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Abstract. Helly’s theorem is a fundamental result in discrete geometry, describ-
ing the ways in which convex sets intersect with each other. If S is a set of n
points in Rd, we say that S is (k,G)-clusterable if it can be partitioned into k
clusters (subsets) such that each cluster can be contained in a translated copy
of a geometric object G. In this paper, as an application of Helly’s theorem, by
taking a constant size sample from S, we present a testing algorithm for (k,G)-
clustering, i.e., to distinguish between two cases: when S is (k,G)-clusterable,
and when it is ε-far from being (k,G)-clusterable. A set S is ε-far (0 < ε ≤ 1)
from being (k,G)-clusterable if at least εn points need to be removed from S
to make it (k,G)-clusterable. We solve this problem for k = 1 and when G is
a symmetric convex object. For k > 1, we solve a weaker version of this prob-
lem. Finally, as an application of our testing result, in clustering with outliers,
we show that one can find the approximate clusters by querying a constant size
sample, with high probability.

1 Introduction

Given a set of n points in Rd, deciding whether all the points can be contained in a unit
radius ball is a well known problem in Computational Geometry. Of course, the goal
is to solve this problem as quickly as possible. In order to solve this problem exactly,
one has to look at all the n points in the worst case scenario. But if n is too large, an
algorithm with linear running time may not be fast enough. Thus, one may be interested
in “solving” the above problem by taking a very small size sample and outputting the
“right answer” with high probability. In this paper, we consider the promise version of
this problem. More precisely, for the given proximity parameter ε (where 0 < ε ≤ 1),
our goal is to distinguish between the following two cases:

– all the points can be contained in a unit radius ball,
– no unit radius ball can contain more than (1− ε) fraction of points.

The above promise problem falls in the realm of property testing (see [10], [9] and
[17]). In property testing, the goal is to look at a very small fraction of the input and
decide whether the input satisfies the property or is “far” from satisfying it. Property
testing algorithms for computational geometric problems have been studied earlier in
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[6], [5] and [1]. In this paper, we study the above problem in property testing setting
and give a simple algorithm to solve it. The algorithm queries only a constant number
of points (where the constant depends on the dimension d and ε, but is independent of
n) and correctly distinguishes between the two cases mentioned above with probability
at least 2/3. While the algorithm is very simple, the proof of correctness is a little in-
volved, for which we use Helly’s theorem. Helly’s theorem ([11]) states that if a family
of convex sets in Rd has a non-empty intersection for every d + 1 sets, then the whole
family has a non-empty intersection. In fact, since Helly’s theorem also works for sym-
metric convex bodies, we can solve the above problem for any symmetric convex body
instead of just a unit radius ball. Thus, we have

Theorem 1. Let A be a symmetric convex body. If S is a set of n points in Rd as input
with the proximity parameter ε (where 0 < ε ≤ 1), then there is an algorithm A that
randomly samples O( d

εd+1 ) many points and

– A accepts, if all the points in S can be contained in a translated copy of A,
– A rejects with probability ≥ 2/3, if any translated copy of A can contain at most
(1− ε)n points.

The running time of A is O( d
εd+1 ).

One would like to generalize the above problem for more than one object, i.e., given
k translated copies of object B, the goal is to distinguish between the following two
cases with high probability:

– all n points can be contained in k translated copies of B,
– at least ε fraction of points cannot be contained in any k translated copies of B.

We would like to conjecture that a similar algorithm, as stated in Theorem 1, would
also work for the generalized k object problem. Unfortunately, Helly’s theorem does
not hold for the k object setting, but we would like to conjecture that a version of the
Helly-type theorem does hold for this setting. Assuming the above conjecture, we can
obtain a similar algorithm for the k object setting. We can also unconditionally solve a
weaker version of the k object problem.

Connection to Clustering: We can also view this problem in the context of cluster-
ing. Clustering ([15],[12], [2]) is a common problem that arises in the analysis of large
data sets. In a typical clustering problem, we have a set of n input points in d dimen-
sional space and our goal is to partition the points into k clusters. There are two ways
to define the cluster size (cost):

– the maximum pairwise distance between an arbitrary pair of points in the cluster,
– twice the maximum distance between a point and a chosen centroid.

