
Property Testing of Equivalence under a Permutation Group Action

László Babai and Sourav Chakraborty
University of Chicago

{laci, sourav}@cs.uchicago.edu

Abstract

For a permutation group G acting on the set Ω we say that two strings x, y : Ω → {0, 1} are G-
isomorphic if they are equivalent under the action ofG, i. e., if for some π ∈ G we have x(iπ) = y(i) for
all i ∈ Ω. Cyclic Shift, Graph Isomorphism and Hypergraph Isomorphism are special cases, and subcases
corresponding to certain classes of groups have been central to the design of efficient isomorphism testing
for subclasses of graphs (Luks 1982).

We study the complexity of G-isomorphism in the context of property testing: we want to find the
randomized decision tree complexity of distinguishing the cases when x and y are G-isomorphic from
the cases when they are at least δ-far from beingG-isomorphic (in normalized Hamming distance). Error
can be 1-sided or 2-sided. In each case we consider two models. In the query-1 model we assume y is
known and only x needs to be queried. In the query-2 model we have to query both x and y.

We give various upper and lower bounds for the four combinations of models considered in terms of
n = |Ω| and |G|. In most cases, substantial gaps remain between the upper and lower bounds. However,
for primitive permutation groups, we obtain a tight (up to polylog(n) factors) bound of Θ̃(log |G|) for
the 1-sided error query complexity in the query-1 model and a tight Θ̃(

√
n log |G|) bound for the 1-

sided error query complexity in the query-2 model. These results extend results of Fischer and Matsliah
(2006) on Graph Isomorphism to a surprisingly general class of groups which also includes isomorphism
of uniform hypergraphs of any rank. Our results imply a remarkable divergence between the query-1 and
the query-2 complexities of k-hypergraph isomorphism for large k in the 1-sided error model.

Besides the fact that they include Graph Isomorphism and k-hypergraph isomorphism, primitive
permutation groups are significant because they form the “building blocks” of all permutations groups,
providing the base cases of a natural divide-and-conquer approach successfully exploited in algorithm
design (Luks, 1982; Babai, Luks, Seress 1987).

While all our bounds are in terms of the order and the degree ofG, it seems likely that tighter bounds
will depend on the finer structure ofG. Our results on primitive groups are the first steps in this direction.

1 Introduction

“Property testing” is a branch of decision tree complexity (query complexity) theory: with a small number
of randomized queries to the unknown input string, we want to have a good chance of distinguishing the
cases when the input has a given property from the cases when the input is “far” from any string having the
property.

This concept was introduced in the context of program checking by Blum, Luby and Rubinfeld [14]
who showed that linearity of a function over a vector space can be tested with a constant number of queries.
A central ingredient in the proof of the MIP=NEXP theorem [11] was the proof that mulitinearity can be
tested with a polylogarithmic number of queries. These two papers were among the roots of the technical
developments culminating in the PCP Theorem [8, 7].

1

Rubinfeld and Sudan [24] formally defined property testing in the context of algebraic properties. Sub-
sequently, the interest in property testing was extended to graph properties, with applications to learning and
approximation [20]. In recent years the field of combinatorial property testing has enjoyed a rapid growth
(see, e. g., [1, 2, 3, 5, 4], cf. [23, 16]).

Notably, Alon and Shapira [4] show that graph properties that are invariant under vertex removal (i. e.,
are inherited by induced subgraphs) are testable by a constant number of queries. Isomorphism to a given
graph is an important example of a graph property that is not hereditary.

The immediate motivation of our work comes from papers by Fischer [17] and Fischer and Matsliah [18]
who consider the Graph Isomorphism problem in the property testing model. Here two graphs are given as
inputs and we have to test whether they are isomorphic or “far” from being isomorphic.

In this paper we consider a generalization of graph isomorphism. Let us fix a permutation group G
acting on the set Ω. Given two input strings x, y : Ω → {0, 1}, we say x is “G-isomorphic” to y if y is a
a π-shift of x for some π ∈ G. We want to test the property “x is G-isomorphic to y,” that is, we want to
distinguish the case when x and y are G-isomorphic from the case when every string that is G-isomorphic
to y is far from x. [Formal definitions are given in Section 2.]

