
Innovations in Computer Science 2011

Cycle Detection, Order Finding and Discrete Log with Jumps

Sourav Chakraborty1 David Garćıa-Soriano1 Arie Matsliah1

1CWI, Amsterdam, Netherlands
sourav.chakraborty@cwi.nl david@cwi.nl A.Matsliah@cwi.nl

Abstract: Let S be a finite set. Given a function f : S → S and an element a ∈ S, define f0(a) = a and
f i(a) = f(f i−1(a)) for all i ≥ 1. Let s ≥ 0 and r > 0 be the smallest integers such that fs(a) = fs+r(a).
Determining s and r, given a ∈ S and a black-box oracle to f , is the cycle-detection problem. When f is bijective
(i.e., f is a permutation of S), the order-finding problem is to find the smallest r > 0 such that fr(a) = a, and
the discrete-log problem is, given an additional element b ∈ S, to find the smallest k ≥ 0 such that fk(a) = b.
We study the query complexity of these problems with oracles that allow “jumps” to distant positions in the
sequence ā , f0(a)f1(a)f2(a) · · · ∈ S∗ at unit cost. Specifically, for every m ∈ N the oracle Om

f is defined, which
for every a ∈ S allows to look ahead at any position i < m in the sequence ā; that is, Om

f (a, i) = f i(a) for every
(a, i) ∈ S × [m].
We show that with an unrestricted oracle O∞f , the cycle-detection and order-finding problems can be solved
using O(log s+log r/ log log log r) and O(log r/ log log log r) queries, respectively, regardless of |S|. This is nearly
optimal, as we also prove lower bounds of Ω(log s + log r/ log log r) and Ω(log r/ log log r) queries. Interestingly,
for the discrete-log problem, our results combined with the algorithm of Sutherland [8] imply a lower bound of
Ω(
√

r/ log r) queries (where r is the size of the cycle to which both a and b belong), which is tight up to the log r
factor. This contrasts with the fact that, with generic group-operation oracles, the problems of order finding
and discrete log are known to have polynomially related query complexities.
We also provide algorithms and lower bounds for general oracles Om

f , m ∈ N, improving results from earlier
work. In particular, with m = poly(r), our lower bound for order-finding improves the previous bound of Ω̃(r1/3)
queries, proved by Cleve [2], to Ω̃(r1/2), which is nearly optimal.

Keywords: cycle detection, order finding, period finding, query complexity, sublinear algorithms.

1 Introduction

Cycle detection, order finding and discrete log
are well-studied problems in various settings and
models. There are plenty of algorithms, lower
bounds and more general time-space trade-off
results known for these problems (some of the
highlights can be found on the Wikipedia pages
http://en.wikipedia.org/wiki/Cycle detection and
http://en.wikipedia.org/wiki/Discrete log).

In most of the relevant literature, time and space
complexity are the main measures of efficiency for al-
gorithms solving these problems. The classical “tor-
toise and hare” algorithm of Floyd [3] is probably
the best example of a cycle-detecting algorithm with
optimal space complexity: it uses only two pointers
to elements in S, which move through the sequence
ā = f0(a)f1(a) · · · at different speeds, and detects a
cycle after O(s + r) steps (and function evaluations).

In the present paper the main measure of efficiency
considered is the query complexity (number of ele-
ments of sequence ā inspected). Clearly, with the
standard oracle, which only allows to evaluate f on
a certain input, one cannot do better than evaluating
f at least s + r times. Here we consider the more
powerful oracles, which allow longer “jumps” in the
sequence ā at unit cost.

There are various scenarios in which our objective
to minimize the number of such queries may make
sense. One example is when S is the set of possible
states of a system and f corresponds to a program
being executed on it; that is, f maps a given state a
to the state f(a) reached on completion of the next
execution step. In this setting, running the program
for i > 1 steps and then reading the state f i(a) may
be almost as fast as reading just the next state f(a).

We are aware of two works that are directly re-
lated to the model we study here. First is the decade-
old work of Cleve [2], where a query-complexity lower

284

CYCLE DETECTION, ORDER FINDING AND DISCRETE LOG WITH JUMPS

bound is shown for order-finding. Second is the more
recent work of Lachish and Newman [5], who study
the related problem of periodicity testing.

Also somewhat related are the works in which S
corresponds to a group, and the complexity of these
problems is measured in terms of the number of group
operations required before obtaining the result. See
more on this in Section 5.3.

2 Definition of the model and
problems

Unless explicitly mentioned otherwise, all indices in
this paper are 0-based by default; likewise, [m] =
{0, 1, . . . ,m − 1}. The symbol log denotes loga-
rithms to the base 2, and ln denotes the natural log-
arithm. For notational brevity, instead of writing
max{log x, 1}, we define log x to be 1 when x < 2
in order for expressions such as log log n to be defined
for all n.

2.1 The model

Here S is a finite set and f an arbitrary function
mapping S to itself. In the unrestricted case we are
given an oracle O∞

f : S × N → S that maps every
query (a, i) to f i(a). (The iterated function f i(a) is
defined as f0(a) = a and f i(a) = f i−1(f(a)).) In
the m-restricted case, where m ∈ N, the oracle Om

f :
S × [m] → S is defined similarly, except restriction
0 ≤ i < m must hold. When we want to impose the
additional constraint that f be a permutation of S,
we may write π instead of f .

2.2 The problems

The problems we consider here are:

• Cycle detection: Given a ∈ S and oracle ac-
cess to f , find the smallest s ≥ 0 and r > 0 such
that fs(a) = fs+r(a). Considering the sequence
ā = a0a1 . . . given by ai = f i(a), it is easily seen
that a0, . . . , ar+s−1 are distinct and ai = ai+r

whenever i ≥ s. In this case an equivalent defi-
nition avoiding an explicit mention of the func-
tion f is an oracle that allows probing a sequence
ā ∈ S∗ having the property that ai = aj implies
ai+1 = aj+1. The integer r is called the length
of the cycle, and s its starting position.

• Order finding: Given a ∈ S and oracle access

to π, find the smallest r > 0 such that πr(a) = a;
this is the length of the cycle to which a belongs
in the cycle decomposition of π. Similarly, one
can view this as the problem of finding the period
length r in a purely periodic sequence ā, in which
a0, . . . , ar−1 are distinct and ai = ai+r for all
i ≥ 0 (i.e. s = 0).1 The m-restricted oracle is
viewed in this setting as allowing one to query
position p + i of ā (where 0 ≤ i < m), provided
p = 0 or is a previously queried position.

• Discrete log: Given a, b ∈ S and oracle access
to π, find the smallest k > 0 such that πk(a) = b.
If no such k exists (i.e. a and b belong to different
cycles), output ∞.

3 Our results

1) Cycle detection

We show that with the unrestricted oracle O∞
f ,

O(log s + log r/ log log log r) queries are sufficient for
cycle detection. Furthermore, if r is promised to be
a prime power then O(log s + log r/ log log r) queries
suffice. We also show a nearly matching lower bound
of Ω(log s + log r/ log log r) queries for this problem.

For restricted oracles Om
f we prove an upper bound

of O (log s + s/m + log r/ log log log r + r/ log m)
queries, and a lower bound of

Ω(log s + s/m + log r/ log log r+

+
√

r/(log m log r) + r/m)

queries.

2) Order finding in permutations

For O∞f we show that O(log r/ log log log r)
queries are sufficient for order finding (here too,
O(log r/ log log r) queries suffice if r is promised to
be a prime power), and that Ω(log r/ log log r) queries
are necessary.

