
Efficient Sample Extractors for Juntas with
Applications

Sourav Chakraborty 1, David Garćıa-Soriano 2, and Arie Matsliah 3

1 Chennai Mathematical Institute, India.
2 CWI Amsterdam, Netherlands.

3 IBM Research and Technion, Haifa, Israel.

Abstract. We develop a query-efficient sample extractor for juntas, that
is, a probabilistic algorithm that can simulate random samples from the
core of a k-junta f : {0, 1}n → {0, 1} given oracle access to a function
f ′ : {0, 1}n → {0, 1} that is only close to f . After a preprocessing step,

which takes Õ(k) queries, generating each sample to the core of f takes
only one query to f ′.
We then plug in our sample extractor in the “testing by implicit learn-
ing” framework of Diakonikolas et al. [DLM+07], improving the query
complexity of testers for various Boolean function classes. In particular,
for some of the classes considered in [DLM+07], such as s-term DNF
formulas, size-s decision trees, size-s Boolean formulas, s-sparse polyno-
mials over F2, and size-s branching programs, the query complexity is
reduced from Õ(s4/ε2) to Õ(s/ε2). This shows that using the new sample
extractor, testing by implicit learning can lead to testers having better
query complexity than those tailored to a specific problem, such as the
tester of Parnas et al. [PRS02] for the class of monotone s-term DNF
formulas.
In terms of techniques, we extend the tools used in [CGM11] for testing
function isomorphism to juntas. Specifically, while the original analysis
in [CGM11] allowed query-efficient noisy sampling from the core of any
k-junta f , the one presented here allows similar sampling from the core of
the closest k-junta to f , even if f is not a k-junta but just close to being
one. One of the observations leading to this extension is that the junta
tester of Blais [Bla09], based on which the aforementioned sampling is
achieved, enjoys a certain weak form of tolerance.

Keywords: property testing, sample extractors, implicit learning

1 Introduction

Suppose we wish to test for the property defined by a class C of Boolean func-
tions over {0, 1}n; that is, we aim to distinguish the case f ∈ C from the case
dist(f, C) ≥ ε. The class is parameterized by a “size” parameter s (e.g. the class
of DNFs with s terms, or circuits of size s) and, as usual, our goal is to minimize
the number of queries made to f . In particular we strive for query complexity
independent of n whenever possible.

2 Lecture Notes in Computer Science: Authors’ Instructions

The main observation underlying the “testing by implicit learning” paradigm
of Diakonikolas et al. [DLM+07] (see also [Ser10], [DLM+08], [GOS+09]) is that
a large number of interesting classes C can be well approximated by (relatively)
small juntas also belonging to C.

The prototypical example is obtained by taking for C the class of s-term
DNFs. Let τ > 0 be an approximation parameter (which for our purpose should
be thought of as polynomial in ε/s). Any DNF term involving more than log(s/τ)
variables may be removed from f while affecting only a τ/s fraction of its values;
hence, removing all of them results in an s-term DNF f ′ that is τ -close to f and
depends on only s log(s/τ) variables (equivalently, f ′ is a s log(s/τ)-junta). Let
Jun[k] denote the subset of (k-junta) functions {0, 1}n → {0, 1} that depend only
on the first k variables. Since the class C is isomorphism-invariant (closed under
permutations of the variables), the foregoing observation can be rephrased as
follows: for any k ≥ s log(s/τ), the subclass C[k] , C ∩ Jun[k] is such that every
f ∈ C is τ -close to being isomorphic to some g ∈ C[k] (in short, distiso(f, C[k]) ≤
τ).

On the other hand, for every f such that dist(f, C) = distiso(f, C) ≥ ε it also
holds that distiso(f, C[k]) ≥ ε, since C[k] ⊆ C. Hence, to solve the original problem,
all we need is to differentiate between the two cases (i) distiso(f, C[k]) ≤ τ and
(ii) distiso(f, C[k]) ≥ ε.

Let us denote by f∗ the k-junta that is closest to f ; f∗ can be identified
with its core, i.e. the Boolean function corek(f∗) : {0, 1}k → {0, 1} obtained
from f∗ by dropping its irrelevant variables. If we could somehow manage to get
random samples of the form (x, corek(f∗)(x)) ∈ {0, 1}k × {0, 1}, we could use
standard learning algorithms to identify an element g ∈ C[k] which is close to
being isomorphic to f∗ (if any), which would essentially allow us to differentiate
between the aforementioned cases. The number of such samples required for this
is roughly logarithmic in |C[k]|; we elaborate on this later.4 An important obser-

vation is that the size of C[k] , C ∩ Jun[k] is usually very small, even compared

to the size of Jun[k], which is 22k

. For instance, it is not hard to see that for the

case of s-term DNFs, the size of C[k] is bounded by (2k)k, which is exponential
in k, rather than doubly exponential.

It is a surprising fact that such samples from the core of f∗ can indeed be
efficiently obtained (with some noise), even though f is the only function we have
access to. Even having query access to f∗ itself would not seem to help much
at first glance, since the location of the relevant variables of f∗ is unknown to
us, and cannot be found without introducing a dependence of n in the query
complexity. It is in this step that our approach departs from that of [DLM+07].
We mention next the two main differences that, when combined together, lead
to better query complexity bounds.

The first difference is in the junta-testing part; both algorithms start with a
junta tester to identify k disjoint subsets of variables (blocks), such that every
“influential” variable of the function f being tested lies in one of these blocks.

4 Issues of computational efficiency are usually disregarded here; however see
[DLM+08].

Efficient Sample Extractors for Juntas with Applications 3

While [DLM+07] use the tolerant version of the junta-tester of Fischer et al.
[FKR+02], we switch to the query-efficient junta tester of Blais [Bla09]. To make
this step possible, we have to show that the tester from [Bla09] is sufficiently
tolerant (the level of tolerance of the tester determines how large τ can be, which
in turn determines how small k can be). The second (and the main) difference
is in sample extraction - the actual process that obtains samples from the core
of f∗. While in [DLM+07] sampling is achieved via independence tests5, applied
to each of the identified blocks separately (which requires Ω(k) queries to f
per sample), we use ideas from [CGM11] instead. The algorithm presented in
[CGM11, Section 7] accomplishes this task in the (strict) case f = f∗ by making
just one query to f . The bulk of this work is a proof that, when f is close enough
to f∗, it is still possible to obtain each such sample using only one query to f
(an overview of the proof is given in Section 4.1).