Graph Isomorphism is a special case of G-isomorphism: let Ω be the set of unordered pairs of the set V
of vertices; and G = Sym(2)(V) the induced action on Ω of Sym(V), the symmetric group acting on V (so
n =

(|V |
2

)
). We note that the induced symmetric group action on pairs is primitive (does not admit nontrivial

invariant partitions of the permutation domain). This fact defines the direction in which we extend results on
Graph Isomorphism. We note that by considering the induced symmetric group action on k-tuples, another
primitive action, we also cover the case of k-uniform hypergraphs (k-hypergraphs). Here k is a variable,
2 ≤ k ≤ |V |−2. Various finite geometries also correspond to primitive groups, soG-isomorphism includes
equivalence under geometric transformations (projective, orthogonal, symplectic, etc.).

Thus Graph Isomorphism and its immediate generalizations (k-hypergraphs) can be viewed as isomor-
phism under some primitive group action. In addition to this, primitive permutation groups are significant
because they form the “building blocks” of all permutations groups in the sense that a “structure tree” can be
built of which the leaves constitute the permutation domain and the action of G extends to the tree in such a
way that the the stabilizer of any node in the tree acts as a primitive group on the children of the node (cf.
[13]). (The stabilizer of a node is the subgroup that sends the node to itself. The structure tree formalizes
the natural divide-and-conquer approach successfully exploited in algorithm design [12, 13, 22].)

In “property testing” we want to accept if the inputs are G-isomorphic and reject if they are “far” from
being G-isomorphic. The complexity is the number of queries made to the input. We consider two models
depending on whether we have to query both x and y or we have to query only one of them (the other is
known). We call the models “query-2” and “query-1,” respectively. A property test can have 1-sided or
2-sided-error.

In this paper we focus mainly on “property testing” of G-isomorphism when the group is primitive. Our
main results are the tight bounds on the query complexity when we are allowed only 1-sided error, that is,
the algorithm has to accept with probability 1 when the two inputs are G-isomorphic and reject with high
probability when the inputs are “far” from being isomorphic. The main results are the following.

Theorem 1.1 (Tight bounds for primitive groups). If G is a primitive group then

(a) the 1-sided-error query-1 complexity of G-isomorphism is Θ̃(log |G|).

(b) the 1-sided-error query-2 complexity of G-isomorphism is Θ̃(
√
n log |G|);

The tilde in the asymptotic notation indicates polylog(n) factors.

2

Theorem 1.1 generalizes a result of Fischer and Matsliah [18] on Graph Isomorphism. The lower bound
parts of this result constitute the main technical contributions of this paper and are proved in Section 3.

A permutation group is transitive if all elements of the permutation domain are equivalent under the
group action. (Primitive groups are transitive by definition.) In the query-2 model, a lower bound of

√
n can

easily be proved for any transitive group G. In this paper we improve this lower bound to Θ̃(
√
n log |G|)

under the condition that the group is primitive. For the lower bound proofs we use a classification of prim-
itive groups based on the O’Nan–Scott Theorem ([25], see [15, 21]) and the Classification of Finite Simple
Groups. However, the consequence we use is elementary and can be understood with an undergraduate
abstract algebra background.

The upper bounds in Theorem 1.1 hold for any permutation group G.

Proposition 1.2 (Upper bound). Let G be a permutation group.

(a) The 1-sided error query-1 complexity of G-isomorphism is O(1 + log |G|).

(b) The 1-sided error query-2 complexity of G-isomorphism is O(
√
n(1 + log |G|)).

Consequently the same upper bounds hold for the 2-sided error models.

In Table 1, we abbreviated the expression 1 + log |G| to log |G| for better typography. The only case
where this makes a difference is when |G| = 1 so the results as stated in the Table 1 assume |G| ≥ 2.

We also prove a lower bound for the 2-sided-error query-1 case if the group is transitive and not too
large. But a significant gap remains between the upper and lower bounds even in this case.