The first one is called as k-center clustering for diameter cost and the second one
is called as k-center clustering for radius cost. In the k-center problem, our goal is to
minimize the maximum of these distances. Computing k-center clustering is NP-hard:
even for 2 clusters in general Euclidean space (of dimension d); and also for general
number of k clusters even on a plane.
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In this paper, we assume that the cluster can be of symmetric convex shape also.
Given a set S of n points and a symmetric convex body A in Rd, we say that the set of
points is (k,A)-clusterable if all the points can be contained in k translated copies of
A. In the promise version of the problem, for a given proximity parameter ε (where 0 <
ε ≤ 1), our goal is to distinguish between the cases when S is (k,A)-clusterable and
when it is ε-far from being (k,A)-clusterable. We say that S is ε-far from being (k,A)-
clusterable if at least εn points need to be removed from S in order to make it (k,A)-
clusterable.

We solve the above problem for k = 1 with constant number of queries. For k > 1,
we solve a weaker version of the problem. In order to solve the promise version of the
problem, we have designed a randomized algorithm which is generally called as tester.

Our algorithms can also be used to find an approximately good clustering. In clus-
tering with outliers (anomalies), when we have the ability to ignore some points as
outliers, we present a randomized algorithm that takes a constant size sample from in-
put and outputs radii and centers of the clusters. The benefit of our algorithm is that we
construct an approximate representation of such clustering in time which is independent
of the input size.

The most interesting part of our result is that we initiate application of Helly-type
theorem in property testing in order to solve the clustering problem.

1.1 Other related work

Alon et al. [1] presented testing algorithm for (k, b)-clustering. A set of points is said to
be (k, b)-clusterable if it can be partitioned into k clusters, where radius (or diameter)
of every cluster is at most b. Section 5 of [1] presents a testing algorithm for radius cost
under the L2 metric. The analysis of this algorithm can be easily generalized to any
metric under which each cluster is determined by a simple convex set (a convex set in
Rd is called simple if its VC-dimension is O(d)).

For testing 1-center clustering, our result and the result from [1] give constant query
testing algorithms. Although the two results have incomparable query complexity (in
terms of number of queries depending on ε), for testing k-center clustering, we give a
weaker query complexity algorithm which works for fixed k and d, and for ε ∈ (ε′, 1]
where ε′ = ε′(k, t) (where t is a constant which depends on the shape of the geometric
object). Alon et al. used the sophisticated VC-dimension technique while we have used
Helly-type results.

1.2 Organization of the paper

In Section 2, we introduce the notations, definitions and state Helly and Helly-type
theorems that are used in this paper. In Section 3, we design the tester for (1, A)-cluster
testing for a given symmetric convex body A. In Section 4, we design the tester for
(k,G)-cluster testing for a given geometric object G. In Section 5, as an application
of results from Sections 3 and 4, we present an algorithm to find approximate clusters
with outliers.
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2 Preliminaries

2.1 Definitions

n-piercing: A family of sets is called n-pierceable if there exists a set S of n points such
that each member of the family has a non-empty intersection with S.
Homotheticity: Let A and B be two geometric bodies in Rd. A is homothetic to B if
there exist v ∈ Rd and λ > 0 such that A = v + λB (where λ is called scaling factor
of B). In particular, when λ = 1, A is said to be a translated copy of B.
Symmetric convex body: A convex body A is called symmetric if it is centrally sym-
metric with respect to the origin, i.e., a point v ∈ Rd lies in A if and only if its re-
flection through the origin −v also lies in A. In other words, for every pair of points
v1, v2 ∈ Rd, if v1 ∈ v2 +A, then v2 ∈ v1 +A and vice versa. Circles, ellipses, n-gons
(for even n) with parallel opposite sides are examples of symmetric convex bodies.

2.2 Property Testing

In property testing, the goal is to query a very small fraction of the input and decide
whether the input satisfies a certain predetermined property or is “far” from satisfying
it. Let x = {0, 1}n be a given input string. Then, a property testing algorithm, with
query complexity q(|x|) and proximity parameter ε for a decision problem L, is a ran-
domized algorithm that makes at most q(|x|) queries to x and distinguishes between the
following two cases:

– if x is in L, then the algorithm Accepts x with probability at least 2
3 ,

– if x is ε-far from L, then the algorithm Rejects x with probability at least 2
3 .

