It is possible to establish a connection between function isomorphism and a generalized form of
graph isomorphism. Recall that an undirected hypergraph is a pair H = (V,E), where V is a set of
vertices and E ⊆ P(V ) is a collection of hyperedges. Isomorphism between hypergraphs is defined
in the natural way. elements of V rather than unordered sets.

Now define the distance between two hypergraphs H = (V,E) and H ′ = (V,E′) on the same set
of vertices by dist(H,H ′) = |E⊕E′|/2n, where E⊕E′ is the symmetric difference between their edge
sets. Testing function isomorphism is easily seen to be equivalent to testing isomorphism between
undirected hypergraphs under this distance measure (this is the “dense hypergraphs model”).
Indeed, a boolean function f : {0, 1}n → {0, 1} can be identified with the hypergraph with vertex
set V = [n] and edge set

f−1(1) = {x ∈ {0, 1}n | f(x) = 1},

where binary vectors x ∈ f−1(1) ⊆ {0, 1}n are themselves identified with subsets of [n] in the
natural way. Clearly this satisfies f ∼= g ⇔ f−1(1) ∼= g−1(1) as hypergraphs, and moreover the
distance between f and g coincide from both viewpoints.

Seen this way, the problem of function isomorphism becomes a natural generalization of the
analogous problem for graphs. This raises the question of whether progress towards the char-
acterization can be made by studying hypergraph isomorphism in the line of previous works on
graph isomorphism. One possible line of work is the study of uniform hypergraphs. An r-uniform
hypergraph is one in which every edge e ∈ E has size precisely r; the number r is also said to be the
arity of the hypergraph. The distance between two r-uniform hypergraphs H = (V,E), H ′ = (V,E′)
on the same vertex set of size |V | = n is defined as |E ⊕ E′|/

(
n
r

)
. Babai and Chakraborty [BC10]

studied this question and obtained worst-case query-complexity bounds for the case of uniform
hypergraphs. However, a characterization of the testability of isomorphism between uniform
hypergraphs remained to be found.

In this work we prove an extension of Fischer’s result that resolves the problem for hypergraphs
of constant arity. To state it, recall that a homomorphism between H = (V,E) and Ĥ = (V̂ , Ê)
is a mapping Π : V → V̂ such that for all {v1, . . . , vr} ∈ V , the implication {v1, . . . , vr} ∈ E =⇒
{Π(v1), . . . ,Π(vr)} ∈ Ê holds. The homomorphism Π is called full (and H is said to be fully
homomorphic to Ĥ) if this implication holds in both directions, i.e. if

{v1, . . . , vr} ∈ E ⇔ {Π(v1), . . . ,Π(vr)} ∈ Ê

Definition 1.9 The r-uniform hypergraph H is k-crunchable if it is fully homomorphic to an
r-uniform hypergraph with k vertices.
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The crunching number of H is the smallest k such that H is k-crunchable.

The ε-approximate crunching number of H, denoted CrunchNumε(H), is the smallest k such
that H is ε-close to a k-crunchable r-uniform hypergraph.

The ε-testing number of H, denoted TestNumε(H), is the minimum q for which there exists
an ε-testing algorithm with q queries for the property of being isomorphic to H.

For graphs, having a constant crunching number is essentially the same as being in the algebra
of constantly many cliques (or close to it).

In section 2 we prove the following.

Theorem 1.10 For every r ∈ N, ε > 0 there exists a pair of functions Lε(n) and Uε(n), with
limn→∞ Lε(t) =∞, such that for every r-uniform hypergraph H we have

Lε(CrunchNumε(H)) ≤ TestNumε(H) ≤ Uε(CrunchNumε/2(H)).

The original proof of Fischer for (a statement equivalent to) the special case of Theorem 1.10
when r = 2 applied the Szeméredi regularity lemma for the lower bound (which is somewhat unusual
as its normal use in property testing is to obtain upper bounds). Our simpler proof shows that this
can be avoided. The lower bound method, which we call crunching, has additional applications, as
outlined in the next subsection.

1.3 Remainder of the paper

In Appendix G we study what happens when we generalize our definition of k-junto-symmetric to
all functions that are k-juntas when restricted to any constant-weight layer of the cube (we call them
layered juntas), and show that in general these functions are no longer testable for isomorphism.
The proof uses “crunching” ideas similar to those in the proof of the hypergraph lower bound.

We also consider a more general notions of isomorphism. In Appendix H we consider the
problem of equivalence up to transformations by an arbitrary invertible linear map over Fn2 (note
that isomorphism in the usual sense corresponds to the linear application defined by a permutation
matrix). It is shown there that functions that are far from having constant Fourier dimension are
hard to test for isomorphism.

2 Hypergraph crunching: lower bound

This section contains the proof of the lower bound of Theorem 1.10. For the upper bound, consult
Appendix B. The functions Lε and Uε can be extracted from the proofs of the lower bound and the
upper bound, respectively.

Definition 2.1 (Hypergraph crunching) Let Π : V → V denote a mapping from V to itself. A
Π-crunch of H is a hypergraph HΠ

cr = (V,E′) where

E′ = {{v1, . . . , vk} | {Π(v1), . . . ,Π(vk)} ∈ E}.

A k-crunch of a hypergraph is a Π-crunch for some Π with an image of size ≤ k.
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Note that every k-crunch is a k-crunchable hypergraph (as witnessed by the same mapping
Π). When Π is injective, a Π-crunching of H is a hypergraph isomorphic to H. For a hypergraph
H = (V,E) and k ≤ |V | = n, we show that any tester will have a hard time distinguishing non-
injective crunchings from permutations. A random k-crunching of H is a random hypergraph on
V obtained as follows:

1. pick a subset W ⊆ V of size k uniformly at random;

2. pick a mapping Π : V →W uniformly at random and output the Π-crunch of H.

Now define the distribution DkH by drawing a random permutation of a random k-crunching of H.
Also write DH for the uniform distribution over all permutations of H.

Lemma 2.2 Let H be an r-uniform hypergraph and define DH and DkH as before. Then it is
impossible to distinguish a random H̃ ∼ DH from a random H̃ ∼ DkH with o(

√
k/r) queries.

Proof. Let q = o(
√
k/r) and e1, . . . , eq be the (adaptive, random) edge queries made. Let Q ⊆ V

be the set of at most rq vertices involved in these queries. Conditioned on the event EQ(Π) that Π
is injective on Q, the distribution of replies to queries e1, . . . , eq is identical for DH and DkH . But
EQ(Π) occurs except with probability at most |Q|2/k = o(1) as the choice of Π is independent of
Q. This means that for any sequence e1, . . . , eq of queries and any sequence a1, . . . , aq of answers,
the probability of obtaining answer ai to query ei for all i is, up to a factor of Pr[EQ(Π)] = 1−o(1),
the same when H̃ is drawn from DH as when it is drawn from DkH . We conclude by Lemma A.1
that the tester cannot distinguish DH from DkH with q queries and success probability ≥ 2/3.

Corollary 2.3 If an r-uniform hypergraph is ε-far from being k-crunchable, then ε-testing isomor-
phism to it requires Ω(

√
k/r) queries.