Theorem 1.3 (Lower bound). LetG be a transitive group of order 2O(n1−ε). Then the 2-sided-error query-1
complexity of G-isomorphism is Ω(ε log n).

All our lower bounds are against adaptive queries whereas all our upper bounds uses only non-adaptive
queries.

In Section 2 we give the formal definitions. In Sections 3, 4 and 5 we give the proofs of the above
three results. In Section 6 we state further nearly tight bounds that follow from our results (in addition to
Theorem 1.1).

Table 1 summarizes our results on G-isomorphism. Table 2 gives the results of Fischer and Matsliah on
Graph Isomorphism (ignoring logarithmic factors). In Table 3 we specialize our results to the case of Graph
Isomorphism for comparison with the results of Fischer and Matsliah. In Table 4 we specialize our results
to the case of isomorphism of k-hypergraphs. Table 4 exhibits a remarkable divergence between the query-1
and query-2 complexities for k-hypergraphs in the 1-sided error model: the query-1 complexity is Õ(V),
independent of k, while the query-2 complexity grows rapidly with k (k goes in the exponent).

2 Preliminaries

2.1 Group actions

Let Ω be a set of size n. The permutations of Ω form the symmetric group Sym(Ω) of order n!. We write
the action of π ∈ Sym(Ω) as i 7→ iπ. For a subset S ⊆ Ω we set Sπ = {iπ : i ∈ S}.

A subgroup G of Sym(Ω) is a permutation group; Ω is the permutation domain on which G acts. G
has order |G| and degree n = |Ω|. The alternating group Alt(Ω) consists of the even permutations of Ω;
it has order n!/2.

3

Given an (abstract) group G, a homomorphism ϕ : G → Sym(Ω) is called an action of G on Ω or
G-action on Ω. For π ∈ G and x ∈ Ω we write xπ instead of xϕ(π) when the action ϕ is clear from
the context. The action is faithful if |ker(ϕ)| = 1. The same group can have many significantly different
actions. Permutation groups will be viewed as faithful actions on their domain (ϕ is the identity map).

Let us fix a G-action on Ω. The action is transitive if (∀i, j ∈ Ω)(∃π ∈ G)(iπ = j). A partition
Ω = Ω1∪̇ . . . ∪̇Ωm of Ω into the nonempty disjoint subsets Ωi is G-invariant if if (∀π ∈ G)(∀i ≤ m)(∃j ≤
m)(Ωπ

i = Ωj). The trivial partitions correspond to m = 1 and m = n; these are always invariant. The
G-action is primitive if n ≥ 2, the action is transitive on Ω, and Ω does not admit any nontrivialG-invariant
partition. All primitive permutation groups of degree n other than the symmetric group and the alternating
group have order ≤ exp(O(

√
n log2 n)) ([9, 10]) so except for the two classes of “giants” of orders n! and

n!/2, resp., log(|G|) = Õ(
√
n) for all primitive groups of degree n.

An important class of primitive groups arises from the induced action of Sym(V) on the k-subsets of
V ; this group is denoted by Sym(k)

V and acts on the set Ω =
(
V
k

)
of k-subsets of V . This group is primitive

for 1 ≤ k < |V |, k 6= |V |/2.
We use the notation [n] = {1, 2, 3, ..., n}. Most often we take Ω = [n] and write Sn for Sym([n]) and

An for Alt([n]).

2.2 Strings, G-isomorphism

Definition 2.1. A partial assignment is a function p : S → {0, 1} where S ⊆ [n]. We call S the support of
this partial assignment and set |p| = |S|. We call x a (full) assignment if x : [n]→ {0, 1}. We say p ⊆ x if
x is an extension of p, i. e., if p = x|S (the restriction of x to S).

Ham(x, y) will denote the Hamming distance of the strings (full assignments) x and y.

Definition 2.2. Let T ⊆ [n] and let π ∈ Sn. Let G be a permutation group acting on [n]. Then the sets
T π, where π ∈ G, are called the G-shifts of T . If p : T → {0, 1} is a partial assignment then we define
pπ : T π → {0, 1} as pπ(i) = p(iπ

−1
).