For the general oracle Om
f we prove an upper

bound of O (log r/ log log log r + r/ log m) queries, and
a lower bound of Ω(log r/ log log r+

√
r/(log m log r)+

1One may also consider the problem of finding the period of
a general sequence (not arising from a permutation), where the
same value may appear several times within each period. In this
case, upper and lower bounds of Θ(r) queries are straightfor-
ward (for any type of oracle). However, in the property-testing
setting, where the task is to distinguish periodic sequences from
those that are “far from periodic”, highly non-trivial bounds
were obtained in [5]

285

S. CHAKRABORTY, D. GARCÍA-SORIANO, A. MATSLISH

r/m) queries. This improves the earlier bound proved
by Cleve [2], which is Ω

(
r1/3√
log m

)
.

3) Discrete log in permutations

Using a reduction to the generic group computa-
tion model of Babai and Beals [1, 8], we obtain as
a corollary a lower bound of Ω(

√
r/ log r) queries for

the discrete-log problem in our model, which is nearly
tight. This shows an exponential separation between
the query complexities of order finding and discrete
log. In the generic group model, however, these two
problems have polynomially related query complexi-
ties. (In fact, the best separation known is Ω(

√
r) for

discrete log vs O(
√

r/ log log r) for order finding.)

4 Preliminaries and basic facts from
number theory

Our notation is standard, a couple of exceptions
aside. We write lcm(S) for the least common multiple
of all elements of a set S ⊆ N is used. If a ≥ 0, b > 0,
we also write a mod b for the unique 0 ≤ r < b such
that a ≡ r mod b.

Lemma 4.1(Prime Number Theorem) Let P de-
note the primes and Pn , P∩{1, . . . , n}, where n ∈ N.
Then |Pn| = n

ln n ±O
(

n
(ln n)2

)
.

Lemma 4.2(Chinese Remainder Theorem) Let
m1, . . . , mk, a1, . . . , ak ∈ Z. The system of congru-
ences x ≡ a1 mod m1, . . . , x ≡ ak mod mk has a
unique solution modulo lcm(m1, . . . ,mk) iff for all i, j,
ai ≡ aj mod gcd(mi,mj).

Lemma 4.3 (Divisor bound [4,9]) Let τ(n) be the
number of positive divisors of n ∈ N; then τ(n) ≤
2O(log n/ log log n).

5 Lower bounds for cycle detection
and order finding

5.1 Unrestricted oracle

Theorem 5.1

• Cycle detection with an unrestricted oracle O∞
f

requires Ω(log s + log r/ log log r) queries.
• Order finding with an unrestricted oracle O∞f re-

quires Ω(log r/ log log r) queries.

The Ω(log s) term in the first item is clear, even

under the promise that the period is r = 1, since the
problem of determining the index of the first ‘1’ in
a sequence consisting of s zeroes followed by an in-
finite number of ones can be reduced to it.2 So we
only need to show a lower bound of Ω(log r/ log log r),
which clearly follows from the second item, i.e. the
bound for order finding. We sketch here the gist of
the proof; a formal proof is given in Appendix A.

Suppose that r is picked at random from [n/2, n].
Consider any stage in which the algorithm has queried
positions q1, . . . , qi so far, and received answers
α1, . . . , αi, respectively. Take the set C of candidate
periods that are consistent with all these query/answer
pairs. It is easy to see that this set depends only on
the pairs of queries that got the same answer, and not
on the labels of the answers themselves. More pre-
cisely, C is the set of all r ∈ [n/2, n] that divide all
qi − qj for pairs such that αi = αj and do not divide
any other qi − qj . Intuitively, what this means is that
each of the possible responses to the (i + 1)-th query
falls into at most i+1 equivalence classes: the answer
can either be one of α1, . . . , αi, or be a new one, but
other than that the values of α1, . . . , αi themselves are
irrelevant. This means that after q queries there are
at most q! non-equivalent sets of query/answer pairs
received. Hence any algorithm that tries to return
the correct value of r ∈ [n/2, n] and succeeds with
constant probability must satisfy q! ≥ Ω(n), from
which q ≥ Ω(log n/ log log n) = Ω(log r/ log log r)
follows.

Remark 5.2 This is essentially an information-
theoretical lower bound, and also holds if r is drawn
from any set of size nε. In particular the lower bound
still applies for the special case that r is promised to
be a prime power. In this case our algorithms provide
a matching O(log r/ log log r) upper bound.

5.2 Restricted oracle

Theorem 5.3 (lower bounds for cycle detection
and order finding)

• Cycle detection with an m-restricted oracle re-
quires

Ω
(

log s +
s

m
+

log r

log log r
+

√
r

log m log r
+

r

m

)

2Note that it is required here to identify the precise value of
s. If an upper bound on s were all that is needed, the query
complexity could grow arbitrarily slowly as a function of s (al-
beit not necessarily of r).

286

CYCLE DETECTION, ORDER FINDING AND DISCRETE LOG WITH JUMPS

queries.
• Order finding with an m-restricted oracle re-

quires

Ω
(

log r

log log r
+

√
r

log m log r
+

r

m

)

queries.

The log s and log r/ log log r terms follow from the
analogous bounds for unrestricted oracles. The terms
s/m and r/m are clear from the mere fact that the
algorithm needs to reach position s + r to detect any
cycle. Hence, it suffices to prove a lower bound of√

r
log m log r queries for order finding. We will prove

a seemingly stronger result: setting n = |S|, we will
show a lower bound of q(n,m) ,

√
n

log m log n queries

for order finding under the promise that r = Θ(n). 3

For n ∈ N and 1 < r < n/2, we denote by Gr
n the

set of all permutations π : [n] → [n] consisting of two
disjoint cycles, one of length r and the other of length
n− r. Given R ⊆ [n], define GR

n ,
⋃

r∈R∩(1,n/2) Gr
n.

Recall that for every permutation π, the m-
restricted oracle Om

π maps [n] × [m] to [n] according
to π; namely, Om

π (i, j) = πj(i). Note that, given ac-
cess to Om

π corresponding to some π ∈ G[n]
n , an order

finding algorithm should be able to compute r such
that π ∈ Gr

n. We prove the lower bound by show-
ing that there is a pair of disjoint sets R1, R2 ⊆ [n/2],
and a distribution D on permutations from GR1

n ∪GR2
n ,

such that no deterministic algorithm can tell if a ran-
dom π ∼ D belongs to GR1

n or GR2
n unless it makes

Ω(q(n, m)) queries to Om
π .

5.2.1 Formal statement

Let Q = {(i1, j1), . . . , (iq, jq)} ⊆ [n] × [m] be a
set of q queries (by which we mean here each of the
pairs (i, j) fed as input to oracle Om

π). Let R1, R2 ⊆
(1
5n, 1

2n) be a pair of disjoint non-empty sets of in-
tegers. For a ∈ {1, 2}, let Da denote the uniform
distribution over all permutations π ∈ GRa

n .

For the lower bound, it suffices to prove the follow-
ing:

3Cleve [2] proved that the query complexity of order finding

with an m-restricted oracle is Ω

„
|S|1/3
√

log m

«
, and if m > 2|S|

then it is O(|S|1/2). Since n = |S| is clearly an upper bound
on r, we improve Cleve’s lower bound by a factor of roughly

n1/6√
log n

. In particular, for any m = poly(n) Cleve’s bound is

eΩ(n1/3) and ours is eΩ(n1/2), which is nearly optimal.

Proposition 5.4 There are R1, R2 with corre-
sponding distributions D1 and D2 satisfying the
following property: for every (fixed) set Q =
{(i1, j1), . . . , (iq, jq)} of q = o(q(n,m)) (distinct)
queries and every α ∈ [n]q, we have

Pr
π∼D1

[Om
π (Q) = α] = (1± o(1)) · Pr

π∼D2
[Om

π (Q) = α],

where Om
π (Q) denotes the string

Om
π (i1, j1) · · ·Om

π (iq, jq) ∈ [n]q.