Together with the upper bound in the following subsection, this provides a characterization
of hypergraphs of constant arity that can be tested for isomorphism with O(1) queries. To see
how this generalizes Fischer’s result for graphs, Appendix D shows that being O(1)-chunchable is
equivalent to having “algebra number” O(1) as well.

3 Junto-symmetric functions

We present a reduction from testing the properties of being k-junto-symmetric, or being isomorphic
to a given k-junto-symmetric function, to slight generalizations of the well-studied analogous
problems for k-juntas. To this end we try to approximate the “junto-symmetric” components
of the tested function f , i.e. the juntas determining the behaviour of f on each constant-weight
layer of the boolean cube. However, each of these juntas is defined on a very small fraction of
inputs; in order to define them on the whole of {0, 1}n we attempt use a small “ballast” set B ⊆ [n]
of variables to enable us to balance weights as needed.

In the main body of the paper we only show how to test for the property of being junto-
symmetric. Using similar ideas one can devise isomorphism tests; the details can be found in
AppendixF.
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3.1 Testing junto-symmetry

Let ` ∈ L , {0, 1, . . . , n} and x ∈ {0, 1}n. Write xB for the string obtained from x by flipping the
bits in B ⊆ [n] and consider the set of minimal changes required to turn x into a string of weight `:

B`,x , {B ⊆ [n] | |xB| = ` and |B| = |`− |x||}.

It is to be observed that for any B ∈ B`,x, either xB ⊆ x or x ⊆ xB holds, depending on whether
|x| ≥ ` or |x| ≤ `. The set B`,x is always non-empty but consists of the single element 0n when
` = |x|.

Let R denote the set of all possible functions r : L × {0, 1}n → {0, 1}n with r(`, x) ∈ B`,x for
all `, x. We need a lemma concerning the probability that B = r(`, x) happens to intersect some
small set A, when (`, r, x) are drawn from the product distribution µ , L × R × {0, 1}n. Here L
is endowed with a binomial distribution B(n, 1/2) and the uniform distribution is used in R and
{0, 1}n.

Lemma 3.1 Let A ⊆ [n]. Then

Pr
`,x,B

[B ∩A 6= ∅] ≤ |A|√
2n
.

Proof. Observe that for any `, the distribution of B = r(`, x) ∈ B`,x over random x is symmetric
under permutations, hence for all i ∈ [n] we have

Pr[i ∈ B] =
1

n

∑
j∈[n]

Pr[j ∈ B] =
1

n
E [|B|] .

On the other hand, the size of any element B of B`,x is |`−|x|| by definition. We can write ` = |y|
for uniformly random y ∈ {0, 1}n, so E [|B|] = E [||x| − |y||]. Recalling that E [|x|] = E [|y|] = n/2,
E
[
|x|2
]

= E
[
|y|2
]

= Var [|x|] + E [|x|]2 = 1
4n(n+ 1) and applying Cauchy-Schwarz,

(E [||x| − |y||])2 ≤ E
[
(|x| − |y|)2

]
= E

[
|x|2
]

+ E
[
|y|2
]
− 2E [|x|]E [|y|] =

n

2
.

Hence E [||x| − |y||] ≤
√
n/2 and Pr[i ∈ B] ≤

√
1

2n , so

Pr[B ∩A 6= ∅] ≤
∑
i∈A

Pr[i ∈ B] ≤ |A|√
2n
.

Let us define a transformation T mapping each function f : {0, 1}n → {0, 1} to T (f) : L×R×
{0, 1}n → {0, 1}n given by

T (f)(`, r, x) = f(xr(`,x)).

Thus the parameter r acts as a “random seed” selecting, for each pair (`, x), one string xr(`,x) of
Hamming weight ` with minimum distance to x; the choice is independent of all choices for any
other pair when r ranges uniformly over R.
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We denote the input parameter variables of T (f) by V0, V1 and V2, in order; we identify V2 with
[n], the input variables of f . If g : L × R × {0, 1}n is a junta on V0 ∪ V2 (that is to say, g(`, r, x)
depends only on ` and x, but not on r), we define the function ψ(g) : {0, 1}n → {0, 1} by

ψ(g)(x) = g(|x|, •, x),

where the dot emphasizes that the assignment to the second parameter is immaterial by assumption.

We show that the task of testing junto-symmetry of f is closely related to that of testing
g for being a junta, where distances are measured under µ. Let JunV0(A) = Jun(V0 ∪ A), and
Junk(V0) = ∪|A|≤kJunV0(A).

In the next lemma, the variable symbols denote functions and sets of the following kind:

• A ⊆ [n], |A| = k;

• f, g are arbitrary functions {0, 1}n → {0, 1};

• , 1, 2 : {0, 1}n → {0, 1} are junto-symmetric on A;

• ′ : L ×R× {0, 1}n → {0, 1} is a member of JunV0(A);

• π ∈ 1V0,V1 × Sym(V2) (we identify π with an element of Sym(V2) as well).

Lemma 3.2 The mappings T and ψ satisfy the following properties:

(a) T preserves distances: dist(f, g) = dist(T (f), T (g)) for all f, g.

(b) For any ′ ∈ JunV0(A), we have ψ(′) ∈ JS(A) and

dist(′, T (ψ(′))) ≤ |A|√
2n
.

(c) For any  ∈ JS(A), T () is |A|/(
√

2n)-close to some ′ ∈ JunV0(A). Moreover, we can take ′

such that ψ(′) = .

(d) |dist(f,JSk)− dist(T (f), Junk(V0))| ≤ k√
2n

.

(e) ψ preserves permutations: for any π and ′, ψ(′)π = ψ(π). Thus

distiso(1, 2) = distiso(ψ(1), ψ(2)).

(f) The bounds

|distiso(f, g)− d| ≤ dist(f,JSk) + dist(g,JSk) +
2k√
2n
.

hold for

d , min
π∈1V0,V1

×Sym(V2)
dist(T (f)π, T (g)).

Proof.
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(a) For any `, the distribution of xr(`,x) for random x, r is uniform over all strings of weight `. Since
` ∼ B(n, 1/2) is distributed as the weight of a random element of {0, 1}n, it follows that the
overall distribution of xr(`,x) is uniform, hence

dist(T (f), T (g)) = Pr[f(xr(`,x)) 6= g(xr(`,x))] = Pr[f(x) 6= g(x)] = dist(f, g).

(b) ψ(′)(x) = ′(|x|, •, x) is a function of |x| and xA, hence junto-symmetric on A. We have

dist(′, T (ψ(′))) = Pr[′(`, r, x) 6= ψ(′)(xr(`,x)) = ′(`, •, xr(`,x))]

≤ Pr[r(`, x) ∩A 6= ∅]

≤ |A|√
2n

by Lemma 3.1.

(c) This follows from (b) because any  ∈ JS(A) can be written in the form ψ(′) for some (in
fact, many) ′ ∈ JunV0(A).

(d) Let  be k-junto-symmetric and ′ ∈ Junk(V0) with ψ(′) = . Then by parts (c) and (a),

dist(T (f), ′) ≤ dist(T (f), T ()) + dist(T (), ′) ≤ dist(f, ) +
k√
2n
,

so dist(T (f), Junk(V0)) ≤ dist(f,JSk) + k/(2
√
n). Likewise, if ′ is a junta on V0 ∪ A where

|A| = k, then

dist(f, ψ(′)) = dist(T (f), T (ψ(′)))

≤ dist(T (f), ′) + dist(′, T (ψ(′)))

≤ dist(T (f), ′) +
k√
2n
,

which proves the inequality dist(f,JSk) ≤ dist(T (f), Junk(V0)) + k/(2
√
n).