Given two full assignments x and y and a permutation group G we denote by dG(x, y) the minimum
distance between the G-shifts of x and y. That is,

dG(x, y) = min
π1,π2∈G

Ham(xπ1 , yπ2). (1)

Since G is a group, we have

dG(x, y) = min
π∈G

Ham(x, yπ) = min
π∈G

Ham(xπ, y). (2)

If dG(x, y) = 0 then we say “x is G-isomorphic to y.”
For a given constant δ a 2-sided-error δ-property tester for G-isomorphism is a probabilistic decision

tree, say A, such that given x, y ∈ {0, 1}n

if dG(x, y) = 0 then with probability > 2/3 we have A(x, y) = 1, and,

if dG(x, y) ≥ δn then with probability > 2/3 we have A(x, y) = 0.

A 1-sided-error δ-property tester is one which makes no mistake if dG(x, y) = 0.
The complexity of a property tester is the maximum (over all possible inputs) of the minimum number

of bits that need to be queried. If neither x nor y is given (so both need to be queried) then we speak of a

4

Query-1 Complexity Query-2 Complexity

1-sided-error Θ̃(log |G|)‡, Ω(log n)† Θ̃(
√
n log |G|)‡

2-sided-error O(log |G|), Ω(log n)† O(
√
n log |G|)

† The lower bound holds when G is transitive and |G| = 2O(n1−ε).
‡ The lower bound is for primitive G and the upper bound has no tilde.

Table 1: Bounds on the query complexity of G-isomorphism.

Query-1 Complexity Query-2 Complexity

1-sided-error Θ̃(|V |) Θ̃(|V |3/2)

2-sided-error Θ̃(
√
|V |) Ω(|V |), Õ(|V |5/4)

Table 2: The results of Fischer and Matsliah for Graph Isomorphism.

query-2 δ-tester and correspondingly of query-2 complexity. If one of them is given (we always assume y
is given) and only the other (that is x) needs to be queried then we speak of a query-1 δ-tester and query-1
complexity.

But usually we will drop the δ when talking about the testers and the complexities. Unless otherwise
stated, in the rest of the paper we will assume that δ is some constant and will affect the constants in the
asymptotic notations of the query complexities.

The trivial upper bound on the complexity of query-2 testers is 2n and of query-1 testers is n.
All our upper bound results hold for any permutation group G. But for our lower bound results we need

some more structure on G. In Theorem 1.3 we assume that the group is transitive while Theorem 1.1 holds
for primitive groups. Our main tool for primitive groups is the O’Nan–Scott Theorem (see Section 3). The
following definition will help describe the structure of large primitive groups.

Definition 2.3. Let T1, T2, . . . , Ts be disjoint sets and r1, r2, . . . , rs be positive integers satisfying
∑s

i=1 ri =
R. Then by

(
T1,T2,...,Ts
r1,r2,...,rs

)
we mean the set of R-tuples formed by ri distinct elements from the set Ti for all

1 ≤ i ≤ s. That is, (
T1, T2, . . . , Ts
r1, r2, . . . , rs

)
=

{
s⋃
i=1

Si

∣∣∣Si ⊆ Ti, |Si| = ri

}
.

5

Query-1 Complexity Query-2 Complexity

1-sided-error Θ̃(|V |)† Θ̃(|V |3/2)†

2-sided-error Õ(|V |), Ω(log(|V |)) Õ(|V |3/2)

†Matches the Fischer–Matsliah bounds.

Table 3: Corollaries of our results to Graph Isomorphism.

Query-1 Complexity Query-2 Complexity

1-sided-error Θ̃(|V |) Θ̃
((
|V |
(|V |
k

))1/2
)

2-sided-error Õ(|V |), Ω
(

log
(|V |
k

))
Õ

((
|V |
(|V |
k

))1/2
)

Table 4: Corollaries of our results to isomorphism of k-hypergraphs. Explanation of the tilde notation:
In Table 1, the suppressed term is polylog(n); in Tables 2 and 3, it is polylog(|V |); and in Table 4, it is
polylog

(|V |
k

)
.