5.2.2 Outline of the proof

First, we can assume without loss of generality
that any order-finding algorithm finds a collision in
π; namely, it makes a pair of queries (i, j) and (i′, j′)
such that Om

π (i, j) = Om
π (i′, j′). Indeed, once r has

been determined, one additional query suffices to find
a collision.

Second, we also observe that the actual values re-
turned by oracle Om

π are irrelevant. Namely, as long as
the algorithm finds no collisions, the values obtained
from earlier queries are just random elements from [n]
(distributed uniformly without repetitions). There-
fore, we may assume that the choice of queries is non-
adaptive as long as no collision has been found.

Having made these observations, all we need to show
is that for any fixed set Q of o(q(n,m)) queries and
a ∈ {1, 2}, the probability that Q contains a collision
with regard to π ∼ Da is o(1).

5.2.3 Core Lemmas

Fix Q as above, and let Q1, . . . , Q` be the partition
of Q where (i, j), (i′, j′) ∈ Q belong to the same Qh

if and only if i = i′. Clearly ` 6 q. Given π, a
subset Q′ ⊆ Q is called π-collision-free if Om

π (i, j) 6=
Om

π (i′, j′) for all (i, j) 6= (i′, j′) ∈ Q′. Q′ is r-collision-
free if it is π-collision-free for all π ∈ Gr

n. We say that
Q = Q1 ∪ · · · ∪Q` is component-wise r-collision-free if
Qh is r-collision-free for every h ∈ [`].

In the following lemmas we let Q be an arbitrary set
of size q = o(q(n,m)), and by Q1, . . . , Q` we denote
the foregoing partition of Q.

Lemma 5.5 For infinitely many n ∈ N there exists
a pair of non-empty disjoint sets R1, R2 ⊆ (1

5n, 1
2n)

such that for a ∈ {1, 2},
Pr

r∈Ra

[
Qiscomponent− wiser−collision− free

]

287

S. CHAKRABORTY, D. GARCÍA-SORIANO, A. MATSLISH

> 1− o(1).

Given π and h 6= h′ ∈ [`], we say that Qh and Qh′

are π-disjoint if for all (i, j) ∈ Qh and (i′, j′) ∈ Qh′ ,
Om

π (i, j) 6= Om
π (i′, j′). We say that Q is π-disjoint if

for all h 6= h′ ∈ [`], Qh and Qh′ are π-disjoint.

Lemma 5.6 For every (sufficiently large) n and r,
1
5n < r < 1

2n,

Pr
π∈Gr

n

[
Qisπ−disjoint

]
> 1− o(1).

Observe that if for some π ∈ Gr
n, Q is both π-

disjoint and component-wise r-collision-free, then it
is π-collision-free (with regard to that particular π).
Hence, by these two lemmas we get the following.

Corollary 5.7 For infinitely many n ∈ N there exists
a pair of non-empty disjoint sets R1, R2 ⊆ (1

5n, 1
2n)

such that for a ∈ {1, 2},

Pr
π∈GRa

n

[
Q is π−collision− free

]
> 1− o(1).

Proposition 5.4 follows from Corollary 5.7, as sketched
in the proof outline.

5.2.4 Proof of Lemma 5.5

We start with an auxiliary lemma.

Lemma 5.8 There exist absolute constants δ > 0 and
n0 ∈ N such that for any n̂ > n0 there is n = (1± 1

12)n̂
and α, β, γ, where 1

5 < α < β < γ < 1
2 , for which

the following holds. There exist 2k > δn/ log2 n pairs
(p1, t1), . . . , (pk, tk), (p′1, t

′
1), . . . , (p

′
k, t′k), such that for

all i ∈ [k] the following holds:

• pi, ti, p′i and t′i are all primes;
• pi 6= pj , ti 6= tj , p′i 6= p′j and t′i 6= t′j for all

j ∈ [k] \ {i};
• pi + ti = n and p′i + t′i = n.
• αn < pi < βn and βn < p′i < γn (consequently,

pi < ti and p′i < t′i);

Proof. By the Prime Number Theorem, there
exists ε > 0 and n0 ∈ N such that for any n̂ > n0, the
number of primes p̂ ∈ (1

4 n̂, 1
3 n̂), as well as the num-

ber of primes t̂ ∈ (2
3 n̂, 3

4 n̂), is at least k̂ , εn̂/ log n̂.
Let p̂1, . . . , p̂k̂ and t̂1, . . . , t̂k̂ denote these primes, and
consider the multiset N = {p̂i + t̂j : i, j ∈ [k̂]}. Notice
that N contains k̂2 elements, each of them between

11
12 n̂ and 13

12 n̂. Therefore, there must exist some n ∈ N
appearing in N at least ` , k̂2

n̂/6 = 6ε2n̂
log2 n̂

times.

Let (p̂i1 , t̂j1), . . . , (p̂i`
, t̂j`

) be the pairs correspond-
ing to this n, namely, p̂ih

+ t̂jh
= n for all h ∈ [`]. It

is clear that p̂ih
6= t̂jh′ for all h 6= h′ ∈ [`], since the

ranges of p̂’s and t̂’s are disjoint. Notice that p̂ih
6= p̂ih′

and t̂ih
6= t̂ih′ also hold for all h 6= h′ ∈ [`], since all

pairs must sum to n. Let β be such that exactly4

k , `/2 of the pairs (p̂ih
, t̂jh

) satisfy p̂ih
< βn.

Denote those k pairs by (p1, t1), . . . , (pk, tk), and the
remaining k pairs by (p′1, t

′
1), . . . , (p

′
k, t′k). Let α be

such that αn = mini∈[k] pi − 1, and let γ be such that
γn = maxi∈[k] p

′
i + 1. Clearly, α < β < γ. Since

n ∈ (11
12 n̂, 13

12 n̂) and maxi∈[k] p
′
i < n̂/3 we also have

γ < 1/2. Similarly, mini∈[k] pi > n̂/4 and so α > 1/5.
Setting δ = 5ε2, the bound 2k > δn/ log2 n follows
from n ∈ (11

12 n̂, 13
12 n̂) as well. ¤

Proof of Lemma 5.5. Let n ∈ N be one of those
for which Lemma 5.8 holds. Let R1 = {p1, . . . , pk},
T1 = {t1, . . . , tk}, R2 = {p′1, . . . , p′k} and T2 =
{t′1, . . . , t′k}. The conditions in Lemma 5.8 imply
R1, R2 ⊆ (1

5n, 1
2n) and R1 ∩R2 = ∅.

Let a ∈ {1, 2} and r ∈ Ra. Consider a single com-
ponent Qh = {(i, j1), . . . , (i, j|Qh|)} in the partition
of Q. Notice that if Qh is not r-collision-free, then
there must be a pair j 6= j′ ∈ {j1, . . . , j|Qh|} that sat-
isfies either j − j′ ≡r 0 or j − j′ ≡n−r 0 (depending
on which cycle contains element i). Let R be the set
of all r ∈ Ra ∪ Ta for which some pair j, j′ satisfies
j − j′ ≡r 0. Since R contains only primes that are
greater than n/5 and j 6= j′, the inequality

|j − j′| >
∏

r∈R

r > (n/5)|R|

must hold. On the other hand |j − j′| 6 m, so |R| 6
log m

log(n/5) .

Consequently, the number of different r ∈ Ra for
which some pair j, j′ ∈ {j1, . . . , j|Qh|} satisfies j −
j′ ≡r 0 or j − j′ ≡n−r 0 is bounded by 2|Qh|2 log m

log(n/5) .
This means that for a random r ∈ Ra, the probability
that any particular Qh is not r-collision-free is at most
2 |Qh|2 log m
|Ra| log(n/5) , and by the union bound,

Pr
r∈Ra

[Q is not component-wise r-collision-free
]

6

4We assume without loss of generality that ` is even. If not,
drop one pair.