(e) Clear.

(f) Follows from (d), (e) and the triangle inequality for distiso.

Now we describe a tester for the property Junk(V0). Let µ = D1 × . . . × Dm be a product
distribution, and T ⊆ [m]. (For our application we could take D1 = L, D2 = R, T = {1, 2} and
D3 × . . . × Dm = {0, 1}n). Choose a confidence parameter 0 ≤ p < 1 and distance parameter
0 < ε ≤ 1. Let f : µ→ R denote a function.

Lemma 3.3 For any constant p < 1, there is an algorithm GeneralizedJuntaTesterµ,p(f, k, ε, T )
that, with probability at least p,

• accepts if f ∈ Junk(T ).

• rejects if dist(f, Junk(T )) ≥ ε;
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• makes Θ(k4 log(k + 1)/ε) non-adaptive queries, and the marginal distribution of each query
is µ.

The proof can be found in Appendix E.
The procedure to ε-test the property of being k-junto-symmetric, for small enough k, is described

next.

1. Let q = θ(k4 log(k + 1)/ε) bound the query complexity of Step 3.

2. Test that InfT(f)(V1) < 1
18q with confidence> 8/9 (by takingO(q) random pairs (`, r, x), (`, r′, x)

and comparing T (f) on them). If it isn’t, reject.

3. Reject iff GeneralizedJuntaTesterµ,8/9(T (f), k, ε, V0 ∪ V1) rejects.

Theorem 3.4 (Theorem 1.5 restated). Let k < (2n)1/12 and ε > 1/k4, f : {0, 1}n → {0, 1}. The
algorithm above

• (completeness) accepts when dist(f,JSk) ≤ k−5 with probability ≥ 2/3;

• (soundness) rejects when dist(f,JSk) ≥ ε with probability ≥ 2/3;

• has query complexity O(k4 log(k + 1)/ε) and is non-adaptive.

Proof of Theorem 3.4. The algorithm is clearly non-adaptive and its query complexity is
Θ(q) = Θ(k4 log(k + 1)/ε). We assume that k is large enough so that 2k/

√
2n < 1/(18q) < ε/5

(small constant values for k can be dealt with separately in the tester).
The probability that the junta tester in step 3 or the influence test of step 2 give incorrect

assessments is less than 2/9 < 2/3. So if the overall test accepts with probability ≥ 2/3, then
T (f) must be ε/5-close to a junta ′ on V0 ∪ V1 ∪ A, |A| ≤ k. In particular InfT(f)(V2 \ A) ≤ ε/5.
Moreover, since the influence test succeeded we also have InfT(f)(V1) < ε/5. Therefore InfT(f)(V1 ∪
(V2 \A)) ≤ 2ε/5, which means that T (f) is in fact 4ε/5-close to a junta on V0 ∪A. Consequently,
f is 4ε/5 + k/

√
2n < ε-close to junto-symmetric on A (Lemma 3.2), proving soundness.

On the other hand, suppose f is 1/(18q)-close to a junto-symmetric function . Then there is
′ ∈ Junk(V0) with dist(T (f), ′) ≤ 1/(18q) + k/

√
2n < 1/(9q). Recall that every query of the junta

tester to T (f) follows the distribution L × R × {0, 1}n, and this translates into uniform queries
to f . As the tester is non-adaptive, this means that the expected number of queries exposing a
difference between T (f) and ′ is 1/9, so with probability 8/9 the tester can’t see the difference
between T (f) and ′. Hence we are effectively testing ′ for the property of being a V0 ∪ V1 ∪ A
junta for some |A| ≤ k, which it is indeed. Therefore step 3 accepts with probability 8/9; and
since Inf(V1) = 0, we also have InfT(f)(V1) ≤ 2 · dist(T(f), ′) ≤ 2k/

√
2n < 1/(18q) and step 2 also

accepts with probability 8/9. This establishes completeness.
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A Notation and standard tools

A.1 Notation

Permutation groups

We need some basic notions from the theory of permutation groups (an exposition can be found
in the books by Wielandt [Wie64] and Cameron[Cam99]). Let Ω be a set (which will be assumed
finite in this paper). Sym(Ω) denotes the symmetric group of all permutations of Ω, and Alt(Ω)
is the subgroup of Sym(Ω) made up of even permutations. When |Ω| = n, we occasionally write
An = Alt(Ω) and Sn = Sym(Ω). For reasons that will become apparent shortly, the product
operation we use in Sym(Ω) is πσ , σ ◦ π.

A permutation group G on Ω is a subgroup of Sym(Ω), written G ≤ Sym(Ω). The image π(x)
of x ∈ Ω under π ∈ G is often written xπ; under our convention we have (xπ)σ = xσ◦π = xπσ for
π, σ ∈ G. The orbit of a set ∆ ⊆ Ω under an arbitrary collection H ⊆ G is the set ∆H = {π(x) |
π ∈ H,x ∈ ∆}. When ∆ = {x} or H = {h} are single-element sets we may simply write xH or ∆h.

G is called transitive if for every x, y ∈ Ω there is π ∈ G with xπ = y. An intransitive group
G ≤ Sym(Ω) partitions Ω into orbits: these are the equivalence classes of the relation ∼ given by
x ∼ y iff there is π ∈ G such that xπ = y, which occurs iff xG = yG.

A group action of a (general) group G on a set Ω is a homomorphism φ : G→ Sym(Ω). (This
is what is called a right action because of our convention on the composition law in Sym(Ω)). If
kerφ = 1G, the action is faithful and G is isomorphic (via φ) to a permutation group on Ω. It is
customary to omit the explicit reference to the chosen φ and write xg for xφ(g) (g ∈ G). Given an
action of G on Ω, we can naturally extend it to define an action on subsets of Ω: g ∈ G acts on
P(Ω) by mapping ∆ ⊆ Ω to ∆g as defined above.

A block of G is a subset ∆ of Ω such that for every π ∈ G, either ∆π = ∆ or ∆π ∩ ∆ = ∅.
Obviously, Ω, the empty set ∅ and each of the singletons {i}i∈Ω are always blocks; we call these
the trivial blocks. The permutation group G is said to be primitive if it is transitive and has no
non-trivial blocks. (Only transitive groups are classified as either primitive or imprimitive). If ∆
is a block of G, then Ω can be partitioned into a complete block system, where every block is of the
form ∆g for some g ∈ G (so all blocks in a complete block system have the same cardinality).

The pointwise stabilizer of ∆ ⊆ Ω is the set

G∆ , {π ∈ G | xπ = x ∀x ∈ ∆}.

Function isomorphism

We consider the right action φ : Sn → Sym({0, 1}n) of Sn on {0, 1}n defined in the following
way: if π ∈ Sn, φ(π) ∈ Sym({0, 1}n) is the permutation mapping each x = x1x2 . . . xn ∈ {0, 1}n to
φ(π)(x) , xπ(1)xπ(2) . . . xπ(n). As before, we identify π and φ(π) and we write xπ in place of φ(π)(x).
Note that φ(π) effectively sends the input at position i into position π−1(x), and as a result we
have (xσ)π = xπ◦σ = xσπ. We also write fπ for the function on {0, 1}n defined by fπ(x) = f(xπ);
by the observations above, (fπ)σ = fπσ.