2.3 Prior work

The query complexity of the property testing version of graph isomorphism has been studied by Fischer and
Matsliah [18]. They gave tight bounds for 1-sided error and nontrivial bounds for 2-sided error (see Table 2).

Graph isomorphism is identical with G-isomorphism for the group G = S
(2)
V , where V is the vertex set

of the graph. Thus our results specialize to this case (Table 3).
Isomorphism of k-hypergraphs corresponds to G-isomorphism for G = Sym(k)

V (Table 4).

2.4 Chernoff bounds

We shall repeatedly use the following version of the Chernoff bounds, as presented by Alon and Spencer [6,
Corollary A.14].

Let X1, X2, . . . , Xk be mutually independent indicator random variables and Y =
∑k

i=1Xi. Let the
expected value of Y be µ = E[Y]. For all α > 0,

Pr[|Y − µ| > αµ] < 2e−cαµ,

where cα > 0 depends only on α.

6

3 Primitive groups, 1-sided-error: tight bounds

3.1 Structure of primitive groups

The wreath product of permutation groups G and H , acting on the sets A and B, resp., is a permutation
group generated by |B| copies of G, acting independently on |B| copies of A, and a copy of H which
permutes the |B| copies of A. Here is the formal definition.

Definition 3.1. Let G be a permutation group acting on a set A and H a permutation group acting on a set
B. We define the wreath product G oH as a permutation group acting on A×B as follows. G oH contains
the “base” subgroup GB (the Cartesian product of |B| copies of G), with each copy acting independently on
the corresponding copy A×{b} of A (b ∈ B), i. e., if (a, b) ∈ A×B and f ∈ GB (f is a B → G function)
then (a, b)f = (af(b), b). G o H also contains a subgroup H∗ isomorphic to H acting only on the second
components: for (a, b) ∈ A×B and h ∈ H we define (a, b)h = (a, bh). The group G oH is defined as the
subgroup of Sym(A×B) generated by GB and H∗.

It is easy to see that GB is a normal subgroup of G oH and its quotient by GB is H:

H ∼= (G oH)/GB.

In particular, |G oH| = |G||B||H|.
Note that if |A|, |B| > 1 then G oH as defined above is an imprimitive group: the partition (A× {b} :

b ∈ B) is G oH-invariant. Therefore this definition describes what is called the imprimitive action of the
wreath product.

An important, often primitive, permutation group arises by the faithful action of G oH on the set AB of
B → A functions, defined as follows: the base group acts coordinatewise, i. e., p ∈ AB and f ∈ GB then
(pf)(b) = p(b)f(b)); and H acts by permuting the coordinates, i. e., (ph)(b) = bh.

It is easy to see that this defines a permutation group isomorphic toG oH; it is referred to as the product
action of G oH .

The structure of primitive permutation groups is described by the O’Nan–Scott Theorem [25] (cf. [21]);
the product action of the wreath product plays a central role in that description.

We only need a consequence of the O’Nan–Scott theorem, derived by Cameron [15].

Theorem 3.2 (O’Nan-Scott, Cameron). There is a (computable) constant c with the property that, if G is a
primitive permutation group of degree n, then at least one of the following holds:

1. |G| ≤ nc logn.

2. G is a subgroup of Aut(A(k)
m) o S` (product action) containing (A(k)

m)`, where A(k)
m is the alternating

group Am acting on k-element subsets, where m ≥ 5 and 1 ≤ k < m/2.

Remark 3.3. While the O’Nan–Scott Theorem is elementary, Cameron has to invoke the power of the
Classification of Finite Simple Groups to derive Theorem 3.2.

We need the following fact.

Fact 3.4. Aut(Am) = Sm for all m ≥ 3, m 6= 6. In particular, for all m,

|Aut(Am)| ≤ 2m!