Organization In Section 2 we give the notation necessary for the formal state-
ment of our results, which is done in Section 3. In Section 4 we give the proofs.
(Some tools used in Section 4 are similar to those that appear in [CGM11], up
to small tailoring needed before being applicable. We reproduce them in the Ap-
pendix to make this submission self-contained.) In Section 5 we also prove new
query-complexity lower bounds for several classes of functions.

2 Notation

For any permutation π : [n] → [n] and x ∈ {0, 1}n, we define π(x) as the map
on n-bit strings that sends x = x1 . . . xn ∈ {0, 1}n to π(x) , xπ(1) . . . xπ(n) ∈
{0, 1}n. If f : {0, 1}n → {0, 1}, we also denote by fπ the function fπ(x) ≡
f(π(x)).

Given x ∈ {0, 1}n, A ⊆ [n] and y ∈ {0, 1}|A|, we denote by x
A←y an input

obtained by taking x and substituting its values in A with y (according to the
natural ordering of [n]).

For a function f : {0, 1}n → {0, 1} and a set A ⊆ [n], the influence6 of f on
A is

Inff (A) , Pr
x∈{0,1}n, y∈{0,1}|A|

[
f(x) 6= f(x

A←y)
]
.

Here and throughout this paper, x ∈ S under the probability symbol means that
an element x is chosen uniformly at random from a set S.

A set S ⊆ [n] is relevant with respect to f if Inff (S) 6= 0; an index (variable)
i ∈ [n] is relevant if {i} is. A k-junta is a function g that has at most k relevant

variables; equivalently, there is S ∈
(

[n]
k

)
such that Infg([n] \ S) = 0.

5 Loosely speaking, these tests try to extract the values of the relevant variables of
f∗ by querying f on several inputs that are slightly perturbed (see [FKR+02] for
details).

6 When |A| = 1, this value is half that of the most common definition of influence of
one variable; for consistency we stick to the previous definition instead in this case
as well. It also appears in the literature under the alternate name of variation.

4 Lecture Notes in Computer Science: Authors’ Instructions

Junk denotes the class of k-juntas (on n variables), and for A ⊆ [n], JunA
denotes the class of juntas with all relevant variables in A. In addition, given a
function f : {0, 1}n → {0, 1}, we denote by f∗ : {0, 1}n → {0, 1} the k-junta
that is closest to f (if there are several k-juntas that are equally close, break ties
using some arbitrarily fixed scheme). Clearly, if f is itself a k-junta then f∗ = f .

Given a k-junta f : {0, 1}n → {0, 1} we define corek(f) : {0, 1}k → {0, 1} to
be the restriction of f to its relevant variables (where the variables are placed
according to the natural order). In case f has fewer than k relevant variables,

corek(f) is extended to a function {0, 1}k → {0, 1} arbitrarily (by adding dummy
variables).

Unless explicitly mentioned otherwise, C will always denote a class of func-
tions f : {0, 1}n → {0, 1} that is closed under permutation of variables; that
is, for any f and permutation π of [n], f ∈ C if and only if fπ ∈ C. For any
k ∈ N, let C[k] denote the subclass C ∩ Jun[k]. Note that since C is closed under
permutations of variables, C[k] is closed under permutations of the first k vari-
ables. With a slight abuse of notation, we may use corek(C[k]) to denote the class
{corek(f) : f ∈ C[k]} of k-variable functions.

3 Results

3.1 Upper bounds

The main tool we develop here is the following:

Theorem 1. Let ε > 0, k ∈ N and let C[k] ⊆ Jun[k] be a class closed un-
der permutations of the first k variables. Let θ

1
(k, ε) = (ε/2400)6/(1026k10) =

poly(ε/k). There is a randomized algorithm A
1

that given ε, k and oracle access
to a function f : {0, 1}n → {0, 1} does the following:

– if distiso(f, C[k]) ≤ θ1(k, ε), A
1

accepts with probability at least 7/10;
– if distiso(f, C[k]) ≥ ε, A1

rejects with probability at least 7/10;

– A1 makes O
(
k
ε + k log k +

1+log |C[k]|
ε2

)
queries to f .

Coupled with the prior discussion on testing by implicit learning, Theorem
1 also implies:

Corollary 1. Let ε > 0 and let C be an isomorphism-invariant class of Boolean
functions. In addition, let k ∈ N be such that for every f ∈ C, distiso(f, C[k]) ≤
θ1(k, ε). Then there is an algorithm that makes

O

(
k

ε
+ k log k +

1 + log |C[k]|
ε2

)
= O

(
k log k + log |C[k]|

ε2

)
queries and satisfies:

– if f ∈ C, it accepts with probability at least 7/10;
– if dist(f, C) ≥ ε, it rejects with probability at least 7/10.

Efficient Sample Extractors for Juntas with Applications 5

To minimize the query complexity, we would like to pick k as small as possible,
subject to the requirement of the theorem. Let k?(C, τ) be the smallest k ∈ N
such that for every f ∈ C, distiso(f, C[k]) ≤ τ ; intuitively, this condition means
that C is τ -approximated by C[k]. We take from [DLM+07] the bounds on k? =
k?(C, τ) and |C[k?]| for the following classes of functions:

C (class) k? , k?(C, τ) ≤ |C[k?]| ≤
1 s-term DNFs s log(s/τ) (2s log(s/τ))s log(s/τ))

2 size-s Boolean formulae s log(s/τ) (2s log(s/τ))s log(s/τ)+s

3 size-s Boolean circuits s log(s/τ) 22s2+4s

4 s-sparse polynomials over F2 s log(s/τ) (2s log(s/τ))s log(s/τ))

5 size-s decision trees s (8s)s

6 size-s branching programs s ss(s+ 1)2s

7 functions with Fourier degree at most
d

d2d 2d
222d

These bounds hold for any approximation parameter τ ≥ 0. But to make Corol-
lary 1 applicable, we need to pick τ and k such that the (circular) inequalities
τ ≤ θ1(k, ε) and k ≥ k?(C, τ) are satisfied.

For items 5, 6, 7 setting τ = 0 does the job; the reason these bounds are
independent of τ is the fact that the corresponding classes contain only functions
that actually are k?-juntas (rather than functions that can be well approximated
by k?-juntas).