In this language, the functions f and g are isomorphic (in short, f∼=g) if there is π ∈ Sn with
f = gπ. The distance up to permutations of variables between f and g is defined by

distiso(f, g) , min
π∈Sn

dist(fπ, g).

14



Influence, Juntas, Parities, Cores

Testing f -isomorphism is defined as the problem of testing the property

Isomf , {fπ : π ∈ Sn}

in the usual property testing terminology. It is thus the task of distinguishing the case f∼=g from
the case distiso(f, g) ≥ ε.

For a function g : {0, 1}n → {0, 1} and a set A ⊆ [n], the influence of A on g is defined as

Infg(A) , Pr
x∈{0,1}n, y∈{0,1}|A|

[
g(x) 6= g(x

A←y)
]
.

Thus Infg(A) measures the probability that the value of g changes after a random modification of
the bits in A of a random input x. Note that when |A| = 1, this value is half that of the most
common definition of influence of one variable; for consistency we stick to the previous definition
instead in this case as well. For example, every relevant variable of a k-parity (k ≥ 1) has influence
1
2 .

An index (variable) i ∈ [n] is relevant with respect to g if Infg({i}) 6= 0. A k-junta is a function

g that has at most k relevant variables; equivalently, there is S ∈
([n]
k

)
such that Infg([n] \ S) = 0.

Junk will denote the class of k-juntas (on n variables), and for A ⊆ [n], JunA will denote the class
of juntas all of whose relevant variables are contained in A.

By the core of a k-junta f we mean the boolean function corek(f) : {0, 1}k → {0, 1} obtained
from f by dropping its irrelevant variables (and fixing some arbitrary ordering for the relevant
ones).

A.2 Adaptive lower bounds

Let P be a property (subset) of functions mapping T to {0, 1}. Let

R ⊆ {f ∈ {0, 1}T | dist(f,P) ≥ ε}

be non-empty. Any tester for P should, with high probability, accept inputs from P and reject
inputs from R.

We use the following lemma in various lower bound proofs for two-sided adaptive testing. It is
proven implicitly in [FNS04], and a detailed proof appears in [Fis01].

Lemma A.1 Let P,R be as in the preceding discussion, and let Dyes and Dno be distributions over

P and R, respectively. If q is such that for all Q ∈
(
T
q

)
and a ∈ {0, 1}Q we have

(2/3) Pr
f∈Dyes

[f�
Q

= a] < Pr
f∈Dno

[f�
Q

= a],

then any tester for P with error probability ≤ 1/3 must make more than q queries.

Remark A.1 The proof of the lemma is based on a indistinguishability result that a tester needs
q queries to tell apart a random f ∼ P from a random f ∼ R (where P or R are chosen with
probability half). If we drop the condition that R only contain functions far from P, the implication
for property testing lower bounds disappears, but the indistinguishability result still holds.
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B Hypergraph crunching: upper bound

B.1 Hypergraph partition property

Let H = (V,E) be an r-uniform hypergraph and let Π = {V Π
1 , . . . , V

Π
k } be a partition of V . Let

us introduce a notation for counting the number of edges from E with a specific placement of
their vertices within the partition classes of Π. We denote by Φ the set of all possible mappings
φ : [r]→ [k]. We think of every φ ∈ Φ as mapping the vertices of an r-set to the components of Π.
We denote by EΠ

φ ⊆ E the following collection of r-sets:

EΠ
φ = {{v1, . . . , vr} ∈ E | ∀j ∈ [r], vj ∈ V Π

φ(j)}.

We now introduce a notion from the work of Fischer, Matsliah and Shapira [FMS10] that
generalizes the partition instances that were discussed in the context of graphs by Goldreich,
Goldwasser and Ron [GGR98].

Definition B.1 (density tensors) A density tensor of order k and arity r is a sequence ψ =〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
of reals (between 0 and 1) specifying the presumed normalized sizes of |V Π

i | and

|EΠ
φ | of a k-wise partition of a hypergraph of arity r (whenever k and r are clear from the context,

we call ψ simply a density tensor).

In particular, given a partition Π = {V Π
1 , V

Π
2 , . . . , V

Π
k } of a hypergraph H, we set ψΠ to be the

density tensor 〈〈ρΠ
j 〉j∈[k], 〈µΠ

φ 〉φ∈Φ〉 with the property that for all j, ρΠ
j = 1

n · |V
Π
j | and for all φ,

µΠ
φ = 1

nr · |E
Π
φ |.

Definition B.2 (partition properties induced by density tensors) For a fixed hypergraph H
of arity r, a set Ψ of density tensors (of order k and arity r) defines a property of the k-wise
partitions of V (H)’s as follows. We say that a partition Π of V (H) (exactly) satisfies Ψ if there
exists a density tensor ψ =

〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
∈ Ψ, such that ψ and the density tensor ψΠ of Π

are equal. Namely, Π satisfies Ψ if there is ψ =
〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
∈ Ψ such that

• for all j ∈ [k], ρΠ
j = ρj;

• for all φ ∈ Φ, µΠ
φ = µφ.

We extend this notion of satisfying partitions (and equivalence between density tensors) in two
ways as follows.

Definition B.3 (being ε-approximately satisfying/equal) A partition Π ε-approximately sat-
isfies Ψ if there is
ψ =

〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
∈ Ψ such that

• for all j ∈ [k], ρΠ
j = ρj;

• for all φ ∈ Φ, µΠ
φ = µφ ± ε.

In this case ψΠ is ε-approximate to ψ.
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By extension (and with a slight abuse of notation), we say that the hypergraph H itself satisfies
the property Ψ if there exists a partition Π of H’s vertices that satisfies Ψ, and similarly we say
that H itself ε-approximately satisfies the property Ψ if there exists a partition of H’s vertices that
ε-approximately satisfies the property Ψ. In addition, we may consider a specific density tensor ψ
as a singleton set Ψ = {ψ}, and accordingly as a property of partitions.

Let us now describe the hypergraph-partition testing algorithm from [FMS10] (it is stated
there for directed hypergraphs, but it also applies to undirected ones). To this end, we define
one additional measure of closeness to the property Ψ. The distance of a hypergraph H from the
property Ψ is defined as dist(H,Ψ) = minH′{dist(H,H ′) : H ′ satisfies Ψ}. For ε > 0 we say that
H is ε-far from satisfying the property Ψ when dist(H,Ψ) > ε, and otherwise, H is ε-close to Ψ.
The testing algorithm follows immediately from the following theorem.

Theorem B.4 ([FMS10]) For every k, r ∈ N, and set Ψ of density tensors of order k and arity
r, there exists a randomized algorithm AT taking as inputs two parameters ε, δ > 0 and an oracle
access to a hypergraph H of arity r, such that

• if H satisfies Ψ, then with probability at least 1− δ the algorithm AT outputs accept;

• if H does not even ε-approximately satisfy the property Ψ, then with probability at least 1− δ
the algorithm AT outputs reject.