Here, “x is ε-far from L” means that the Hamming distance between x and any string
in L is at least ε|x|. A property testing algorithm is said to have one-sided error if it
satisfies the stronger condition that the accepting probability for instances x ∈ L is 1
instead of 2

3 .

2.3 Helly’s and Fractional Helly’s Theorem

In 1913, Eduard Helly proved the following theorem:

Theorem 2. (Helly’s Theorem [11]) Given a finite family of convex sets C1, C2, ..., Cn
in Rd (where n ≥ d+1) such that if intersection of every d+1 of these sets is non-empty,
then the whole collection has a non-empty intersection.

Katchalski and Liu proved the following result which can be viewed as a fractional
version of the Helly’s Theorem.

Theorem 3. (Fractional Helly’s Theorem [16]) For every α (where 0 < α ≤ 1), there
exists β = β(d, α) with the following property. Let C1, C2, ..., Cn be convex sets in Rd
(where n ≥ d + 1) and if at least α

(
n
d+1

)
of the collection of subfamilies of size d + 1

has a non-empty intersection, then there exists a point contained in at least βn sets.

Independently, Kalai [8] and Eckhoff [13] proved that β(d, α) = 1− (1− α)
1

(d+1) .
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2.4 Helly-type theorem for more than one piercing in convex bodies

Helly’s theorem on intersections of convex sets focuses on 1-pierceable families. Danzer
et al. [7] investigated the following Helly-type problem : If d and m are positive inte-
gers, what is the least h = h(d,m) such that a family of boxes (with parallel edges) in
Rd is m-pierceable if each of its h-membered subfamilies is m-pierceable? Following
is the main result of their paper:

Theorem 4. 1. h(d, 1) = 2 for all d (where d ≥ 1);
2. h(1,m) = m+ 1 for all m;

3. h(d, 2) =

{
3d for odd d;
3d− 1 for even d;

4. h(2, 3) = 16;
5. h(d,m) =∞ for d ≥ 2, n ≥ 3 and (d,m) 6= (2, 3).

Katchalski et al. proved a result for families of homothetic triangles in a plane
([14]). This result is similar to the intersection property of axis parallel boxes in Rd,
studied by Danzer et al. This result can also be considered as a Helly-type theorem for
more than one piercing of convex bodies. Theorem 5, below, presents the main result of
their paper.

Theorem 5. Let T be a family of homothetic triangles in a plane. If any nine of them
can be pierced by two points, then all the members of T can be pierced by two points.

3 Robust Helly for one piercing of symmetric convex body

Helly’s theorem is a fundamental result in discrete geometry, describing the ways in
which convex sets intersect with each other. In our case, we will focus on those subset
of convex sets whose intersection properties behave symmetric in certain ways. Obser-
vation 6 explains this in detail. In order to design the tester for (1, A)-cluster testing
problem, we will crucially use this observation, Helly’s and fractional Helly’s theorem.

Observation 6 Let A be a symmetric convex body in Rd containing n points, then n
translated copies ofA centered at these n points have a common intersection. Moreover,
a translated copy of A centered at a point in the common intersection contains all these
n points.

Lemma 7 Given a set S of n points in Rd, if every d + 1 (where d + 1 ≤ n) of them
are contained in (a translated copy of) a symmetric convex bodyA, then all the n points
are contained in (a translated copy of) A.

Proof: Consider a set B of translated copies of A centered at points in S. Since every
d + 1 of the given points are contained in (a translated copy of) A, by Observation 6,
every d + 1 elements in B has a non-empty intersection. By Helly’s theorem, all ele-
ments in B have a non-empty intersection. Let q be a point from this intersection. Then
q belongs to every element in B and hence, by Observation 6, all the centers of the ele-
ments in B, i.e., all the n points in S, are contained in (a translated copy of) A centered
at q. ut
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Lemma 8 Let S be a set of n points in Rd (where n ≥ d + 1). If at least εn (where
0 < ε ≤ 1) points cannot be contained in any translated copy of a symmetric convex
body A, then at least εd+1 fraction of all the d + 1 size subsets of S (number of such
subsets is

(
n
d+1

)
) cannot be contained in any translated copy of A.