For the first 4 items we can set τ = θ1(s, ε)2. It is easy to verify that this
satisfies the foregoing pair of inequalities. Furthermore, since θ

1
(s, ε) is polyno-

mial in ε/s, we get k = O(s(log s + log 1/ε)). Plugging in the resulting values
into Corollary 1, we obtain the following query-complexity bounds:

Class This work [DLM+07], [PRS02](∗)

s-term DNFs, size-s Boolean formulae, s-
sparse polynomials over F2, size-s decision
trees, size-s branching programs

Õ(s/ε2) Õ(s4/ε2)

size-s Boolean circuits Õ(s2/ε2) Õ(s6/ε2)
functions with Fourier degree at most d Õ(22d/ε2) Õ(26d/ε2)
s-term monotone DNFs Õ(s/ε2) Õ(s2/ε)∗

3.2 Lower bounds

For several classes of functions mentioned above we also improve the query-
complexity lower bounds. In particular, for size-s Boolean formulae, size-s branch-
ing programs, size-s Boolean circuits and s-sparse polynomials over GF (2) we
prove lower bounds of sΩ(1) queries, for functions with Fourier degree d there is
a lower bound of Ω(d) queries, and for s-term DNFs and size-s decision trees we

6 Lecture Notes in Computer Science: Authors’ Instructions

prove lower bounds of Ω(log s) queries. We also reprove (and hopefully simplify)
some known lower bounds for other classes of functions. For details see Section
5.

4 Proof of Theorem 1

4.1 Overview

A key component of our algorithm is the nearly optimal junta tester of [Bla09].
This is a test to distinguish k-juntas from functions that are ε-far from being
one, and has perfect completeness, i.e., never rejects a k-junta (see Section 4.4
for a more detailed description). The tester is not guaranteed to accept functions
that are, say, ε/10 close to juntas. We observe, however, that it enjoys a certain
weak form of tolerance; roughly speaking, θ

1
(k, ε) is a measure of the amount

of tolerance of said tester, i.e. how close f must be to a k-junta in order to
guarantee it will be accepted with high probability. This is Lemma 7 in Section
4.4.

Our algorithm begins by calling the junta tester with parameter k. If f is
θ
1
(k, ε)-close to being a k-junta, the aforementioned tolerance implies that f is

not rejected. (Note however that f may be θ
1
(k, ε)-far from any k-junta and

still be accepted with high probability, as long as it is ε-close to some k-junta.)
The tester also returns a set of k blocks (disjoint subsets of indices of the n
variables) such that there is a k-junta h that is O(ε)-close to f and has all its
relevant variables in one of the k blocks, with no block containing more than
one relevant variable. Such an h must be itself O(ε) close to f∗ as well. Using
these properties, we then obtain a noisy sampler for the core of f∗, which on
each execution makes one query to f and outputs a pair (x, a) ∈ {0, 1}k×{0, 1}
such that corek(f∗) = a with high probability.

Intuitively, the idea is that such samples may be obtained by making queries
to f on certain strings y ∈ {0, 1}n that are constant inside each of the blocks,
so that we know the values that y sets on the (unknown) relevant variables of h
(which is sufficiently close to both f and f∗). While such y’s are far from being
uniformly distributed, the approach can be shown to work most of the time.
These samples are then used to test isomorphism between corek(f∗) and the
functions in C[k]; in this final step we allow a small, possibly correlated, fraction
of the samples to be incorrectly labelled.

4.2 Main lemmas and proof of Theorem 1

We start with the notion of a noisy sampler.

Definition 1. Let g : {0, 1}k → {0, 1} be a function, and let η, µ ∈ [0, 1). An
(η, µ)-noisy sampler for g is a probabilistic algorithm g̃ that on each execution

outputs (x, a) ∈ {0, 1}k × {0, 1} such that

– for all α ∈ {0, 1}k, Pr[x = α] = 1
2k (1± µ);

Efficient Sample Extractors for Juntas with Applications 7

– Pr[a = g(x)] ≥ 1− η;
– the pairs output on each execution are mutually independent.

An η-noisy sampler is an (η, 0)-noisy sampler, i.e. one that on each execution
picks a uniformly random x. 7

Now assume that f is very close to a k-junta g : {0, 1}n → {0, 1}, and we

have been given an η-noisy sampler for corek(g) : {0, 1}k → {0, 1}. Then we can
use a variant of Occam’s razor to test (tolerantly) whether g is close to some
function from a given class S:

Lemma 1. There is an algorithm that given ε ∈ R+, k ∈ N, a set S of Boolean
functions on {0, 1}k, and an η-noisy sampler g̃ for some g : {0, 1}k → {0, 1},
where η ≤ ε/100, satisfies the following:

– if dist(g,S) < ε/10, it accepts with probability at least 9/10;
– if dist(g,S) > 9ε/10, it rejects with probability at least 9/10;

– it draws O
(

1+log |S|
ε2

)
samples from g̃.

The proof appears in Appendix A.
Now is the time to state the main technical lemma.

Lemma 2 (Construction of efficient noisy samplers).
There are algorithms AP , AS (resp. preprocessor and sampler), both of which

having oracle access to a function f : {0, 1}n → {0, 1}, and satisfying the follow-
ing properties:

The preprocessor AP takes ε > 0, k ∈ N as inputs, makes O(k/ε + k log k)

queries to f and can either reject or accept and return a state α ∈ {0, 1}poly(n)
.

Assuming AP accepted, the sampler AS can be called on demand, with state α
as an argument; in each call, AS makes only one query to f and outputs a pair
(x, a) ∈ {0, 1}k × {0, 1}.

On termination of the preprocessing stage AP , all the following conditions
are fulfilled with probability at least 4/5:

– If f is θ
1
(k, ε)-close to a k-junta, AP has accepted f ;

– If f is ε/2400-far from a k-junta, AP has rejected f ;
– If AP has accepted, state α is such that, for some permutation π : [k]→ [k],
AS(α) is an ε/100-noisy sampler for corek(f∗)π.

The statement is somewhat technical and calls for careful reading. It is cru-
cial that the last condition be satisfied with high probability for any f . When
θ
1
(k, ε) < dist(f, Junk) < ε/2400, it might be the case that AP always accepts

f , always rejects f , or anything in between, but with high probability either f
has been rejected or an ε/100-noisy sampler for (a permutation of) corek(f∗)
has been constructed.

Assuming Lemmas 2 and 1 we can prove our main theorem.

7 The reader familiar with [CGM11] should beware that the usage of the parameter µ
here is slightly different from that of the similar definition thereof.

8 Lecture Notes in Computer Science: Authors’ Instructions

Proof (of Theorem 1). Let τ , θ1(k, ε). Suppose first that distiso(f, C[k]) ≤ τ .
Then Lemma 2 says that, with probability at least 4/5, we can construct an
ε/100-noisy sampler for corek(f∗). Since dist(f, f∗) ≤ τ and dist(f, C[k]) ≤ τ , we
actually obtain an ε/100-noisy sampler for a function that is 2τ < ε/10-close to
the core of some g ∈ C[k]. Using this noisy sampler we may apply the algorithm
from Lemma 1 with S = corek(C[k]), which in turn will accept with probability
at least 9/10. The overall acceptance probability in this case is at least 7/10 by
the union bound.