The query complexity of AT is bounded by log3(1
δ ) · poly(kr, 1

ε ), and its running time is bounded by
log3(1

δ ) · exp
(
( rε )

r·kr).
The algorithm above can be used as a testing algorithm in the traditional sense due to the

following trivial observation.

Claim B.1 Let δ < ε/binomkr. Any hypergraph that δ-approximately satisfies a partition property
Ψ is also ε-close to satisfying it.

B.2 Testing isomorphism to k-simple hypergraphs

Let H = (V,E) be a k-simple r-uniform hypergraph, with the corresponding mapping Π : V → [k]
and an hypergraph Ĥ = ([k], Ê) defining the edge patterns of H.

Let ψ =
〈
〈ρj〉j∈[k], 〈µφ〉φ∈Φ

〉
denote the following density tensor of order k and arity r:

• for all j ∈ [k], ρj = Π−1(j)
|V | ;

• for φ ∈ Φ, µφ =
EΠ
φ

|V |r .

Note that a hypergraph H ′ is isomorphic to H if and only if it satisfies the partition property
{ψ}, hence ε-testing isomorphism to H reduces to testing the partition property for {ψ} with
proximity parameter ε/

(
k
r

)
.
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C Characterizations of O(1)-junto-symmetric families

In this section we show Theorem 1.4. To ease readability we drop the subscripts, i.e. write f and
A in place of fn and An. All but one of the implications we need are straightforward:

• (b) =⇒ (c): Sym([n] \ A) ≤ Aut(f) means that f is invariant under permutations of
[n] \ A, i.e. f(x) = f(y) whenever x�

A
= y�

A
and |x�

[n]\A| = |y�
[n]\A|. These conditions are

equivalent to x�
A

= y�
A

and |x| = |y|, so f has the form f(x) = f̂(|x|, x�
A

) (where |A| = O(1)
by assumption).

• (c) =⇒ (d): Let f = f̂(|x|, x�
A

), |A| = k = O(1). Define f̂ (i)(x) = f̂(i, x�
A

). Each f̂ (i) is a

junta on A. The number of A-juntas is only ` = 22k = O(1); let 1, . . . , ` be an enumeration
of them and let

hi(x) ,

{
1 if f̂ (|x|) = i

0 otherwise
.

Each hi is a symmetric function, and f can be decomposed into

f(x) =
∨
i∈[`]

hi(x) ∧ i(x),

which is a boolean combination of ` symmetric functions and the ji, themselves a combination
of the k dictatorship functions {xi}i∈A.

• (d) =⇒ (b): Let f(x) = f̂(s1(x), . . . , s`(x), xi1 , . . . , xik), where s1, . . . , s` are symmetric. Set
A = {i1, . . . , ik} and let π ∈ Sym([n]−A). Each function si remains invariant under Sym([n]),
and each dictatorship xij is invariant under Sym([n]\{i}) ⊇ Sym([n]\A). Therefore Sym([n]\
A) ≤ Aut(f). 2

• (c) =⇒ (a): As we saw, if f ∈ JSk and k = O(1), then Isom(f) ≤
(

n
k

)
k! = nO(1).

The only remaining implication is (a) =⇒ (b). 3 First we need a handy result that provides
a lower bound for the index of primitive groups. (Asymptotically better bounds are available
[Bab81, Cam81], but this one will suffice).

Theorem C.1 (Bochert’s bound [Boc89]; c.f. Thm. 14.2 in [Wie64]) Let G be a primi-
tive subgroup of Sn, other than Sn and An. Then

[Sn/G] ≥ dn/2e!.

Lemma C.2 Let n ≥ 13, G ≤ Sn, G 6= Sn, An. Then

2Note that the fact that ` = O(1) is immaterial here, and in fact yet another equivalent definition can be given
by substituting “any number of symmetric functions” for “O(1)-many symmetric functions”.

3 This would be implied by the claim following Theorem 28 in page 586 of [CK91], but unfortunately this claim
is in error (as can be seen by taking Gn to be the alternating group An). The mistake seems to lie near the end of
the proof, after it is shown that in ≤ k and |Sn : Gn| ≤ nk, the claim that Vn = Sn−in is unjustified (it would seem
to assume that in fact in = k). The lemma does hold for the automorphism groups of boolean functions however as
we show, which is the case of interest in both papers.
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(a) If G is transitive then

[Sn/G] ≥ 1

2

(
n

bn/2c

)
.

(b) Suppose G is intransitive; let ∆ be the longest orbit of an element of [n] and ` = |∆| < n its
size. Then

[Sn/G] ≥
(

n

max(n/2, `)

)
.

(c) Under the same conditions as in (b), let

H , G ∩ Sym(∆) = G ∩ S`

be the pointwise stabilizer of [n] \∆. Then

[S`/H] ≤ [Sn/G](
n
`

) .

Proof.

(a) If G is primitive, Bochert’s theorem states the bound [Sn/G] ≥ dn/2e!, which is stronger for
n ≥ 13. So suppose G is transitive and imprimitive, with a block of imprimitivity of size
2 ≤ a ≤ n/2, a | n (and hence b = n/a such blocks because of transitivity). Then

|G| ≤ (a!)bb! ≤ b(ab/2)c!d(ab/2)e!.

To prove the last inequality, observe that for a = 2 it reduces to the triviality b! ≥ 2b. Hence
it suffices to verify that for any b ≥ 2, the quotient

q(a) ,
a!b

b(ab/2)c!d(ab/2)e!

is a decreasing function of a. Define the sequences {si}, {ti}, i ∈ [1, ab] by si = b(i+ b− 1)/bc
and ti = b(i+ 1)/2c. Then

q(a) =
ab∏
i=1

si
ti

=

(a−1)b∏
i=1

si
ti
·

ab∏
j=(a−1)b+1

sj
tj

= q(a− 1) ·
ab∏

j=(a−1)b+1

a

tj

≤ q(a− 1),

because t(a−1)b+1 = b(a− 1)b/2c+ 1 ≥ a since b ≥ 2. Therefore

[Sn/G] =
n!

|G|
≥ 1

2

(
n

bn/2c

)
.
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(b) Let A1, . . . , Am be the orbits and ai = |Ai|. Since G ≤ Sym(A1)×Sym(A2)× . . .×Sym(Am),
we must have

|G| ≤
∏

ai!.

Fix ` and let us consider the maximum r(`) of the expression on the right hand side subject to
0 ≤ ai ≤ `, over all choices of m ≥ 2 (without loss of generality m = n). We claim that there
are optimal solutions where ai = ` for at least one i (in fact precisely bn/`c of them but we shall
not need this). This is due to the inequality ai!aj ! ≤ 1!(ai+aj−1)!, which tells us that replacing
the pair (ai, aj) (where ai ≥ aj) by (ai + aj − 1, 1) cannot decrease

∏
ai!. This replacement

preserves
∑
ai and is possible unless either ai = ` or aj = 0 for every such pair. The replacing

process can not go on forever because if we look at its effect on the sorted sequence {ai}, we
see that it becomes lexicographically larger at each step. By taking an optimal solution and
performing such replacements while possible, we arrive at a solution with some ai = ` (as not
all pairs can be zero).