288

CYCLE DETECTION, ORDER FINDING AND DISCRETE LOG WITH JUMPS

2(
∑

h∈[`] |Qh|2) log m

|Ra| log(n/5)
6 2|Q|2 log m

|Ra| log(n/5)
.

The lemma follows since |Ra| = Ω(n/ log2 n) and
|Q| = o

(√
n

log m log n

)
. ¤

5.2.5 Proof of Lemma 5.6

Let n ∈ N be large enough, and let r ∈ (1
5n, 1

2n).
Fix a pair of components Qh = {(i, j1), . . . , (i, j|Qh|)}
and Qg = {(i′, j′1), . . . , (i′, j′|Qg|)} in the aforemen-
tioned partition of Q. We now bound the probability,
taken over random π ∈ Gr

n, that Qh and Qg are not
π-disjoint.

Notice that when picking a random π ∈ Gr
n, then

either i and i′ belong to different cycles in π (and
therefore Qh and Qg are π-disjoint) or otherwise, π
locates both i and i′ on one of the cycles, where the
positions of i and i′ are distributed uniformly at ran-
dom. Both cycles in π are of length greater than n/5,
hence the probability that Qh and Qg are not disjoint
is at most |Qh||Qg|

n/5 .

Taking the union bound on all pairs of
components we derive an upper bound on
Prπ∈Gr

n

[
Q is not π-disjoint

]
of

∑

h6=g∈[`]

|Qh||Qg|
n/5

6
(
∑

h∈[`] |Qh|)(
∑

g∈[`] |Qg|)
n/5

= 5q2/n.

The lemma follows by plugging in the value of q.

Remark 5.9 Notice that the lower bound we proved
does not work for any large enough n. But since the
n’s for which it works are densely spread (for any n̂ >
n0 there is n = (1± 1

12)n̂ for which it works), we can
extend the lower bound to work for all sufficiently large
n by padding with unit-cycles.

5.3 Lower bound for discrete log via
generic group model

In earlier work the query complexity of group prop-
erties has been studied in a different (but related)
model – the generic group model [1,8]. In this set-
ting, one has access to a “black box” that allows one
to find the identity element of the group, compute
the inverse of an element, and multiply two elements.
The black box returns certain labels to which the algo-
rithm is not allowed to ascribe any meaning, except for

equality comparisons (the label determines uniquely
the group element, but the precise bijection is a priori
unknown to the algorithm).

The best known algorithm to compute the order
of an element in this model was found by Suther-
land [8]. His algorithm runs in time O(

√
r/ log log r),

where r is the order of the group. In particular, its
query complexity is bounded by O(

√
r/ log log r). A

lower bound that is polynomial in r was shown by
Babai and Beals [1], and Sutherland shows a lower
bound of Ω(r1/3) [8]. In contrast, for the similar prob-
lem of discrete log over generic groups there are tight
Θ(
√

r) bounds (the lower bound is by Shoup [7], and
the upper bound by Shanks [6]). Therefore, discrete
log is strictly harder than order finding in the generic
group model, but their complexities are polynomially
related. In contrast, there is an exponential separation
between the two in our model.

Indeed, given a ∈ G, we know that it is possible
to find the order r of the (cyclic) group generated by
a with O(

√
r/ log log r) queries in the generic group

model. Afterwards, any of the “jumps” allowed in
our model (which are of the form ai for some i ≥ 0
and a that was obtained previously) can be simu-
lated with O(log r) queries to a generic group ora-
cle by the standard logarithmic exponentiation algo-
rithm, after reducing i modulo r. So the existence
of an algorithm making q queries for the discrete-log
problem in our model implies an algorithm for the
discrete-log problem in the generic group model mak-
ing O(

√
r/ log log r + q log r) queries; by the Ω(

√
r)

lower bound of Shoup, one gets q = Ω(
√

r/ log r).
This is exponentially larger than the upper bound
of O(log r/ log log log r) we prove for the order-finding
problem.

6 Upper bounds

Let PD(n) ⊆ Pn denote the set of prime divisors of
n. Also denote by νp(x) the largest power of p that
divides x, and if D ⊆ P, let νD(x) =

∏
p∈D νp(x),

which is the part of the prime factorization of x that
uses primes in D. We will make repeated use of the
following bound on the size of PD(n):

Lemma 6.1 |PD(n)| ≤ 2 log n/ log log n.

Proof. This essentially follows from Lemma 4.3,
but can also be shown directly: let b be the least in-
teger satisfying bb ≥ n; then b ≤ 1 + 2 log n/ log log n.
There are at most b− 2 primes in [2, b− 1], and since

289

S. CHAKRABORTY, D. GARCÍA-SORIANO, A. MATSLISH

bb ≥ n there are at most b primes dividing n in [b, n].
Hence at most 2b− 2 primes divide n. ¤

Throughout this section we assume that the starting
position s of the cycle is known (or equivalently s = 0),
and also that we have an upper bound of n on the cycle
length r. In Appendix D we show how to get rid of
these assumptions.

Theorem 6.2 Assume we are given upper bounds n
and s on the cycle length r and the starting position
s, respectively. Then

• there is a randomized algorithm that finds r by
making O(log n/ log log log n) queries to the un-
restricted oracle O∞

f ;
• for any m > 1, there is a deterministic algorithm

that finds r with O(n/m+
√

n) queries to the m-
restricted oracle Om

f ;

• for some fixed c > 0, if m > 2c
√

n, then
there is a randomized algorithm that finds r with
O(n

log m + log n
log log log n) queries to the m-restricted

oracle Om
f .

Observe that for m ≤ 2O(
√

n),
√

n = O(n/ log m),
so the bound of the third item still holds, but is weaker
than that of the second item in this case. We proceed
to present these algorithms.

6.1 Unrestricted oracle

To start with, observe that it is simple to determine,
given a prime power pα, whether pα divides r using
only 1 query. This is because r divides t iff query(s) =
query(t + s). So if t is the largest divisor of lcm([n])
that is not a multiple of pα, then query(s) 6= query(t+
s) implies that r does not divide t and this means (by
our choice of t) that r must be divisible by pα.

Algorithm 1 (is a divisor(pα, s, n) – outputs true if
r is divisible by pα, where p is prime)
1: find the prime factorization of lcm([n]) = pβ0

0 pβ1
1 . . .

pβt

t (where p0 = p)
2: t ← pα−1

∏
i>1 pβi

i

3: return true iff query(s) 6= query(t + s)

If p is a prime factor of r, using binary search
and Algorithm is a divisor we can find the exact
exponent α of p in the prime factorization of r
by making at most 1 + 2 log(α) queries; Algorithm
find exponents(D, s, n) in Appendix B.2 does this ex-
plicitly for all prime factors of r (assuming D =

PD(r)) and returns r itself.

Thus, if we knew somehow the set PD(r), we could
find the precise value of r with at most

∑k
i (1 +

2 log(αi)) additional queries, where r = Πk
i pαi

i has
been written according to its prime factorization.
Claim B.1 in Appendix B.1 shows that this quantity
is bounded by O(log r/ log log r). Thus the main task
is finding the set PD(r) using O(log n/ log log log n)
queries. We divide this task into two. First we present
an algorithm (find all divisors) that, given a set D
of primes, makes O(1 + d log |D|/ log log |D|) queries
and with high probability outputs PD(r) ∩D, where
d = |PD(r) ∩D|. In the second part we partition [n]
into intervals of increasing length and find the set of
prime factors of r in each of them. These intervals will
be carefully chosen so as to guarantee that, if we use
Algorithm find all divisors for each, the overall query
complexity of finding all the prime factors of r remains
O(log n/ log log log n).