Proof: Consider a set B of translated copies of A centered at points in S. Now, by
fractional Helly’s theorem, for every α (where 0 < α ≤ 1), there exists β = β(d, α)
such that if at least an α fraction of

(
n
d+1

)
subsets (of size d+ 1) in B has a non-empty

intersection, then there exists a point (say p) which is contained in at least β fraction of
elements of B.

Consider a translated copy ofA centered at p. By Observation 6, for every α (where
0 < α ≤ 1), there exists β = β(d, α) such that if at least an α fraction of

(
n
d+1

)
subsets

(of size d+ 1) in S are contained in A, then at least βn points are contained in A.
Thus, if at least (1−β)n points cannot be contained inA, then at least 1−α fraction

of
(
n
d+1

)
subsets (of size d + 1) in S cannot be contained in A. (Contrapositive of the

above statement.)
Since β = 1 − (1 − α)

1
(d+1) ([8], [13]), choosing 1 − β as ε makes 1 − α equal to

εd+1, which are the required values of the parameters. ut

Theorem 9. Consider a set of n points in Rd (n ≥ d+ 1) located such that at least εn
(where 0 < ε ≤ 1) points cannot be contained in any translated copy of a symmetric
convex body A. If we randomly sample 1

εd+1 ln
1
δ (where 0 < δ ≤ 1) many sets of d+ 1

points, then there exists a set in the sample which cannot be contained in any translated
copy of A, with probability at least 1− δ.

Proof: By Lemma 8, if at least εn points cannot be contained in (any translated copy
of) A, then at least εd+1 fraction of

(
n
d+1

)
sets (of size d + 1) cannot be contained

in (any translated copy of) A. A set of d + 1 points cannot be contained in A with
probability εd+1. Hence, the probability that it can be contained in A is 1− εd+1. Thus,
the probability that all the sampled sets are contained in A is ≤ (1 − εd+1)

1

εd+1 ln 1
δ ≤

e− ln 1
δ = δ. ut

Algorithm 1 is a randomized algorithm, tester, for (1, A)-cluster testing problem.

Data: A set S of n points in Rd (input is given as black-box), 0 < δ, ε ≤ 1.
Result: Returns a set of d+ 1 points, if it exists, which cannot be contained in A

or accepts (i.e., all the points can be contained in A).
1 repeat
2 select a set (say W ) of d+ 1 points uniformly at random from S
3 if W cannot be contained in A then
4 return W as witness
5 end
6 until 1

εd+1 ln
1
δ many times;

7 if no witness found then
8 return /* all the points can be contained in A */
9 end

Algorithm 1: (1, A)-cluster testing in a symmetric convex body A
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This algorithm has a one sided error, i.e., if all the points can be contained in a
symmetric convex body A then it accepts the input, else it outputs a witness with prob-
ability at least 1−δ. Correctness of the algorithm follows from Theorem 9. Thus, in the
problem of testing (1, A)-clustering for a symmetric convex body A, the sample size is
independent of the input size and hence the property is testable. Moreover, the tester
works for all the possible values of ε (for 0 < ε ≤ 1).

4 Robust Helly for more than one piercing of convex bodies

4.1 Helly-type results for more than one piercing of convex bodies

The following lemma says that a “Helly-type” result is not true for circles even for 2-
piercing. The result can be easily generalized for higher dimensions also. (The proof of
the following lemma was suggested by Prof. Jeff Kahn in a private communication.)

Lemma 10 Consider a set of n circles in a plane. For any constant w (where w < n),
the condition that every w circles are pierced at two points is not sufficient to ensure
that all the circles in the set are pierced at two points.

We present a proof of the above lemma in the full version of this paper [3].
Using arguments similar to the proof of above lemma, it is easy to prove that a

“Helly-type” result for more than one piercing is also not true for a set of translated
ellipsoids. Katchalski et al. [14] and Danzer et al. [7] proved a “Helly-type” result for
more than one piercing of triangles and boxes, respectively. According to [14], a “Helly-
type” result for more than one piercing is not true for centrally symmetric hexagon
(with parallel opposite edges). Similar type of result is true for triangles and pentagons
(with pair of parallel edges) which are not symmetric convex bodies. Thus, among
symmetric convex bodies (spheres, ellipsoids and n-gons (for n ≤ 6)), a “Helly-type”
result for more than one piercing is possible only for parallelograms. We have following
observation regarding the same (we present a proof in the full version of this paper [3]):

Observation 11 Let S be a set of n points in Rd. If every set of h points (for finite
possible values of h, see Theorem 4) in S is contained in m (where m > 0) translated
parallelograms, then all the n points are contained in m translated parallelograms.