Now observe that
∏
ai! ≤ ai!(n− ai)! for any i. (For example, this can be seen by noting that

the left-hand side is the size of the set of permutations Sym(A1)× . . .× Sym(Am), and this a
subset of Sym(Ai)× Sym([n] \Ai)). So using ai = ` for some i we get

|G| ≤ r(`) ≤ `!(n− `)! =
n!(
n
`

) .
This shows that

[Sn/G] ≥
(
n

`

)
for any `. On the other hand, r(`) is by definition an increasing function of `, so the inequality

[Sn/G] ≥
(

n

bn/2c

)
holds for any ` ≤ n/2.

(c) Because G ≤ H × Sym([n]−∆), we can bound

|G| ≤ |H||Sn−`| = |H|(n− `)!,

which yields

[S`/H] =
`!

|H|
≤ `!(n− `)!

|G|
=

[Sn/G](
n
`

) .

Lemma C.3 Let n ≥ 22, t ≤ n/2, [Sn/G] < 1
4

(
n
t

)
, and ∆, ` as before. Then ` > n − t and

Alt(∆) ≤ G.

Proof. If the action of G is transitive on [n] then [Sn/G] ≥ 1
2

(
n
n/2

)
by Lemma C.2(a), which con-

tradicts our assumptions. So G is not transitive and ` < n. If ` ≤ n/2 we have, by Lemma C.2(b),
[Sn/G] ≥

(
n
n/2

)
, which again is impossible.
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We are left with the case n/2 < ` < n. According to Lemma C.2(b),

[Sn/G] ≥
(
n

`

)
=

(
n

n− `

)
,

so t > n− `. Let H = G ∩ S∆. This is actually the pointwise stabilizer of [n] \∆ in G, and since
∆ is an orbit of G it follows that H is normal in G (Proposition 3.1 of [Cam99]). We demonstrate
that A∆ ≤ H by contradiction. We argue by contradiction in order to prove that indeed A∆ ≤ H.

So assume H 6= S∆, A∆. Then Lemma C.2 applies to the group H acting on ∆. Let ∆′ be the
largest orbit of this action and `′ = |∆′|. Since G is transitive on ∆ and H C G, it is not hard to
see that the length of any orbit of H on ∆ must divide `, i.e. `′ | `. We distinguish two cases:

• If `′ ≤ `/2, then

[S`/H] ≥
(
`

`/2

)
by part (b) of the “inner” application of Lemma C.2.

• If `′ > `/2, then as we observed that `′ | `, we must in fact have `′ = `, meaning that H is
transitive on ∆ and

[S`/H] ≥ 1

2

(
`

`/2

)
by part (a) of the “inner” application of Lemma C.2.

In any case we have

[S`/H] ≥ 1

2

(
`

`/2

)
.

Coupled with part (c) of the “outer” application, i.e.

[S`/H] ≤ [Sn/G](
n
`

) ,

this yields the contradiction

[Sn/G] ≥ 1

2

(
`

`/2

)(
n

`

)
≥ 1

4

(
n

n/2

)
.

Corollary C.4 Let n ≥ 22 and f : {0, 1}n → {0, 1} be a boolean function with |Isom(f)| < (1/4)
(

n
t

)
,

t ≤ n/2. Then there is a set ∆ of size ` > n− t such that f is junto-symmetric on ∆. In particular,
any poly-symmetric family is junto-symmetric on sets of size O(1).

Proof. Let G = Aut(f). Since |Isom(f)| = [Sn/G], the previous lemma gives Alt(∆) ≤ Aut(f)
and |∆| ≥ n/2 > 3. But repeating the argument presented in the introduction shows that for a
boolean function this implies Sym(∆) ≤ Aut(f).

This corollary is the last piece we needed to show Theorem 1.4.
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D Graphs, algebra number and crunching

Definition D.1 The algebra number of a graph G is the smallest number k for which there exist
cliques C1, . . . , Ck over subsets of the vertex set of G, such that G can be generated from the edge
sets of C1, . . . , Ck by taking set unions, intersections and complementations (the latter with respect
to the edge set of a complete graph).

The ε-approximate algebra number is the smallest k such that H is ε-close to some graph whose
algebra number is k.

We also define the pairing number as the smallest k for which there are k vertex-disjoint sets
A1, . . . Ak ⊆ V and a subset S ⊆ [k]× [k] such that the edge set of G is E = ∪(i,j)∈SAi × Aj (note
that i = j is allowed). The ε-approximate pairing number of G is defined similarly.

Lemma D.2

1. Any graph with pairing number k is has algebra number ≤ k.

2. Any graph with algebra number k has pairing number ≤ 2k.

3. Any k-crunchable graph has pairing number k. Conversely, any k-crunchable graph is ε-close
to having pairing number ≤ k2/ε.

Proof.

1. Immediate.

2. Let G = (V,E) be generated from the edge sets of the cliques C1, . . . , Ck ⊆ V . For S ⊆ [k],
let AS = (∩i∈SCi)

⋂
(∩i/∈SCi). These 2k sets are disjoint and contain all vertices incident

with some edge in G. For all S, T ⊆ [k], if a1, a2 ∈ AS and b1, b2 ∈ AT , then (a1, b1) ∈ E
iff (a2, b2) ∈ E (unless a1 = b1 or a2 = b2). This means G has pairing number k since it is
possible to write E in the required form.

3. We prove the second statement (the first one is obvious). Suppose G has pairing number k
and let A1, . . . , Ak be as in Definition D.1. The only reason G may not be k-crunchable is the
possible existence of edges between vertices in the same Ai. Divide each Ai into t = d1/εe
subsets Ai1, . . . , Aik of roughly equal size and remove the edges with both endpoints inside
the same Aij . Note that if |Aij | = αijn, then from all

(
n
2

)
edges, the removed ones constitute

a fraction bounded by
∑

ij α
2
ij/t ≤ (

∑
αij)

2/t ≤ 1/t ≤ ε. Hence this graph is ε-close to the
original graph, and is also k-crunchable by construction.

Corollary D.3 If the ε-approximate algebra number of a graph is more than k, then testing
isomorphism to it requires Ω(k1/4√ε/r) queries.
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E Generalized junta testing

Proof of Lemma 3.3. All known junta testers can be used in a straightforward manner for this
generalized property while preserving the exact query complexity. One way to see this is to think
of providing the junta tester with a set T of relevant variables for free, and instruct it to seek for
relevant blocks outside T just as if the tester had found the variables of T by itself. (Note however
that the “partitioning step” must be applied to [m] \ T ).

For a more detailed description we start with an overview of how the tester of [FKR+04] works.
Due to the inequality dist(f, JunA) ≤ Inff([m] \ A), the task can be reduced to accepting k-juntas
and rejecting functions where the influence outside any set of size k is at least ε. Then the tester
uses its random coin flips to select a series of disjoint subsets I1, . . . , Ir ⊆ [m], and performs a
number of repetitions of the basic independence test on each of them. (By an “independence test”
on Ii we mean drawing a pair (x, y) from µ × µ conditioned on x�

Ii
= y�

Ii
, and rejecting when

f(x) 6= f(y)). These subsets are then shown to satisfy the property

if Inff([m] \A) ≥ ε for all A ⊆ [m], |A| = k, then
at least k + 1 of the independence tests will be positive.