For the first part, the idea is to split the set D into
two sets D1 and D2 such that if D has at least two
prime divisors of r, then both D1 and D2 contain at
least one prime divisor of r. To this end, we randomly
partition D into D1 and D2 and check if both D1

and D2 have a non-empty intersection with PD(r). If
not, we repeat the process. If |D ∩ PD(r)| > 2, then
the probability that a random partition has at least
one prime on each side is at least 1/2. This means
that if |D ∩ PD(r)| > 2 then with high probability
we partition D into D1 and D2 such that both |D1 ∩
PD(r) > 1| and |D2 ∩ PD(r)| > 1 hold. Then we
proceed to find the primes in each part recursively.

In order to be able to implement this idea we need
two procedures: (a) given a set D, determine whether
D ∩ PD(r) > 0 using one query, and (b) given D
such that |D ∩PD(r)| = 1 find D ∩PD(r) using only
log |D|/ log log |D| queries.

The first one is a straightforward generalization of
Algorithm is a divisor. Thus we move the pseudocode
for Algorithm has a factor(D, s, n) to Appendix B.3.

Now we present the second procedure. If we are
given a subset D that is known to contain exactly one
prime divisor of r, it is not difficult to see that binary
search and Algorithm has a factor can be used to find
p with O(log |D|) queries. Unfortunately, this is too
expensive for our purposes; we show that we can do
with only O(log |D|/ log log |D|) queries:

Lemma 6.3 Algorithm find unique prime divisor

290

CYCLE DETECTION, ORDER FINDING AND DISCRETE LOG WITH JUMPS

Algorithm 2 (find unique prime divisor(D, s, n)–
finds the unique prime factor of r in D)
Require: r ≤ n and |PD(r) ∩D| = 1
1. Rest ← Pn \D
2. a ← νRest(lcm([n]))
3. k ← 1 + 2blog |D|/ log log |D|c
4. for i = 0 to k − 1do
5. vi ← query(a · i + s)
6. if i > 0 and vi = v0 then
7. return the only prime divisor of i
8. end if
9. end for
10.
11. while |D| ≥ 2 do
12. split D into k disjoint sets D1, . . . , Dk of

equal size (up to ±1)
13. let ai ← a · νDi

(lcm([n])) for all i ∈ [1, k]
14. find x such that x ≡ i · a mod ai for all i ∈ [1, k]
15. y ← query(x + s)
16. find 1 ≤ i ≤ k such that vi = y
17. D ← Di

18. end while
19. return the unique p ∈ D

(D,s,n) finds the only p ∈ PD(r) ∩ D making
O(log |D|/ log log |D|) queries.

Proof. First we show that the query complexity
is O(log |D|/ log log |D|). Clearly the first for loop
makes O(log |D|/ log log |D|) queries. At the start of
the while loop, |D| ≤ kk, and every iteration di-
vides the size of D by a factor of k. So the loop
runs for at most k iterations and since only one query
is made inside each iteration the while loop makes
O(log |D|/ log log |D|) queries in total.

Now we show the correctness of the algorithm. Let
PD(r) ∩ D = {p} and the exponent of p in r be t.
Clearly if pt is less than k, the first for loop will find
it when i reaches the value pt, and not before. So all
we need to show is that if pt > k, the while loop finds
the correct Di to which p belongs.

First of all, the while loop needs to find an x such
that x ≡ i·a mod ai for all i. The existence of such an
x is guaranteed by the Chinese Remainder Theorem
(some of the sets Di may be empty, in which case
ai = a). If p ∈ Di, then pt divides νDi(lcm([n])) and
hence r divides ai. So x ≡ i·a mod r and this implies
query(x + s) = query(i · a + s) = vi. To complete the
proof we have to show that no other j 6= i can satisfy
query(x+s) = query(j ·a+s), or equivalently x ≡ j ·a

mod r. This is because x ≡ j · a mod r and x ≡ i · a
mod r together imply a(i − j) ≡ 0 mod r, and since
pt | r and gcd(a, pt) = 1 we get i ≡ j mod pt and
k > |j − i| ≥ pt, which is a contradiction. Hence the
while loop does indeed find the unique i such that
p ∈ Di. ¤

We will also need an algorithm has two prime divisors
that determines with high probability whether a given
set D contains at least two prime factors of r. Such
algorithm can be designed along the same lines as
Algorithm find unique prime divisor. The details are
worked out in Appendix B.4, Lemma B.2.

Now that we have both of the necessary proce-
dures we present the recursive algorithm for finding
D ∩ PD(r).

Algorithm 3 find all divisors(D, s, n) –
finds all prime divisors of r in D
Require: r ≤ n and D ⊆ Pn is a set of primes
1: if has two prime divisors(D, s,n) then
2: repeat
3: split D into two sets D1 and D2 at random

(i.e. each x ∈ D lands into D1 with probability
1/2)

4: until has a factor(D1, s,n) and has a factor
(D2, s, n)

5: return find all divisors(D1, s,n)∪find all divisors
(D2, s, n)

6: else
7: if has a factor(D, s, n)then
8: return {find unique prime divisor(D, s,n)}
9: else
10: return ∅
11: end if
12: end if

Lemma 6.4 If D ⊆ Pn contains d prime fac-
tors of r and |D| > log n, then with probabil-
ity at least (1 − 2d log log n/(1000 log n)), Algorithm
find all divisors(D, s, n) manages to find PD(r)∩D. Its
expected query complexity is O(d log |D|/ log log |D|).

(The procedure also trivially works with O(1) queries
if D is empty).

Proof. Supposing all calls to Algorithm
has two prime divisors return the correct answer, it is
easy to see that find all divisors(D, s, n) terminates and
outputs the set D ∩ PD(r). Thus all we need to
check is the query complexity and the probability of
has two prime divisors making no errors.

291

S. CHAKRABORTY, D. GARCÍA-SORIANO, A. MATSLISH

Since each call to find all divisors(D, s, n) either
splits D into two disjoint sets each containing at
least one prime factor of r or returns after a call
to find unique prime divisor, the total number of (re-
cursive) calls to find all divisors is at most 2d −
1 (in fact it is exactly 2d − 1 if no mistake is
made). So the total number of queries spent
on calls to has two prime divisors, has a factor and
find unique prime divisor is at most O((2d − 1)(1 +
log log n/ log log log n) + d + d log |D|/ log log |D|) =
O(d log |D|/ log log |D|) since |D| ≥ log n. Also recall
that has two prime divisors never returns true unless
|D ∩PD(r)| ≥ 2. For any such D, the expected num-
ber of tries before a successful split in the repeat loop
is at most 2, hence the total expected query complex-
ity of all executions of this loop is bounded by 2(d−1).
This shows that the overall expected query complexity
is O(d log |D|/ log log |D|) if |D| ≥ log n.

We turn now to bounding the error probability.
Each call to has two prime divisors is incorrect with
probability at most 1/(1000 log n) by Lemma B.2.
Hence by the union bound the error probability is at
most (2d− 1)/(1000 log n). ¤

Algorithm find all divisors still falls short of our
upper bound of O(log n/ log log log n) queries, since
an invocation with D = [n] might require
Ω((log n/ log log n)2) queries on average (as r can have
as many as Ω(log n/ log log n) prime divisors). To
overcome this difficulty, we partition [n] into consec-
utive intervals of increasing length; the intuition is
being that if a < b < c < d, the maximum number of
prime divisors of r interval [c, d] can contain is smaller
than the number of divisors of r interval [a, b] can con-
tain. The key is to choose the right division of [n] into
a sequence of intervals.