Now consider the case distiso(f, C[k]) ≥ ε. There are two possible sub cases:

dist(f, Junk) > ε/2400: In this case f is rejected with probability at least 4/5 >
7/10.

dist(f, Junk) ≤ ε/2400: In this case, with probability at least 4/5, either f is
rejected (in which case we are done), or an ε/100-noisy sampler has been
constructed for corek(f∗). Since f∗ is ε/2400-close to f , by triangle inequality
we have dist(corek(f∗), corek(C[k])) ≥ distiso(f, C[k]) − dist(f, f∗) > 9ε/10,
and hence with probability at least 9/10 the algorithm from Lemma 1 rejects.
Thus the overall rejection probability in this case is at least 7/10 too.

The assertion about the number of queries is easily seen to be correct, as it
is the sum of the number of queries made in the preprocessing stage by AP , and
the number of executions of the sampler AS .

The rest of this section is devoted to the proof of Lemma 2.

4.3 Additional definitions and lemmas

Our first observation is that, using rejection sampling, one can easily obtain an
exactly uniform sampler (as required in Lemma 1) from a slightly non-uniform
sampler at the cost of a small increase in the error probability:

Lemma 3. Let g̃ be an (η, µ)-noisy sampler for g : {0, 1}k → {0, 1}, that on
each execution picks x according to some fixed distribution D. Then g̃ can be
turned into an (η + µ)-noisy sampler g̃uniform for g.

Proof. Write U to denote the uniform distribution on {0, 1}k. The new sampler
g̃uniform acts as follows: it first obtains a sample (x, a) from g̃, and

(acceptance) with probability px , Pry∼U [y=x]
(1+µ) Prz∼D[z=x] it outputs (x, a);

(rejection) with probability 1− px it picks uniformly random z ∈ {0, 1}k and
outputs (z, 0).

(Note that px ≤ 1 by definition of an (n, µ)-noisy sampler).
Let (x′, a′) denote the pairs output by g̃uniform. It is easy to verify that the

overall acceptance probability is Ex∼D[px] = 1/(1 +µ) and thus, conditioned on
acceptance, x′ is uniformly distributed. In the case of rejection (which occurs
with probability µ/(1 + µ)) it is uniform by definition; hence the overall distri-
bution of x′ is uniform too. Recalling that Pr[a 6= g(x)] ≤ η, we conclude that
Pr[a′ 6= g(x′)] ≤ η + µ/(1 + µ) ≤ η + µ.

Efficient Sample Extractors for Juntas with Applications 9

We remark that the conversion made in Lemma 3 is only possible when the
distribution D is known. However, this will be the case for the sampler that we
construct here.

Throughout the rest of this section, a random partition I = I1, . . . , I` of [n]
into ` sets is constructed by starting with ` empty sets, and then putting each
coordinate i ∈ [n] into one of the ` sets picked uniformly at random. Unless
explicitly mentioned otherwise, I will always denote a random partition I =
I1, . . . , I` of [n] into ` subsets, where ` is even; and J = J1, . . . , Jk will denote
an (ordered) k-subset of I (meaning that there are a1, . . . , ak such that Ji = Iai
for all i ∈ [k]).

Definition 2 (Operators replicate and extract). We call y ∈ {0, 1}n I-blockwise
constant if the restriction of y on every set of I is constant; that is, if for all
i ∈ [`] and j, j′ ∈ Ii, yj = yj′ .

– Given z ∈ {0, 1}`, define replicateI(z) to be the I-blockwise constant string
y ∈ {0, 1}n obtained by setting yj ← zi for all i ∈ ` and j ∈ Ii.

– Given an I-blockwise constant y ∈ {0, 1}n and an ordered subset J =

(J1, . . . , Jk) of I define extractI,J (y) to be the string x ∈ {0, 1}k where for
every i ∈ [k]: xi = yj if j ∈ Ji; and xi is a uniformly random bit if Ji = ∅.

Definition 3 (Distributions DI and DJ). For any I and J ⊆ I as above,
we define a pair of distributions:

– The distribution DI on {0, 1}n: A random y ∼ DI is obtained by

1. picking z ∈ {0, 1}` uniformly at random among all
(
`
`/2

)
strings of weight

`/2;
2. setting y ← replicateI(z).

– The distribution DJ on {0, 1}|J |: A random x ∼ DJ is obtained by
1. picking y ∈ {0, 1}n at random, according to DI ;
2. setting x← extractI,J (y).

Lemma 4 (Properties of DI and DJ).

1. For all α ∈ {0, 1}n, Pr
I,y∼DI

[y = α] = 1/2n;

2. Assume ` > 4|J |2. For every I and J ⊆ I, the total variation distance

between DJ and the uniform distribution on {0, 1}|J | is bounded by 2|J |2/`.
Moreover, the L∞ distance between the two distributions is at most 4|J |2/(`2|J |).

The proof appears in Appendix B.

Definition 4 (Algorithm samplerI,J (f)). Given I,J as above and oracle ac-
cess to f : {0, 1}n → {0, 1}, we define a probabilistic algorithm samplerI,J (f),

that on each execution produces a pair (x, a) ∈ {0, 1}|J | × {0, 1} as follows:
first it picks a random y ∼ DI , then it queries f on y, and outputs the pair
(extractI,J (y), f(y)).

10 Lecture Notes in Computer Science: Authors’ Instructions

Jumping ahead, we remark that the pair I,J (along with the values of k, ε)
will be the information encoded in state α referred to in Lemma 2. In order
to ensure that the last condition there is satisfied, we need to impose certain
conditions on I and J .

Definition 5. Given δ > 0, a function f : {0, 1}n → {0, 1}, a partition I =
I1, . . . , I` of [n] and a k-subset J of I, we call the pair (I,J) δ-good (with
respect to f) if there exists a k-junta h : {0, 1}n → {0, 1} such that the following
conditions are satisfied:

1. Conditions on h:

(a) Every relevant variable of h is also a relevant variable of f∗ (recall that
f∗ denotes the k-junta closest to f);

(b) dist(f∗, h) < δ.