(When f is a k-junta, at most k of them will be positive because of the disjointness condition).
However, for any B ⊆ [m] the same argument goes through to give a series of disjoint independence
tests on I ′1, . . . , I

′
r ⊆ B with the property

if Inff(B \A) ≥ ε for all A ⊆ B, |A| = k, then
at least k + 1 of the independence tests will be positive.

(In fact, I ′1, . . . , I
′
r are precisely the queries the junta tester would make for testing k-juntas on

[m] \B).
To adapt these ideas to our task, note that if dist(f, Junk(T )) ≥ ε then Inff([m] \ (T ∪ A)) ≥ ε

for any A ∈
([m]\T

k

)
. Let B = [m] \ T and I ′1, . . . , I

′
r ⊆ B as before. We simply perform the

independence tests of f on I ′1, . . . , I
′
r and reject if at least k + 1 were positive; both soundness and

completeness follow from the preceding comments. Finally, the query complexity remains the same
as that of the standard junta tester, and the second part of the last item follows because it is true
of the independence tests.

F Testing isomorphism

F.1 Testing isomorphism to junto-symmetric functions

In an analogous fashion one can reduce the problem of testing isomorphism to g (when g is close
enough to JSk) to testing isomorphism between k-juntas. For this we can use a tolerant tester
of isomorphism, except that, in view of Lemma 3.2(e), the set of permutations allowed must be
restricted to those fixing V0 and V1:

1. Use the algorithm of Theorem 1.5 to accept if f ∈ JSk and reject if dist(f,JSk) > ε/30.

2. Perform a suitable test to accept if d ≤ ε/10 and reject if d ≥ 9ε/10, where

d , min
π∈1V0,V1

×Sym(V2)
dist(T (f), T (g)π)
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Ignoring for the moment the implementation details of the second test, we show that the
algorithm outlined is an isomorphism tester for JSk:

Proof of Theorem 1.6. We use the algorithm just described. The claim about the query
complexity is clear.

Suppose the test accepts with high probability. Then dist(f,JSk) ≤ ε/30 and d ≤ 9ε/10. Since
distiso(g,JSk) ≤ 1/k5, we have

|distiso(f, g)− d| ≤ ε/20 + (1/k5) + (2k)/
√

2n ≤ ε/20,

so distiso(f, g) < ε, as it should.
On the other hand, if f∼=g then dist(f,JSk) = dist(g,JSk) < 1/k5 and d ≤ 2/k5 +(2k)/

√
2n <

1/k4, meaning that both tests succeed.

Step 2 can be implemented using standard techniques. To formalize this we use the notion of
noisy sampler extractors developed in [CGM11a]. Let D = V0×V1, f : D×{0, 1}n → {0, 1} and let

′ ∈ JunD(A), A ∈
([n]
k

)
be the element of Junk(D) closest to f . Define corek,D(′) : D × {0, 1}k →

{0, 1} by
corek,D(′)(x�

D
, x�

A
) = ′(x).

A correct sample for corek,D(′) (with respect to σ ∈ 1D × Sk) is a pair (x, a) with x ∈ D × {0, 1}k
and corek,D(f)(xσ) = a. An η-noisy sampler for corek,D(′) is a procedure to obtain an unlimited
sequence of independent samples (x, a) such that each one is correct with probability 1 − η with
respect to some fixed σ, and x follows the distribution D × {0, 1}k.

The following two lemmas are all we need.

Lemma F.1 Suppose dist(f, Junk(D)) < 1/k5. Then there is a poly(k, 1/ε)-query nonadaptive
algorithm to construct an ε/100-noisy sampler for corek,D(′).

Proof (sketch). We assume familiarity with the proof of Lemma 2 of [CGM11a]. We need
two changes. The first is that we substitute the adaptive junta tester of Blais [Bla09] for the junta
tester used in the proof. The second one is the observation that we know how the variables in D
map to the variables in corek(

′), so for any z ∈ {0, 1}n, we only need to “extract” the setting of
the k relevant variables sitting outside A.

Lemma F.2 Let f, g : D × {0, 1}n → {0, 1}, g ∈ Junk(D). Write

d = min
π∈1D×Sn

dist(f, gπ)

Assuming access to an ε/100-noisy sampler for f , there is a poly(k/ε)-query tester that accepts if
d ≤ ε/10 and rejects if d ≥ 9ε/10.

Proof (sketch). This is essentially Lemma 1 of [CGM11a]. Construct a sample for corek,D(′)
and take O(log k!/ε2) = O(k log k/ε2) random samples. These are enough to estimate

d′ = min
π∈Sk

dist(corek,D(′), corek,D(g)π)

to within O(ε) additive terms. Finally recall that d′ and d are the same up to constant factors (this
follows from Lemma 6.1 in [CGM11b]).
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F.2 Tolerant testers

From proposition 2.3 of [Bla09], an exp(k/ε)-query tolerant junta tester easily follows. Using
this instead of the poly(k/ε)-query junta tester in the proof of the previous theorems, we obtain
Theorem 1.8.

G Junto-symmetric functions vs. layered juntas

Now we apply the crunching method to boolean functions. In this setting the procedure is similar
to, but not quite the same as, an idea used by Blais and O’Donnell [BO10].

Definition G.1 (Layered juntas) A function f : {0, 1}n → {0, 1} is called a layered k-junta if
there are subsets J0, . . . , Jn ⊆ [n], each of size k, and functions f̃0, . . . f̃n : {0, 1}k → {0, 1} so that
for all x ∈ {0, 1}n,

f(x) = f̃|x|(x�J|x|).

Let LJ k denote the class of layered k-juntas, respectively. Note that JSk ⊆ LJ k.
We need a notion of random crunching for functions. The notion for hypergraphs provides a

possible definition of function crunching via the equivalence discussed in Section 1.2, but unfor-
tunately this kind of crunching would alter the Hamming weight of inputs, which could be easily
detected by the tester for some functions. Here we give a slightly different definition that resolves
this issue, but only applies to layered juntas, and also happens to depend on the particular choice
of each f̂i (remember that they are not uniquely defined).

Definition G.2 (Function crunching) A random t-crunching of the function f defined by f(x) =
f̃|x|(x�J|x|) is a function g ∈ JSt obtained as follows:

1. pick, uniformly at random, a subset J ⊆ [n] of size t and a mapping γ : [n]→ J ;

2. for every x ∈ {0, 1}n, let i1, . . . , ik denote the indices in J|x|; set g(x) = f̃|x|(xγ(i1) · · ·xγ(ik))
and return g.

Theorem G.3 Fix ε > 0 and Q : N→ N, and suppose f ∈ LJ k. Then Ω(Q(k)) queries are needed
to distinguish a random permutation of f from a random permutation of a random (k · Q(k))2-
crunching of f .

In particular, if f is ε-far from JS(k·Q(k))2, then ε-testing isomorphism to f requires Ω(Q(k))
queries.