Lemma 6.5 Algorithm find period(s, n) makes
O(log n/ log log log n) expected queries and with prob-
ability at least 1− 1/250 returns r.

Note that standard techniques can be used to
turn this algorithm into one with a worst-case
O(log n/ log log log n) query complexity guarantee
and, say, 1−1/100 success probability. Namely, it suf-
fices to stop the call find period(s, n) after the number
of queries made is 2.5 times larger than its expected
query complexity.

Proof. First we show correctness. Note that
a < b = Θ(log n/ log log n). Define the sequence
li , 2i log i; it is easy to see that la = Θ(log n) and
lb−1 = Θ(n). The interval [n] is partitioned into

O(log n/ log log n) parts: namely [0, la − 1], [lb, n] and
the intervals [li, li+1 − 1] for a ≤ i < b− 1. All prime
factors in the range [lb−1, n] are found in the third line;
all prime factors in the interval [2, la− 1] are found in
the first for loop; all prime factors in [la, lb−1) are con-
tained in one of the intervals [li, li+1 − 1] taken care
of in the second for loop.

For each interval, Algorithm find all divisors is called
at most once and from Lemma 6.4 and the union
bound we obtain that with probability at least (1 −
2d log n log n/(1000 log n)) all the answers of all the
calls to find all divisors are correct, where d , |PD(r)|
is the number of prime divisors of r. We know that
d ≤ 2 log n/ log log n, so with probability 1−1/250 the
algorithm gains knowledge of the set of all the prime
divisors of r on completion of the loop, and then the
call to find exponents(PD, s, n) returns the period.

Now we prove the bound on the query complex-
ity. The fact that lb = Θ(n) implies that at most
O(1) prime divisors of r ≤ n can be in the inter-
val [lb, n], so the expected number of queries made
for this interval is O(log n/ log log n). Also la =
Θ(log n), hence by the prime number theorem there
are Θ(log n/ log log n) primes in the interval [0, la−1].
Thus the first loop of Algorithm is a divisor makes a
total of O(log n/ log log n) queries.

As for the second for loop, let ki be the size of
the interval [li, li+1 − 1] and ni be the number of
prime factors of r in the interval [li, li+1 − 1]; that
is, ki , li+1 − li = Θ(li+1) and let ni , |PD(r) ∩
[li, li+1 − 1]|. By Lemma 6.4 and linearity of expec-
tation, it follows that the expected number of queries
made by Algorithm find all divisors in the second loop
is O(

∑b−1
i=1 ni log ki/ log log ki). Note that

n > r >
b−1∏

i=1

lni
i =

b−1∏

i=1

2ni i log i,

so by taking logarithms on both sides we obtain
b−1∑

i=1

ni i log i ≤ log n.

Clearly for all i > a we have ki > Θ(log n). These
inequalities can be used to bound the total expected
number of queries made in the second for loop by

b−2∑

i=a

ni
log ki

log log ki
≤ O(1)

log log log n

b−2∑

i=a

ni i log i

≤ O

(
log n

log log log n

)
,

292

CYCLE DETECTION, ORDER FINDING AND DISCRETE LOG WITH JUMPS

as we wished to show. ¤

Algorithm 4 find period(s, n)–finds r
Require: the period has length ≤ n and starts at
position ≤ s
1: a = min{i | 2i log i ≥ log n}
2: b = min{i | 2i log i > n}
3: PD = find all divisors([2(b−1) log(b−1), n], s, n)
4: for allp ∈ P2a log a−1do
5: if is a divisor({p}, s,n) thenPD ← PD ∪ {p}
6:
7: end if
8: end for
9:
10: for i = a to b− 2do
11: I = [2i log i, 2(i+1) log(i+1) − 1]
12: PD ← PD ∪ find all divisors(I, s,n)
13: end for
14: return find exponents(PD, s, n)

6.2 Restricted oracle

To deal with the restricted-oracle case, we first make
the following simple observation, the proof of which is
in Appendix C.1.

Observation 6.6 Let A be an adaptive algorithm that
finds r by making q queries to the unrestricted oracle
and let g be the largest position that A queries. Then
for any m > 0 there is an algorithm that finds r with
q + g

m queries to the m-restricted oracle.

We present two algorithms for the restricted-m case.
While the first one is better when m < 2O(

√
n), the sec-

ond one gives better query complexity for m ≥ 2Ω(
√

n).

6.2.1 Restricted oracle, for any m > 0

This algorithm uses the baby steps-giant steps
method of Shanks [6,8].

Lemma 6.7 Let n > 0 and define a , d√ne, B ,
{0, 1, 2, . . . , a− 1} and G , {a, 2a, 3a, . . . , a2}. If r ≤
n, then there are b ∈ B and g ∈ G such that g−b = r.

Proof. Clear if r ∈ G. Otherwise write r = aq + t,
where 0 ≤ q < a and 0 < t < a. Taking b = a− t ∈ B
and g = a(q + 1) ∈ G, we have r + b = g. ¤

Algorithm find r small m(s, n) needs to make |B| +
|G| = O(

√
n) queries. Note that the maximum posi-

tion queried is a2 ≤ n + 2
√

n. So from Observation
6.6 we have the following lemma.

Lemma 6.8 For any m > 0 there is a determinis-

tic, non-adaptive algorithm that makes O(
√

n + n+s
m)

queries to an m-restricted oracle and outputs r.

Algorithm 5 find r small m(s, n)-find r
1: a ← d√ne
2: for i ∈ {0, . . . , a− 1}do
3: bi ← i + s
4: gi ← (i + 1) · a + s.
5: end for
6: query ∪i{bi, gi}
7: return the smallest positive value of (a·

(j + 1)− i)among all i, j such that
query(bi) = query(gj).

6.2.2 Restricted oracle for m ≥ 2Ω(
√

n)

To begin we need the following lemma (the proof is
in Appendix C.2):

Lemma 6.9 Let c be a large enough constant. If m ≥
2c
√

n, there exists a partition of Pn into A0, . . . , Ak

with the following properties:

1. A0 , Pn ∩ [1,
√

n];
2. for all 0 ≤ i ≤ k, νAi(lcm([n])) <

√
m.

3. k = O(n/ log m).

Algorithm 6 find r large m(s, n)–find r whenm > 2c
√

n

1: find the partition of Pn into A0, . . . , Ak

(as in Lemma 6.9)
2: for i = 1 to kdo
3. if query(νA0∪Ai(lcm([n])) + s) = query(s)

then
4: N ← νA0∪Ai(lcm([n]))
5: use the algorithm find period(s, n) from Section

6.1 to find r, replacing each query to position i
with a query toposition (i mod N).

6: return r
7: end if
8: end for
9:

Lemma 6.10 Let c be as in Lemma 6.9. If m >
2c
√

n then there Algorithm 6 makes O(s/m+n/ log m+
log n/ log log log n) queries to an m-restricted oracle
and outputs the period r.

Proof. The first property of the partition im-
plies that at most one Ai with i > 0 contains a
prime divisor of r. In any case the for loop will
find an i such that r | νA0∪Ai(lcm([n])). So after
a suitable i has been found, we know that r divides
N , νA0∪AI (lcm([n])) <

√
m × √m = m by the sec-

293

S. CHAKRABORTY, D. GARCÍA-SORIANO, A. MATSLISH

ond property, and therefore for all i, if i ≡ i′(mod N)
then query(i) = query(i′). Hence by using the al-
gorithm of Section 6.1, with each query to position i
replaced by a query to position (i mod N), r is found
with O(log n/ log log log n) additional queries.