4.2 Fractional Helly for more than one piercing of convex bodies

We now design a weaker version of tester for (k,G)-clustering (where G is a bounded
geometric object and k > 1). The tester works for some particular value of ε ∈
(ε′(k, t), 1], where t is some constant that depends on the shape of geometric object.

We state the following conjecture for more than one piercing of convex bodies.

Conjecture 12 For every α (where 0 < α ≤ 1), there exists β = β(α, k, d) with the
following property. Let C1, C2, .., Cn be convex sets in Rd, n ≥ k(d+ 1), such that at
least α.

(
n

k(d+1)

)
of the collection of subfamilies of size k(d+1) are pierced at k points,

then at least βn sets are pierced at k points. Also, β approaches 1 as α approaches 1.
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Lemma 13 If Conjecture 12 is true, then we have the following: Consider a set of n
points in Rd (where n ≥ k(d + 1)). If at least εn (where 0 < ε ≤ 1) points cannot
be contained in any k translated copies of symmetric convex body A, then at least
γ(β(ε, k, d)) fraction of

(
n

k(d+1)

)
sets cannot be contained in any k translated copies of

A.

Proof: Proof of this lemma is similar to the proof of Lemma 8. ut

In the above lemma, γ is an appropriately chosen function to compute the value of
1−α, i.e., the fraction of

(
n

k(d+1)

)
sets which cannot be contained in k translated copies

of A.
Now, we prove a weaker version of Conjecture 12. We show that for bounded geo-

metric objects, a weaker version of fractional Helly for more than one piercing is true.
We use greedy approach to prove the same. We prove it for some ε ∈ (ε′, 1], where
ε′ = ε′(k, t) (where t is a constant that depends on the shape of the geometric object).
The result is true only for constant k and d.

Lemma 14 Consider k translated copies of a geometric object G and a set of n points
in Rd (for constant k and d). Then there exist ε′ = ε′(k, t) (where ε′(k, t) = 1 −

1
2(t+1)(k+1) , t is a constant that depends on the shape of the geometric object) such that
for all ε ∈ (ε′, 1], if at least εn points cannot be contained in any k translated copies
of G, then there exist at least Ω(nk+1) many witnesses of k+1 points which cannot be
contained in any k translated copies of G.

Proof: We say a geometric object G is best if it encloses the maximum number of
points from the given set of n points. Now, we start with such a best object. Let us say
the best object contains at least c0(1 − ε)n points (where 0 < c0 ≤ 1). Now draw
an object, LG, concentric and homothetic with respect to G, having a scaling factor of
2 + ε (for 0 < ε � 1, see the definition of Homotheticity in Subsection 2.1 where
v = 0 and λ = 2 + ε). The annulus obtained by two concentric objects G and LG can
be filled with constant many (say t (= κd − 1), 3 we present a proof of this in the full
version of this paper [3]) translated copies of G. Since we started with the best object,
the annulus contains at most tc0(1− ε)n points. Hence, the number of points which are
outside LG is at least εn − tc0(1 − ε)n = ε1n, where ε1 = ε − tc0(1 − ε). We throw
away all the points in the annulus. Now, we are left with best object that containing at
least c0(1− ε)n points and the remaining space containing at least ε1n points.

Now, we repeat the above process on ε1n points and would keep on repeating it
until every point is either deleted or contained in some translated copies of G. Thus,
total number of points that we have deleted from annuli is at most tΣi≥0ci(1 − εi)n
and total number of points that are inside translated copies of G is at least Σi≥0ci(1−
εi)n (where ε0 = ε).

By construction, the total number of points inside translated copies of G and the
points that have been deleted from annuli is at least n. Thus,

Σi≥0ci(1− εi)n+ tΣi≥0ci(1− εi)n ≥ n (where ε0 = ε).