Proof. Let Dyes denote the random permutations of f and Dno the distribution of random
permutations of t-crunchings of f . Given g ∈ Dno and its corresponding mapping γ : [n]→ J , call
a set of layers {`1, . . . , `m} collision-free if γ is injective over

⋃
i∈[m] J`i . Let T be a deterministic

tester that makes q = o(Q(k)) queries. For every x1, . . . , xq ∈ {0, 1}n let Ex1,...,xq denote the event
that the set {|x1|, . . . , |xq|} of layers is collision-free with respect to the randomly chosen mapping
γ of a function g ∼ Dno. Observe that for all x1, . . . , xq ∈ {0, 1}n and w ∈ {0, 1}q, conditioned on
Ex1,...,xq we have

Pr
h∼Dyes

[h(x1), . . . , h(xq) = w] = Pr
h∼Dno

[h(x1), . . . , h(xq) = w].
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By Lemma A.1 (and the remark following its statement), it is enough to show that Ex1,...,xq occurs
with probability > 2/3.

The probability (over g ∈ Dno) that γ(i) = γ(j) for a specific pair i 6= j is (k · Q(k))−2. The
number of different pairs i, j ∈

⋃
i∈[q] J|xq | is bounded by (kq)2 = o((k ·Q(k))2), hence by the union

bound the probability that the set {|x1|, . . . , |xq|} of layers is collision-free is 1− o(1).

Note that this kind of argument admits certain generalizations. For example, by considering
functions that have k additional variables outside a known set A (as in Section 3.1) of size ≈ log n,
one can prove an Ω̃(

√
n) lower bound for testing isomorphism to the address function.

H Isomorphism up to linear transformations

Definition H.1 Two boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1} are said to be
linearly isomorphic if there exists a full-rank linear transformation A : {0, 1}n → {0, 1}n such that
f = g ◦A.

This is an equivalence relation by virtue of the requirement that A have full rank.

Definition H.2 Let f(x) =
∑

S∈{0,1}n f̂(S)χS(x) be the Fourier expansion of the function f :

{0, 1}n → R. Let

A ,
{
S ∈ {0, 1}n|f̂(S) 6= 0

}
.

Then the dimension of the span of A is called the Fourier dimension of f .

Lemma H.3 The function f is linearly isomorphic to some k-junta iff its Fourier dimension is at
most k.

Proof. Suppose f has Fourier dimension k. Then it is a real linear combination of parities
whose defining vectors lie on a k-dimensional vector space V . Here we take the parities χv to be
±1-valued. Each parity in V can be written as a product of some parities in a basis for V . It
follows that f can be written as a function h (not necessarily linear) of k′ ≤ k linearly independent
parities:

f(x) = h(χv1(x), . . . , χvk′ (x)) = g(〈v1, x〉, 〈v2, x〉, . . . , 〈vk′ , x〉, •),

where g is a junta on the first k′ variables, the inner products are taken over Fn2 , and • symbolizes
that the remaining n−k′ variables are irrelevant. The function g can can easily seen to be boolean-
valued on {0, 1}n if f is, because all 2k

′
assignments to χvi(x), i = 1..k′ are possible. Hence there

is a k′-junta g : {0, 1}n → {0, 1} and a change of basis A : Fn2 → Fn2 such that f = g ◦ A (take
v1, . . . , v

′
k as the first rows of the matrix associated with A).

Conversely, if f = g ◦ A for a k-junta g, then f is a junta on a set P of k parity functions and
can be written as a polynomial on those parities. We can replace products of parities in P by a
single parity in their span, and this means that f can also be written as a linear combination of
the parities in the span of P , so f has Fourier dimension at most k.

Theorem H.4 If f : {0, 1}n → {0, 1} is ε-far from having Fourier dimension k then any adaptive
ε-tester for linear isomorphism to f takes at least k − 1 queries.
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Proof. Let f : {0, 1}n → {0, 1} be ε-far from having Fourier dimension k. We will use
Theorem A.1 to prove the lower bound. We want to generate two distributions of functions DY

and DN for the yes-instances and no-instances respectively:

Dyes : To generate a random function gY in Dyes pick a random linear transformation L : {0, 1}n →
{0, 1}n of full rank and let gY (x) , f(Lx).

Dno : To generate a random function gN in Dno pick a random linear transformation R : {0, 1}n →
{0, 1}n of rank exactly k and let gN (x) , f(Rx).

Note that Dyes is a distribution supported on the set of those functions which are linearly
isomorphic to f . On the other hand, Dno is supported on those functions that are ε-far from
linearly isomorphic to f . This is because if gN ∈ Dno, then there exists a linear transformation R
of rank k such that gN (x) = f(Rx), so gN has Fourier dimension k.

Let Q ⊆ {0, 1}n and let q1, . . . , qt be a basis of the span of Q. Note that when L is a random
linear transformation of full rank then L(q1), L(q2), . . . , L(qt) are linearly independent. In fact given
any t linearly independent vectors v1, . . . , vt,

Pr
L

[∀i , L(qi) = vi] = 1/M,

where M is the number of distinct sets of t independent vectors.
When R is a random linear transformation of rank k the set of vectors {R(q1), . . . , R(qt)} need

not be linearly independent in general, but if t < k they are independent with high probability.

Lemma H.5 If {q1, . . . , qt} is a set of linearly independent vectors then when R is a random linear
transformation of rank k, then with probability 1 − 1/2k−t, the set {R(q1), . . . , R(qt)} is linearly
independent.

Proof. Let assume that the set {R(q1), . . . , R(qt)} is not linearly independent. So there must be
a linear combination of the vectors that add up to zero. That is there must be a1, . . . , at ∈ {0, 1}
such that

∑t
i=1 aiR(qi) = 0. In other words, there exist a vector v in the span of q1, . . . , qt such

that R(v) = 0.
Because R is a randomly chosen linear transformation of rank k,

∀v ∈ {0, 1}n, Pr
R

[R(v) = 0] =
1

2k
.

So the expected number of vectors in the span of q1, . . . , qt such that R(v) = 0 is 1/2k−t. And thus
by Markov’s Inequality,

Pr[R(q1), R(q2), . . . , R(qt) are linearly independent] ≥ 1− 1

2k−t
.

In fact, conditioned on the event that {R(q1), . . . , R(qt)} are linearly independent, any set of
linearly independent vectors is equally likely. Thus, for any t linearly independent vectors v1, . . . , vt,

Pr
R

[∀i R(qi) = vi | R(q1), R(q2), . . . , R(qt) are linearly independent] = 1/M = Pr
L

[∀i , L(qi) = vi].
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And since Q is contained in the span of q1, . . . , qt, for all a ∈ {0, 1}|Q| we get

Pr
gN←Dno

[
gN�Q = a

]
≥ (1− 2t−k) Pr

gN←Dno

[
gN�Q = a | {R(q1), . . . , R(qt)} is linearly independent

]
= (1− 2t−k) Pr

gY←Dyes

[
gY �Q = a

]
.

Therefore, if t ≤ k − 2 we have PrgN←Dno

[
gN�Q = a

]
≥ (3/4) PrgY←Dyes

[
gY �Q = a

]
. By

Lemma A.1, if f is ε-far from having Fourier dimension k then any tester (even an adaptive one)
for testing linear isomorphism to f must make at least k − 1 queries.

Remark H.1 Gopalan et al [GOS+09] proved that if f : {0, 1}n → {0, 1} is O(2−k−1)-close to
having Fourier dimension k then testing linear-isomorphism to f can be done using O(k2k) queries.
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