2. Conditions on I:

(a) For all j ∈ [`], Ij contains at most one variable of corek(f∗); 8

(b) Pry∼DI [f(y) 6= f∗(y)] ≤ 10 · dist(f, f∗);

3. Conditions on J :

(a) The set
⋃
Ij∈J Ij contains all relevant variables of h;

Lemma 5. Let δ, f, I,J be as in the preceding definition. If the pair (I,J) is δ-
good (with respect to f), then samplerI,J (f) is an (η, µ)-noisy sampler for some
permutation of corek(f∗), with η ≤ 2δ + 4k2/`+ 10 · dist(f, f∗) and µ ≤ 4k2/`.

The proof appears in Appendix C.

As the lemma suggests, our next goal is to obtain a good pair (I,J). For
this we need to prove that (a slight variation of) the junta tester from [Bla09]
satisfies certain properties.

4.4 Junta testers, smoothness, and tolerance

Consider a property P of Boolean functions on {0, 1}n and an ε-tester T for it
that makes q queries and has success probability 1−δ. Let r denote a random seed
(so that we can view the tester as a deterministic algorithm with an additional
input r) and let Q(f, r) ⊆ {0, 1}n be the set of queries it makes on input f
and seed r. Define Q(r) ,

⋃
f Q(f, r); this is the set of all possible queries

T may make as f ranges over all possible functions, once r is fixed. We call
p , maxr |Q(r)| the non-adaptive complexity of the tester. If q = p then the
tester is essentially non-adaptive; and clearly p ≤ 2q holds for any tester of
Boolean properties. We observe that for the junta tester of Blais [Bla09], p is
in fact polynomially bounded in q. (Without loss of generality we assume that
Q(r) is never empty.)

8 Note that this with 1a implies that every block Ij contains at most one relevant
variable of h, since the variables of corek(f∗) contain all relevant variables of f∗.

Efficient Sample Extractors for Juntas with Applications 11

Definition 6. A tester is p-smooth if its non-adaptive complexity is at most p
and for all α ∈ {0, 1}n,

Pr
r

y∈Q(r)

[y = α] =
1

2n
.

Notice that y is picked uniformly at random from the set Q(r), regardless of the
probability y would be queried by T on any particular f . In other words, we are
picking one random query of the non-adaptive version of T that queries all of
Q(r) in bulk, and requiring that the resulting string be uniformly distributed.

Lemma 6. Let T be a p-smooth tester for P that accepts every f ∈ P with
probability at least 1− δ. Then for every f : {0, 1}n → {0, 1}, Pr[T accepts f] ≥
1− δ − p · dist(f,P).

Proof. Choose any f ′ ∈ P and let ∆ , {y ∈ {0, 1}n : f(y) 6= f ′(y)}. By
the union bound, the probability (over r) that Q(r) intersects ∆ is at most
µ , p · dist(f, f ′), and hence the probability is at least 1 − µ that the tester
reaches the same decision about f as it does about f ′. But the probability that
f ′ is rejected is at most δ, hence the claim follows.

Lemma 7. The one-sided error junta tester T[Bla09] from [Bla09] is p
7
(k, 1/ε)-

smooth, where p
7
(k, 1/ε) , (1025k10)/ε6. Thus, by Lemma 6, it accepts functions

that are θ
1
(k, ε)-close to Junk with probability at least 9/10 (since 10 · θ

1
(k, ε) ≤

1/p
7
(k, 1/ε).) It also rejects functions that are ε-far from Junk with probability

at least 2/3, as proved in [Bla09].

Before proving the lemma we need to briefly describe how T[Bla09] works.
We refer to Algorithm 1 containing its pseudo-code. Given a random partition
I = I1, . . . , I` of [n], it starts with an empty set J ′ = ∅, and gradually adds to
it the blocks Ii that have been found to contain a relevant variable as follows.
For each of O(k/ε) rounds, it generates two random strings x, y ∈ {0, 1}n and
queries f on x and xS̄yS , x

S←y�
S
, where S , [n] \

⋃
Ii∈J ′ Ii. (Picking x and

y is the only place where randomness is used). If f(x) turns out to be different
from f(xS̄yS), we know that there is at least one relevant block in I \ J ′ yet
to be found. In this case, we can find a relevant block by performing a binary
search on the |I \ J ′| + 1 hybrid strings between x and xS̄yS obtained in the
following way:

Let Ii1 , . . . , Iim be the blocks in I \J ′, where 1 ≤ i1 ≤ · · · ≤ im ≤ `. The jth
hybrid zj has the same values as y on all indices in Ii1 ∪ · · · ∪ Iij , and its values
elsewhere are the same as those of x. In particular, z0 = x and zm = xS̄yS .
If we know a < b with f(za) 6= f(zb), then for any a ≤ m ≤ b at least one of
f(za) 6= f(zm) or f(zm) 6= f(zb) must hold, so if f(z0) 6= f(zm) we can use binary
search to find a relevant block Iij after making at most log(m+ 1) ≤ log(`+ 1)
queries to f on the hybrid strings.

If at some stage the tester discovers more than k relevant blocks then it re-
jects; otherwise it accepts and outputs a (possibly extended) set J ⊇ J ′ of size
k (see Algorithm 1).

12 Lecture Notes in Computer Science: Authors’ Instructions

Algorithm 1 (T[Bla09](k, ε, I))

J ′ ← ∅
for i = 1 to d40(k + 1)/εe do
S ← [n] \

⋃
Ii∈J ′ Ii

pick x, y ∈ {0, 1}n uniformly at random
if f(x) 6= f(ySxS̄) then

use binary search to find a block Ij containing a relevant variable
J ′ ← J ′ ∪ {Ij}
if |J ′| > k, reject f

end if
end for
extend (if needed) J ′ to a set J of size k, by adding to it k − |J ′| arbitrary blocks
from I \ J ′
accept f and return J

Remark 1. There are few minor differences between the original algorithm and
the one presented here:

– The algorithm here has reduced probability of error; this can be easily
achieved by increasing the partition size and number of iterations by a con-
stant factor.

– The original algorithm constructs the random partition I by itself; here we
treat I as an argument passed to the algorithm (for convenience).

– The original algorithm does not actually output the set J , rather it identifies
a set J ′ of at most k blocks containing relevant variables. Here T[Bla09]

always returns a set J of size exactly k, by extending (if necessary) the set
J ′ arbitrarily; as we show later, this extension will not affect the conditions
claimed.