3 κ is (ceiling of) the ratio of side length of the smallest d-cube circumscribing LG to that of
the largest d-cube (homothetic w.r.t. smallest d-cube circumscribing LG) inscribing G.
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Σi≥0ci(1− εi)n ≥
n

t+ 1
.

Let Gi denotes the i-th geometric object and |Gi| denotes the number of points con-
tained in it. Thus,

Σi≥0|Gi| ≥
n

t+ 1
.

By assumption, k translated copies of G can contain at most (1− ε)n points.
Thus, |Gi| ≤ (1− ε)n. Since ε > 1− 1

2(t+1)(k+1) ,

|Gi| <
n

2(t+ 1)(k + 1)
.

Now, our goal is to make k+1 buckets, S1, S2, .., Sk+1, fromGi’s such that each bucket
contains at least n

2(t+1)(k+1) points and at most n
(t+1)(k+1) points. We construct these

buckets by adding points from Gi’s until its size become at least n
2(t+1)(k+1) . Since

each |Gi| < n
2(t+1)(k+1) and Σi≥0|Gi| ≥ n

t+1 , this construction is possible. Thus, for a
particular bucket Si,

n

2(t+ 1)(k + 1)
≤ |Si| ≤

n

(t+ 1)(k + 1)
.

Now, choosing one point from each of the (k + 1) buckets gives a set of k + 1 points
as a witness, which cannot be contained in k translated copies of G. Thus, there are at

least
(

1
2(t+1)(k+1)

)k+1

nk+1 (= Ω(nk+1)) many witnesses. ut

Theorem 15. Consider k translated copies of a geometric object G and a set of n
points in Rd (for constant k and d). Then there exist ε′ = ε′(k, t) (where t is a constant
that depends on the shape of the geometric object) such that for all ε ∈ (ε′, 1], at least
εn points cannot be contained in any k translated copies of G. Now, if we randomly
sample 1

c ln
1
δ (where 0 < δ ≤ 1 and cnk+1 is the number of witnesses, see Lemma 14)

many sets of size k + 1, then there exists a set in the sample which cannot be contained
in any k translated copies of G, with probability at least 1− δ.

We present a proof of the above theorem in the full version of this paper [3].

Similar to tester for (1, A)-cluster testing problem, we present a tester (Algorithm 2)
for problem (k,G)-cluster testing. If all the points can be contained in k translated
copies of G then algorithm accepts the input, else it outputs a witness with probability
at least 1− δ. Correctness of the algorithm follows from Theorem 15. Thus, similar to
testing (1, A)-clustering, this property is also testable. But, the tester only works for
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constant k and d and for ε ∈ (ε′, 1] (see Lemma 14).

Data: A set S of n points in Rd (input is given as black-box), 0 < δ ≤ 1 and
ε ∈ (ε′, 1].

Result: Returns a set of k + 1 points, if it exists, which cannot be contained in k
translated copies of G, or accepts (i.e., all the points can be contained in
it).

1 repeat
2 select a set (say W ) of k + 1 points uniformly at random from S
3 if W cannot be contained in k translated copies of G then
4 return W as witness
5 end
6 until 1

c ln
1
δ many times;

7 if no witness found then
8 return /* all the points can be contained in k translated copies of G */
9 end

Algorithm 2: (k,G)-cluster testing in geometric objects

5 Application in Clustering with Outliers

While considering the clustering problem, we mostly assume that data is perfectly clus-
terable. But a few random points (outliers, noise) could be added in the data by an
adversary. For example, in the k-center clustering, if an adversary adds a point in the
data which is very far from the original set of well clustered points, then in the opti-
mum solution that point becomes center of its own cluster and the remaining points are
forced to clustered with (k − 1) centers only. Also, it is even difficult to locate when a
point becomes an outlier. For example: consider a set of points where we need to find
its optimal k-center clustering. Take a point from that set and keep moving it far from
the remaining set. Now, it is very difficult to locate correctly at which place that point
becomes center of its own cluster and the remaining points are left with (k − 1)-center
clusters.