It is clear that the main loop spends at most
O(k) = O(n/ log m) queries (by the third property) on
checking the if condition inside the for loop. So the
total number of queries made by find r large m(s, n)
is O(n/ log m + log n/ log log log n). Also note that
the maximum position the algorithm queries is s +
maxi{νA0∪Ai

(lcm([n]))} < s + m. So from Observa-
tion 6.6 we have an algorithm that finds r by making
at most O(s/m+n/ log m+log n/ log log log n) queries
to an m-restricted oracle. ¤

Acknowledgement

We are grateful to Ronald de Wolf for introducing
us to the problem of order finding with jumps, and
for many valuable discussions and comments. We also
thank Richard Cleve for e-mail correspondence.

References

[1] L.Babai and R. Beals. A polynomial-time theory
of black-box groups. In Groups St Andrews 1997
in Bath, I, pp. 30-64. London Math. Soc. Lect.
Notes 260, 1999.

[2] R. Cleve. The query complexity of order-finding.
In Proceedings of 15th IEEE Conference on Com-
putational Complexity, pages 54-59, 2000.

[3] R.W. Floyd. Nondeterministic algorithms. J.
ACM, 14(4):636-644, 1967.

[4] G. H. Hardy and E. M. Wright.An Introduction to
the Theory of Numbers. Oxford University Press,
New York, fifth edition, 1979.

[5] O. Lachish and I. Newman. Testing periodic-
ity. Algorithmica, 2009. Earlier version in RAN-
DOM’05.

[6] D. Shanks.Class number, a theory of factoriza-
tion, and genera. In Analytic Number Theory,
Proceedings of Symposia on Pure Mathematics,
volume 20, pages 415-440, 1971.

[7] V.Shoup. Lower bounds for discrete logarithms
and related problems. In EUROCRYPT’97: Pro-
ceedings of the 16th annual international confer-
ence on Theory and application of cryptographic
techniques, pages 256-266, Berlin, Heidelberg,
1997. Springer-Verlag.

[8] A. V. Sutherland.Order computations in generic
groups. Technical report, PhD Thesis MIT, Sub-
mitted June 2007, 2007.

[9] S. Wigert.Sur l’order de grandeur du nombre des
diviseurs d’un entier. Arkiv för Matematik, As-
tronomi och Fysik, 3:1-9, 1907.

Appendix A

A Lower bound for order finding with
unrestricted oracle

Consider the order-finding problem for a sequence 5

a = af ∈ [n]n for some f : [n] → [n] We say that two
subsequences a, b ∈ [n]≤n are equivalent if they are the
same up to a relabelling, i.e. if there is a permutation
σ : [n] → [n] such that {bi}i∈[n] = {σ(ai)}i∈[n]. For
each equivalence class [a], choose one representative,
which we denote by [a] as well. Then a and b are
equivalent iff [a] = [b]. For any permutation π : [n] →
[n], we can consider also the representative function
[]π mapping a to [a]π , π[a].

Take any randomized algorithm A for order finding
that always makes q queries (some of which may be
redundant). At any given stage, its behaviour is deter-
mined by its random seed t and the history sequence
H = ((q0, α0), . . . , (qi−1, αi−1)) of query/answer pairs
received so far (where αi = aqi). H starts out empty.
On history H, where i = |H| < q, A queries position
qi , queryA,t(H), obtains αi , aqi as response, and
then the new pair (qi, αi) is appended to H. After the
last query, A makes a guess for the period of a. For
any a, the value returned by A is correct with proba-
bility at least 2/3. In particular, this also holds when
A runs on the “normalized” sequence [a].

We can define a new algorithm B that simulates A,
except that it normalizes on the fly the elements of a
it sees according to a random representative function
[]π, so that the sequence α0, . . . , αi−1 of responses kept
in H is always normalized. Concretely, B takes the
random seed t and an additional uniformly random
permutation π, and on history H does the following:

1. Make the same query qi that A would make on
history H and seed t; let α = aqi be its answer.

2. Find the unique β satisfying

[(α0, . . . , αi−1, α)]π = (α0, . . . , αi−1, β).
5Strictly speaking, af was defined before as an infinite se-

quence in [n]∗, but it is enough to restrict attention to finite
sequences of length n

294

CYCLE DETECTION, ORDER FINDING AND DISCRETE LOG WITH JUMPS

3. Append (q, β) to H (that is, pretend that the
answer received was β instead of α).

It is not difficult to see that Bt,π also has success
probability 2/3 for any a (over random t and π), as
its success probability for a is an average of that of A
permutations of a (all of which have the same period).
It also has query complexity q and, by construction,
its decisions depend only on t and [a]π, and therefore
once the randomness has been fixed it behaves the
same for equivalence sequences; we say that B is in
“normal form”.

Proposition A.1 Order finding requires at least
Ω(log r/ log log r) queries.

Proof. We prove that for every n, order find-
ing under the promise that the period r belongs to
some known set Sn ⊆ [n/2, n] of polynomial density
(i.e. l , |Sn| = nΩ(1)) requires Ω(log l/ log log l) =
Ω(log r/ log log r) queries.

It is enough to consider algorithms in standard
form. Consider the distribution over sequences a ∈
[n]n defined by picking a period r uniformly at random
from Sn and defining ai = (i mod r). As customary,
we apply Yao’s principle 6. We show that no deter-
ministic decision tree of depth q in standard form can
succeed with probability at least 2/3 over this distri-
bution unless Bq ≥ (2/3) l, where Bell’s number Bq is
the number of partitions of a set with n elements. It
is not difficult to see that Bq ≤ q!, so this will imply
q = Ω(log l/ log log l), as desired.

Now consider a decision tree T in standard form and
let l′ be its number of leaves. To leaf number i ∈ [l′]
corresponds the set Ci of periods r such that, on the
(unique) sequence of period r in the distribution, leaf
i is reached. Namely, if the history leading to leaf i
is H = ((q0, α0), . . . , (qq−1, αq−1)), then Ci = {r ∈
Sn : ∀a, b ∈ [q], (r | (qa − qb)) ↔ αa = αb}. Note
that l′ 6 Bq, because Ci is determined by a partition
of [q], where the indices of queries that received the
same answer are put into the same set of the partition.

The family {Ci}i∈[l′] forms a partition of a subset
of Sn. Since the tree is deterministic, there is only
one r = ri in each Ci for which the correct period ri

6Note that there is a deterministic algorithm that makes
one query and always works for this particular distribution:
first query n! − 1 to get α = (n! − 1) mod r, and then return
α + 1. However, this is not in standard form. The point is that
any algorithm that works for general sequences can be put into
standard form, and to prove lower bounds for those it is enough
to restrict ourselves to sequences of this kind.

is returned. As r is chosen at random from a set of
size l, the probability of picking some r ∈ ⋃

i∈[l′]{ri}
is exactly l′/l. Hence for the success probability to be
no smaller than 2/3, we need to have l′ ≥ (2/3)l. ¤

B Upper bound for unrestricted oracle

B.1 Claim B.1

Claim B.1 If Πk
i=1p

αi
i is the prime factorization of

r, then
∑k

i=1(1 + 2 log(αi)) = O(log r/ log log r).

Proof. The number of divisors of r is τ(r) =∏
i(αi + 1). By Lemma 4.3, τ(r) = 2O(log r/ log log r),

from which we get
∑

i log αi = log
∏

i αi <
log τ(n) = O(log r/ log log r). Since k = |PD(r)| =
O(log r/ log log r), we get

k∑

i=1

(1 + 2 log αi) = k + 2
k∑

i

log αi

= O(log r/ log log r).