Proof (of Lemma 7). Note that once the randomness has been fixed, the number
of possible queries that can be made in any given round is |I \J ′|+1 ≤ `+1, so
|Q(r)| ≤ 40k+1

ε (`+1) (recall that ` is the number of blocks in partition I). Also,
any hybrid zj of two uniformly random strings x, y ∈ {0, 1}n is itself uniformly
random. These two things together mean that the tester is 40k+1

ε (`+1)-smooth,
and we can plug in the value ` = O(k9/ε5) from [Bla09] (note that we modified
slightly the constants therein in order to amplify the success probability).

4.5 Obtaining a good pair (I,J)

We use the following lemma:

Lemma 8. [FKR+02] For any f : {0, 1}n → {0, 1} and A ⊆ [n], dist(f, JunA) ≤
Inff ([n] \A) ≤ 2 · dist(f, JunA).

We also use the fact (see [FKR+02],[Bla09] for a proof) that influence is
monotone and subadditive; namely, for all f : {0, 1}n → {0, 1} and A,B ⊆ [n],
Inff (A) ≤ Inff (A ∪B) ≤ Inff (A) + Inff (B).

Efficient Sample Extractors for Juntas with Applications 13

In the following proposition we claim that the tester T[Bla09] satisfies several
conditions that we need for obtaining the aforementioned sampler.

Proposition 1. There is a tester T[Bla09] for Junk with query complexity O(k log k+
k/ε), that takes a (random) partition I = I1, . . . , I` of [n] as input, where
` = Θ(k9/ε5) is even, and outputs (in case of acceptance) a k-subset J of I
such that for any f the following conditions hold (the probabilities below are
taken over the randomness of the tester and the construction of I):

– if f is θ1(k, ε) close to Junk, T[Bla09] accepts with probability at least 9/10;

– if f is ε/2400-far from Junk, T[Bla09] rejects with probability at least 9/10;

– for any f , with probability at least 4/5 either T[Bla09] rejects, or it outputs
J such that the pair (I,J) is ε/600-good (as per Definition 5).

In particular, if dist(f, Junk) ≤ θ1(k, ε), then with probability at least 4/5 T[Bla09]

outputs a set J such that (I,J) is ε/600-good.

Proof. By Lemma 7, the first two conditions are satisfied by the junta tester,
called with a value of ε′ = ε/2400; note that 10 · θ1(k, ε) = 1/p7(k, ε′).

Let J ′ = (Is1 , . . . , Is|J ′|) be the set output by the original algorithm T[Bla09]

and let S = {s1, . . . , s|J ′|}. Closer inspection of Algorithm 1 shows that, with
probability at least 19/20,

(∗) either f is rejected or the set S satisfies Inff

(
[n]\ (

⋃
j∈S

Ij)
)
≤ ε/4800.

This is because the main loop of algorithm runs for 40(k+1)/ε′ rounds. Suppose
that at any of these, the influence of the remaining blocks is always ≥ ε′/2. Since
the expected number of rounds to find k+1 relevant blocks is at most 2(k+1)/ε′

in this case, it follows that with probability 19/20, a (k+ 1)-th relevant block is
found and f is rejected.

Recall that when |S| < k the set J ′ is extended by putting in it k − |S|
additional “dummy” blocks from I\J ′ (some of them possibly empty), obtaining
a set J of size exactly k.

Now we go back to proving the third item. Let R ∈
(

[n]
≤k
)

denote the set of

the relevant variables of f∗ (the closest k-junta to f), and let V ∈
(

[n]
k

)
, V ⊇ R,

denote the set of the variables of corek(f∗). Assume that dist(f, Junk) ≤ ε/2400,
9 and T[Bla09] did not reject. In this case,

– by (∗), with probability at least 19/20 the set J satisfies

Inff

(
[n] \ (

⋃
Ij∈J

Ij)
)
≤ Inff

(
[n] \ (

⋃
j∈S

Ij)
)
≤ ε/4800;

– since ` � k2, with probability larger than 19/20 all elements of V fall into
different blocks of the partition I;

9 For other f ’s the third item follows from the second item.

14 Lecture Notes in Computer Science: Authors’ Instructions

– by Lemma 4, PrI,y∼DI

[
f(y) = f∗(y)

]
= dist(f, f∗); hence by Markov’s in-

equality, with probability at least 9/10 the partition I satisfies Pry∼DI [f(y) 6=
f∗(y)] ≤ 10 · dist(f, f∗).

So with probability at least 4/5, all three of these events occur. Now we show
that conditioned on them, the pair (I,J) is ε/600-good.

Let U = R∩ (
⋃
Ij∈J Ij). Informally, U is the subset of the relevant variables

of f∗ that were successfully “discovered” by T[Bla09]. Since dist(f, f∗) ≤ ε/2400,
we have Inff ([n] \V) ≤ ε/1200 (by Lemma 8). By the subadditivity and mono-
tonicity of influence we get

Inff ([n]\U) ≤ Inff ([n]\V)+Inff (V \U) ≤ Inff ([n]\V)+Inff

(
[n]\(

⋃
Ij∈J

Ij)
)
≤ ε/960,

where the second inequality follows from V \ U ⊆ [n] \ (
⋃
Ij∈J Ij). This means,

by Lemma 8, that there is a k-junta h in JunU satisfying dist(f, h) ≤ ε/960, and
by triangle inequality, dist(f∗, h) ≤ ε/2400 + ε/960 < ε/600. Based on this h,
we can verify that the pair (I,J) is ε/600-good by going over the conditions in
Definition 5.

We are finally ready to complete the proof of Lemma 2.

4.6 Proof of Lemma 2

We start by describing how AP and AS operate: The preprocessor AP starts by
constructing a random partition I and calling the junta tester T[Bla09]. Then, in
case T[Bla09] accepted, AP encodes in the state α the partition I and the subset
J ⊆ I output by T[Bla09] (see Proposition 1), along with the values of k and ε.

The sampler AS , given α, obtains a pair (x, a) ∈ {0, 1}k × {0, 1} by executing
samplerI,J (f) (once).

Now we show how Lemma 2 follows from Proposition 1. The first two items
are immediate. As for the third item, notice that we only have to analyze the case
where dist(f, f∗) ≤ ε/2400 and T[Bla09] accepted; all other cases are taken care
of by the first two items. By the third item in Proposition 1, with probability
at least 4/5 the pair (I,J) is ε/600-good. If so, by Lemma 5 samplerI,J (f) is
an (η, µ)-noisy sampler for some permutation of corek(f∗), with η ≤ ε/300 +
4k2/`+10 ·dist(f, f∗) ≤ ε/120+4k2/` and µ ≤ 4k2/`. The final step we apply is
the conversion from Lemma 3, with which we obtain a (ε/120+4k2/`+4k2/`) ≤
(ε/100)-noisy sampler for some permutation of corek(f∗). ut

5 Lower bounds

In order to analyze how close to optimal our algorithms are, we show in this
section lower bounds concerning most of the problems studied here. Some of the
bounds were known from prior work; our exposition unifies most of them by
using the notion of k-wise independent generators.