In this work, we consider clustering with outliers by ignoring some fraction of
points. Thus, in the case when points are perfectly clusterable, ignoring some fraction
of points does not affect the result too much, and the case when outliers are present, the
algorithm has the ability to ignore them while computing the final clusters. It may seems
that the ability to ignore some fraction of points makes the problem easier, but on the
contrary it does not. Because it has not only to decide which point to include in the clus-
ter but also to decide which point to include first. There may be two extreme approaches
to solve this problem: 1) Decide which points are outliers and run the clustering algo-
rithm; 2) Do not ignore any points, and after getting final clusters decide which ones
are outliers. Unfortunately, neither of these two approaches works well. The first one
scales poorly because there are exponentially many choices, and the second one may
significantly change the final outcome when outliers are indeed present. This motivates
the study of clustering with outliers (see[4]).
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Theorem 9 has an application to 1-center clustering with outliers. More precisely,
for 0 < ε, δ ≤ 1, when we have the ability to ignore at least εn points as outliers,
we present a randomized algorithm which takes a constant size sample from input and
correctly output the radius and center of the approximate cluster with probability at
least 1− δ.

Data: A set S of n points in Rd (input is given as black-box), 0 < ε, δ ≤ 1.
Result: Report center and radius of cluster which contain all but at most εn

points.
1 Uniformly and independently, select m = d+1

εd+1 ln
1
δ points from S.

2 Compute minimum enclosing ball containing all the sample points and report its
center and radius.

Algorithm 3: 1-center clustering with outliers

Theorem 16. Given a set of n points in Rd and 0 < ε, δ ≤ 1, Algorithm 3 correctly
outputs, with probability at least 1 − δ, a ball containing all but at most εn points
in constant time by querying a constant size sample (constant depending on d and ε).
Moreover, if routlier is the smallest ball containing all but at most εn points and rmin
is the smallest ball containing all the points, then Algorithm 3 outputs the radius r such
that routlier ≤ r ≤ rmin.

We present a proof of the above theorem in the full version of this paper [3].
The problem of clustering with outliers can be generalized for k-center clustering.

If Conjecture 12 is true, then it has an application to k-center clustering with outliers.
For given 0 < ε, δ ≤ 1, ignoring at least εn points as outliers, we present a randomized
algorithm which takes a constant size sample from the input and correctly output the
radii and k centers of the approximate clusters with probability at least 1− δ.

Data: A set S of n points in Rd (input is given as black-box), 0 < ε, δ ≤ 1.
Result: Reports k centers and radii of clusters which contains all but at most εn

points.
1 Uniformly and independently, select m = k(d+1)

γ(β(ε,k,d)) ln
1
δ points from S.

2 Compute k minimum enclosing balls containing all the sample points and report
their centers and radii.

Algorithm 4: k-center clustering with outliers

Theorem 17. Consider a set of n points in Rd. If Conjecture 12 is true and 0 < ε, δ ≤
1, then with probability at least 1 − δ, Algorithm 4 output k balls containing all but at
most εn points in constant time by querying a constant size sample (constant depending
on k, d and ε). Moreover, for 1 ≤ i ≤ k, if r(i)outlier is the radius of the optimal i-th
cluster by ignoring at most εn points as outliers and r(i)min is the radius of the optimal
i-th cluster when all points are present, then Algorithm 4 outputs the radius r(i) such
that r(i)outlier ≤ r(i) ≤ r

(i)
min.

We present a proof of the above theorem in the full version of this paper [3].
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6 Conclusion and Open Problems

In this paper, we initiated an application of the Helly (and Helly-type) theorem in prop-
erty testing. For (1, A)-cluster testing in a symmetric convex body A, we showed that
testing can be done with constant number of queries and hence proved that the prop-
erty is testable. Alon et al. [1] also solved a similar problem with constant number of
queries, using combination of sophisticated arguments in geometric and probabilistic
analysis. For 1-center clustering, our result had an incomparable query complexity in
relation (in terms of number of queries depending on ε) with the result of Alon et al. We
stated a conjecture related to fractional Helly-type theorem for more than one piercing
of convex bodies. Using a greedy approach, we proved a weaker version of the conjec-
ture which we used for testing (k,G)-clustering. We also gave a characterization of the
type of symmetric convex body for which Helly-type result for more that one piercing
would be true. Finally, as an application of testing result in clustering with outliers, we
showed that one can find, with high probability, the approximate clusters by querying a
constant size sample.
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