¤

B.2 Algorithm find exponents

Algorithm 7 (find exponents(D, s, n) – returns r,
given the set D of its prime divisors)
Require: D = PD(r)
1: r ← 1
2: for all p ∈ D do
3: α, β ← 1
4: while is a divisor({pβ}, s, n)do
5: β = 2 · β
6: end while
7:
8: while β − α 6= 1 do
9: γ ← bα+β

2 c
10: if is a divisor({pγ}, s, n) then
11: α = γ
12: else
13: β = γ
14: end if
15: end while
16: r ← r · pα

17: end for
18: return r

295

S. CHAKRABORTY, D. GARCÍA-SORIANO, A. MATSLISH

B.3 Algorithm has a factor

Algorithm 8 (has a factor(D, s, n) – outputs true if
r is divisible by some element of D)
Require: D = {pα1

1 , . . . , pαk

k } (αi ≥ 1) is a set of powers
of distinct primes; r ≤ n

1: find the prime factorization of lcm([n]) = pβ1
1 . . .

pβm
m (we order the factors so

that the first k correspond to the primes in D)
2: t ← ∏k

i=1 pαi−1
i

∏m
i=k+1 pβi

i

3: return true if query(s) 6= query(t + s)

B.4 Algorithm has two prime divisors

Algorithm 9 has two prime divisors(D, s, n) –
determine if D contains ≥ 2 prime divisors of r
Require: r ≤ n
1: Rest ← Pn \D
2: a ← νRest(lcm([n]))
3: k ← 10 + 2dlog log n/ log log log ne
4:
5: factors ← ∅
6: for i = 0 to k − 1 do
7: vi ← query(a · i + s)
8: if i is prime and is a divisor(i, s, n) then
9: factors = factors ∪ {i}
10: end if
11: end for
12: if factors 6= ∅ then
13: return |factors| ≥ 2 or |factors| = 1 and

has a factor(D \ factors, s, n)
14: end if
15:
16: for i = 1 to k do
17: split D into k disjoint sets D1, . . . , Dk by

placing each p ∈ D in a randomly selected Di

18: let ai ← a · νDi(lcm([n])) for all i ∈ [1, k]
19: find x such that x ≡ i · a mod ai for all

i ∈ [1, k]
20: y ← query(x + s)
21: if there is no 1 ≤ i ≤ k with vi = y then
22: return true
23: end if
24: end for
25: return false

Lemma B.2 If D contains fewer than 2 prime fac-
tors of r, Algorithm has two prime divisors(D, s, n) al-
ways returns false. Otherwise it returns true with
probability at least 1 − 1/(1000 log n). Its query com-
plexity is O(log log n/ log log log n).

Proof. Clearly, if |D ∩ PD(r)| ≤ 1 then the al-
gorithm always returns false. Also, the correct deci-
sion is always made if there is some element of PD(r)
smaller than k = 10 + log log n/ log log log n.

So assume that |D∩PD(r)| ≥ 2 and PD(r)∩[k] = ∅.
Take any pair of distinct p, q ∈ D∩PD(r); with prob-
ability at least 1 − 1/k, they fall into different sets
Di, Dj , where 1 ≤ i, j ≤ k. We claim that whenever
this happens, x 6≡ (m · a) mod r for any 1 ≤ m ≤ k.
Indeed, suppose for a contradiction that x ≡ (i · a)
mod p, x ≡ (j ·a) mod q and x ≡ (m·a) mod r. Not-
ing that x ≡ 0 mod a and pq | r, this implies x/a ≡ i
mod p, x/a ≡ j mod q and x/a ≡ m mod (p · q).
Therefore i ≡ m mod p, and from 1 ≤ i,m ≤ k ≤ p
we deduce i = m. Likewise, j = m, implying i = j.

Hence each iteration returns true with probabil-
ity at least 1 − 1/k. Since k independent itera-
tions are run, the error probability is bounded by
1/kk ≤ 1/(1000 log n). ¤

C Upper bound for restricted oracle

C.1 Proof of Observation 6.6

Let us start assuming, for the sake of simplicity,
that A is non-adaptive. Thus g is known at the start
of the algorithm. Let g = am + b, where a < m. The
algorithm can make queries to all positions of form
cm for all c 6 a at the start. This takes g

m number
of queries. Once all these queries are made, by the
definition of the m-restricted oracle, for any i 6 g
the algorithm can obtain the value of query(i) with at
most one call to the m-restricted oracle. Since all the
queries that the algorithm A makes are at most g, the
new algorithm can simply simulate the algorithm A
while making queries to the m-restricted oracle. Thus
the total query complexity will be q + g

m .

Note that the algorithm does have to know g be-
forehand, as it can query position cm only when the
algorithm A queries some i such that i > cm. There-
fore the conversion works too when A is adaptive.

C.2 Proof of Lemma 6.9

For any set A ⊆ Pn, we have νA(lcm([n])) =∏
p∈A pblogp(n)c ≤ n|A|, so if we take A1, A2, . . . ,

to be consecutive subsets of Pn \ A0 containing
blog m/(2 log n)c − 1 primes each (except possibly
the last), the second condition is satisfied for all

296

CYCLE DETECTION, ORDER FINDING AND DISCRETE LOG WITH JUMPS

i > 0. Now the Prime Number Theorem im-
plies that the number of sets in such a parti-
tion is |Pn|/(log m/(2 log n)) = O(n/ log m) (which
gives us the third condition), and also that |A0| =
O(
√

n/ log n), implying νA0(lcm([n])) = 2O(
√

n) ≤√
m for large enough c.

D Removing the need for upper
bounds on r and s

In order to apply any of the algorithms presented so
far, we need to be able to have at our disposal good
upper bounds r′ and s′ on r and s. Given a can-
didate pair r′ and s′, Algorithms find r small m(s, n)
and find r large m(s, n) can be used to build a deter-
ministic procedure check(r′, s′) to decide if the bounds
r′ and s′ are valid, i.e. r ≤ r′ and s ≥ s′. (Note that
the probabilistic part of Algorithm 6, namely the call
to find period(s′, r′), only comes into play when s′ and
r′ are good bounds, and could in fact be skipped for
this check). The query complexity of this check is
O(f(r′) + g(s′)), where

f(r′) , min (r′/m +
√

r′,

r′/ log m + log r′/ log log log r′)

and
g(s′) = s′/m.

We need to show that we can determine the precise
values of s and r with O(f(r) + g(s) + log s) queries
(Algorithm 10).

Algorithm 10 find r s() – find r and s
1: fori = 1 to ∞ do
2: r′ = df−1(2i)e
3: s′ = dg−1(2i)e
4: if check(s′, r′) then
5: r ← find period(s′, r′)
6: do a binary search on [0,∞) to find s
7: return (r, s)
8: end if
9: end for

Note that f(r) and g(s) are strictly increasing
functions whose growth rate is bounded above by
a polynomial. In particular their inverses satisfy
f(f−1(x) + 1) = O(x) and g(g−1(y) + 1) = O(y).
(We are viewing f and g as functions defined over
the reals). Consider Algorithm 10. Clearly the
call to find(r′, s′) will succeed when i reaches the
value i0 = max(dlog f(r)e, dlog g(s)e). The number

of queries made at this point is

i0∑

i=1

f(df−1(2i)e) + g(dg−1(2i)e) =
i0∑

i=1

O(2i + 2i),

which is O(2i0) = O(max(f(r), g(s)). So we can deter-
mine r with O(f(r)+g(s)) queries. The next line finds
s by binary search with O(log s) queries. This is pos-
sible because, once r is known, predicate check(r, s′)
can be computed by querying the two positions 7 s′

and s′ + r. (Note that the binary search must start
from scratch and find tight upper bound on s, as the
prior bound s′ might be much larger than poly(s)).
Therefore the precise values of r and s can be deter-
mined after O(f(r) + g(s) + log s) queries with high
probability.

7Here Observation C.1 is implicitly used, coupled with the
fact that position r′ ≥ r has already been inspected at this
point.

297