Efficient Sample Extractors for Juntas with Applications 15

Definition 7. Let C denote a class of functions f : F → S, where F is a field
and S a finite set. We say that C can generate k-wise independence if there
is a distribution D supported on elements of C such that the random variables
{f(x)}x∈F are k-wise independent and each of them is uniformly distributed on
S, i.e.

Pr
f∈D

[f(x1) = α1 ∧ f(x2) = α2 ∧ . . . ∧ f(xk) = αk] = |S|−k

for any k distinct x1, . . . , xk ∈ F and any α1, . . . , αk ∈ S.

We identify the set {0, 1}n with the field with 2n elements. Clearly the class
of all boolean functions f : {0, 1}n → {0, 1} can generate n-wise independence
(here F = GF (2n) and S = {0, 1}).

For a less trivial example, take for C the class of all polynomials of degree
≤ k−1 over F. This class can generate k-wise independence, because any degree
≤ k− 1 univariate polynomial over a field can be interpolated from its values on
any set of k distinct points, and the solution is unique. From this we can obtain a
family of boolean functions on {0, 1}n that generates k-wise independence in the
following way: associate with each polynomial p : GF (2n) → GF (2n) of degree
k − 1 the function that, on input x ∈ {0, 1}n, returns the last bit of p(x). (A
different, slightly more efficient way, would be to work on a field of size roughly
2n/n). Clearly the resulting family can generate k-wise independence.

The following observation is just a restatement of Definition 7, coupled with
Yao’s principle:

Observation 2 If C can generate k-wise independence under distribution D,
then at least k + 1 adaptive queries are needed to distinguish, with probability
> 1/2, between a function f drawn from D and a uniformly random f : F→ S.

We say class C is far from uniform if a uniformly random function f : F→ S
is (say) 1/10-far from every element of C with probability larger than 2/3. It
follows that if C is both far from uniform and capable of generating k-wise
independence, then more than k queries are necessary for testing membership
in it (with distance parameter 1/10). From our second example we see that the
latter condition holds for any class C that can evaluate any polynomial of degree
< k over F2n , therefore we obtain:

Observation 3 If C is far from uniform and contains all functions computed by
polynomials of degree < k over GF (2n), then testing membership in C requires
> k queries.

By a result of Healy and Viola [HV06], field arithmetic overGF (2n) is in TC0.
In particular it is possible to evaluate any t-term polynomial p ∈ GF (2n)[x] with
a circuit built up from threshold gates having constant depth and size poly(n, t),
which is poly(n) if t = poly(n). It is known that TC0 is contained in NC1. It
is also known that NC1 corresponds precisely to the set of Boolean formulas of
polinomial size, and also to the set of functions computed by width-5 branching
programs of polynomial size [Bar89]. Summarizing, the last bit of polynomial
functions over GF (2n) of degree n (and therefore n+ 1 terms) can be computed
by boolean formulae of size nc and branching programs of size nc for some c.

16 Lecture Notes in Computer Science: Authors’ Instructions

Proposition 2. The following lower bounds hold for the respective testing prob-
lems (for size parameter up to some polynomial of n):

1. size-s boolean formulae, branching programs and boolean circuits: poly(s).
(The bound for circuits appeared in [CGM11]).

2. functions with Fourier degree d: Ω(d).
3. s-sparse polynomials over GF (2): Ω(

√
s).

4. s-term DNFs, size-s decision trees: Ω(log s).

Proof. (sketch). For items 1 and 3 we follow the approach outlined above. The
fact that each of the respective classes is far from uniform is easy to verify, so
we skip the proof of that part.

1. Let c be as before and m = 2s1/c ≤ n. From the above, we can find a dis-
tribution over boolean functions f : {0, 1}m → {0, 1} computed by boolean
formulae or branching programs of size s, which is both far from uniform
and can generate m/2 = s1/c independence. (One can also extend these func-
tions to f ′ : {0, 1}n → {0, 1} by padding without an increase in the distance
from uniform, size parameter, or hardness of testing). Boolean formulae are
a special case of Boolean circuits, hence a lower bound of s1/c follows for
testing any of these clases.

2. See [CGM11].
3. This follows from the recent work of Goldreich [Gol10] showing an Ω(

√
s)

lower bound for distinguishing s-parities from random parities, as any s-
parity is in particular an s-sparse polynomial. (It appears that his techniques
can be improved further to yield an Ω(s/(log s log log s)) lower bound).

4. Any function can be computed by DNFs and decision trees of size 2n. It is
known (see [CGM11] for a precise statement and its proof) that there are
k-juntas, and hence DNFs of size s = 2k, whose random permutations look
uniformy random to any tester making fewer than δk = δ log s queries for
some constant δ > 0. Provided s ≤ 2n/2, the class of random permutations
of any such junta is far from uniform, hence the result.

Remark 2. The lower bound for circuits appeared in [CGM11], but the argument
given here is more direct. From independent work of Blais, Brody and Matulef
[BBM11] follows a stronger lower bound of Ω(s) queries for s-sparse polynomials.
They also obtain the Ω(log s) lower bounds for DNFS and decision trees.

Acknowledgement

We thank Noga Alon, Eric Blais and Eldar Fischer for very useful discussions.

References

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. J. Comput. Syst. Sci., 38:150–164,
February 1989.

Efficient Sample Extractors for Juntas with Applications 17

[BBM11] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds
via communication complexity. Personal communication, 2011.

[Bla09] Eric Blais. Testing juntas nearly optimally. In Proc. ACM symposium on
the Theory of computing, pages 151–158, New York, NY, USA, 2009. ACM.

[CGM11] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Nearly tight
bounds for testing function isomorphism. In Proc. of the ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2011.

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt
Rubinfeld, Rocco A. Servedio, and Andrew Wan. Testing for concise repre-
sentations. Proc. IEEE Symposium on Foundations of Computer Science,
0:549–558, 2007.

[DLM+08] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, and
Andrew Wan. Efficiently testing sparse GF(2) polynomials. In ICALP ’08:
Proceedings of the 35th international colloquium on Automata, Languages
and Programming, Part I, pages 502–514, Berlin, Heidelberg, 2008. Springer-
Verlag.

[FKR+02] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorod-
nitsky. Testing juntas. In FOCS, pages 103–112, 2002.

[Gol10] Oded Goldreich. On testing computability by small width obdds. In
APPROX-RANDOM, pages 574–587, 2010.

[GOS+09] Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and
Karl Wimmer. Testing fourier dimensionality and sparsity. In ICALP, pages
500–512, 2009.

[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arith-
metic in finite fields of characteristic two. In Bruno Durand and Wolfgang
Thomas, editors, STACS 2006, volume 3884 of Lecture Notes in Computer
Science, pages 672–683. Springer Berlin / Heidelberg, 2006.

[PRS02] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean
formulae. SIAM J. Discrete Math., 16(1):20–46, 2002.

[Ser10] Rocco A. Servedio. Testing by implicit learning: a brief survey. 2010.

Appendix

A Proof of Lemma 1

Consider the tester described in Algorithm 2. It is clear that it uses O
(

1+log |S|
ε2

)

Algorithm 2 (tests if g ∈ S)

let q ← c+log |S|
ε2

, where c is a constant to be specified later
obtain q independent samples (x1, a1), . . . , (xq, aq) from g̃

accept if and only if there exists a function f ∈ S such that
∣∣∣{i ∈ [q] : f(xi) 6=

ai
}∣∣∣ < εq/2.

samples.

Let f ∈ S, δf = dist(f, g) and let ∆f ⊆ {0, 1}k, |∆f | = δf2k, be the set of
inputs on which f and g disagree. Since the x’s are independent and uniformly
distributed random variables, we have that Prx[x ∈ ∆f] = δf . Using Chernoff
bounds (additive form) we obtain

Pr
[∣∣∣{i ∈ [q] : f(xi) 6= g(xi)}| − δfq

∣∣∣ > εq/10
]

= 2−Ω(ε2q),

which is less than 1
20|S| for a sufficiently large constant c. Therefore, with prob-

ability at least 19/20,

|{i ∈ [q] : f(xi) 6= g(xi)}| = δfq ±
εq

10

holds for all f ∈ S. To relate this to the fraction of samples (x, a) for which
f(x) 6= a, we use Markov’s inequality:

Pr
[
|{i ∈ [q] : ai 6= g(xi)}| ≥ εq/5

]
≤ Pr

[
|{i ∈ [q] : ai 6= g(xi)}| ≥ 20ηq

]
≤ 1/20.

Therefore, with probability at least 9/10,

|{i ∈ [q] : f(xi) 6= ai}| = δfq ± 3εq/10

for all f ∈ S.

The result follows, since if dist(g,S) < ε/10 then there is f ∈ S such that
δfq+ 3εq/10 < εq/2; and if dist(g,S) > 9ε/10 then for all f ∈ S, δfq− 3εq/10 >
εq/2. ut

Efficient Sample Extractors for Juntas with Applications 19

B Proof of Lemma 4

Item 1 Each choice of z ∈ {0, 1}`, |z| = `/2, in Definition 3 splits I into two
equally-sized sets: I0 and I1; and the bits corresponding to indices in Ib (where
b ∈ {0, 1}) are set to b in the construction of y. For each index i ∈ [n], the block
it is assigned to is chosen independently at random from I, and therefore falls
within I0 (or I1) with probability 1/2, independently of other j ∈ [n]. (This
actually shows that the first item of the lemma still holds if z is an arbitrarily
fixed string of weight `/2, rather than a randomly chosen one).

Item 2 Let k = |J |. Let us prove the claim on the L∞ distance, which implies
the other one. We may assume that all sets Ji in J are non-empty; having empty
sets can only decrease the distance to uniform. Let w ∈ {0, 1}k. The choice of
y ∼ DI , in the process of obtaining x ∼ DJ , is independent of J ; thus, for every
i ∈ [k] we have

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≤ `/2

`− k
<

1

2
+
k

`
,

and

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≥ `/2− k
`− k

>
1

2
− k

`
.

Using the inequalities 1 −my ≤ (1 − y)m for all y < 1,m ∈ N and (1 + y)m ≤
emy ≤ 1 + 2my for all m ≥ 0, 0 ≤ my ≤ 1/2, we conclude

Pr
x∼DJ

[x = w] =

(
1

2
± k

`

)k
=

1

2k

(
1± 4k2

`

)
.

whereas a truly uniform distribution U should satisfy Prx∼U [x = w] = 1/2k. ut

C Proof of Lemma 5

By item 2b in Definition 5, it suffices to prove that

Pr
y∼DI

[f∗(y) 6= corek(f∗)π(extractI,J (y))] < 2δ + 4k2/`

for some π.
Let h be the k-junta witnessing the fact that the pair (I,J) is δ-good. Let

V ⊆ [n] be the set of k variables of corek(f∗). (Recall that V may actually be
a superset of the relevant variables of f∗.) Let J ′ , {Ij ∈ I : Ij ∩ V 6= ∅}
be an ordered subset respecting the order of J , and let π be the permutation
whose inverse maps the i-th relevant variable of f∗ (in the standard order) to
the index of the element of J ′ in which it is contained. We assume without loss
of generality that π is the identity map.

It follows from Definition 5 that |J ′| = |V | = k, since each block in I
contains at most one variable of corek(f∗). For any I-uniform y ∈ {0, 1}n, let

20 Lecture Notes in Computer Science: Authors’ Instructions

x , extractI,J (y) and x′ , extractI,J ′(y) denote the k-bit strings corresponding
to J and J ′. By definitions, we have the equalities

(1) f∗(y) = corek(f∗)(x′),
(2) corek(h)(x) = corek(h)(x′).

The first equality is by Definition 2, and the second one follows from items 1a
and 3a in Definition 5. From item 1b we also have

(3) Prr∈{0,1}k [corek(f∗)(r) 6= corek(h)(r)] < δ,
where r is picked uniformly at random. However, by the second item of Lemma
4, the distribution DJ is 2k2/` close to uniform; combining this with (3) we also
get

(4) Pry∼DI [corek(f∗)(x) 6= corek(h)(x)] < δ + 2k2/`.
Likewise, we have

(5) Pry∼DI [corek(f∗)(x′) 6= corek(h)(x′)] < δ + 2k2/`,
thus, using (2, 4, 5) and the union bound we get

(6) Pry∼DI [corek(f∗)(x′) 6= corek(f∗)(x)] < 2δ + 4k2/`.
Combining (1) and (6) we conclude that

Pr
y∼DI

[f∗(y) 6= corek(f∗)(x)] < 2δ + 4k2/`,

and the claim follows. ut