7

We now study the relation between the parameters n,m, k, ` in the case |G| > nc logn. In this case, the
degree of G is given by

n =
(
m

k

)`
and therefore n ≥ m`. (3)

It follows that ` ≤ log2 n. Now since k < m/2, we have(
m

k

)
≥
(m
k

)k
> 2k and therefore k < log2 n. (4)

A bound on the order of G follows, using Fact 3.4 and noting that Am is isomorphic to A(k)
m .

|G| ≤ (2m!)`(`!) < mm``` ≤ nm`` [From Equation (3)] (5)

Since ` ≤ log2 n, we have from Equation (5),

c(log n)2 < log(|G|) < (m log n+ ` log `) ∼ m log n. (6)

The last asymptotic equality holds because ` < log n and therefore ` log ` = o(log2 n).
Therefore,

log |G| . m log n and m & c log n. (7)

Observation 3.5. If k = O(
√
m) then

(
m

k

)
= Θ

(
mk

k!

)
.

Corollary 3.6. If G is a primitive permutation group of degree n and n is sufficiently large then either
|G| < (log n)3 or we are in the second case of Theorem 3.2, k ≤

√
m, and

m√
k

√(
m(1− 1

k)
k − 1

)(
m

k

)`−1

= Ω̃(
√
n log |G|). (8)

Proof. If we are in the first case of Theorem 3.2 then log |G| < c(log n)2 < (log n)3 (for large n).
Now assume we are in the second case of Theorem 3.2. Let k >

√
m. Then

n =
(
m

k

)
>
(m
k

)k
> 2k > 2

√
m.

Therefore m < (log n)2 which implies by Equation (6) that log |G| < (log n)3.
Now if k ≤

√
m then the Corollary follows from the facts that n =

(
m
k

)` (Equation (3)); log |G| .
m log n (Equation (7)); and Observation 3.5.

3.2 G-Agreeability

In this section we build our tools for the lower bounds.

Definition 3.7. Let A,B ⊆ [n] and p : A→ {0, 1} and q : B → {0, 1} be two partial assignments. We say
that p and q are compatible if there exists a full assignment x on [n] which is an extension of both p and q.

Let G be a permutation group on [n]. We say that p and q are G-agreeable if there exist π1, π2 ∈ G
such that pπ1 and qπ2 are compatible. Since G is a group this is same as saying that there exists an element
π ∈ G such that pπ and q are compatible. We say that p and q are agreeable through π.

8

Definition 3.8. Let G be a permutation group on [n]. Let x and y be two full assignments on [n]. We say
that x and y are k-G-agreeable if for any sets A,B ⊆ [n] with |A|, |B| ≤ k, the partial assignments x|A
and y|B are G-agreeable.

Observation 3.9. If there exist two full assignments x, y on [n] which are k-G-agreeable but satisfy dG(x, y) >
δ then the 1-sided-error query-2 complexity of G-isomorphism is greater than k.

Proof. Let x and y be the two assignments in question. Now a 1-sided-error algorithm is forced to accept
if it does not find a proof that x and y are not G-isomorphic. Let Qx and Qy be the sets of positions in
x and y, respectively, that our 1-sided-error query-2 algorithm A queries. If x and y are k-G-agreeable
and |Qx|, |Qy| ≤ k then this means there exists a permutation π ∈ G such that xπ|π(Qx) and y|Qy are
compatible. Hence A will have to accept, which is the wrong answer.

The following is folklore.

Proposition 3.10. LetG be a transitive group on [n]. Let us fixA,B ⊆ [n] and let us select π ∈ G uniformly
at random. Then

E(|Aπ ∩B|) =
|A||B|
n

. (9)

Proof. By G-symmetry, for each b ∈ B we have Pr(b ∈ Aπ) = |A|/n. Now the linearity of expectation
yields the result.

Corollary 3.11. Let G be a transitive group on [n]. Let A,B ⊆ [n] with |A|, |B| ≤ ε
√
n. Then,

Pr
π∈G

[Aπ ∩B = ∅] ≥ (1− ε2).

It follows that if A and B are the supports of the partial functions p and q, respectively, and ε ≤ 1 then p
and q are G-agreeable. In particular, for a transitive group G, any two full assignments x and y on [n] are
b
√
nc-G-agreeable.

Proof. Immediate from Proposition 3.10 by Markov’s inequality.

The following is now immediate.

Corollary 3.12. Let G be a transitive permutation group. The 1-sided-error query-2 complexity of G-
isomorphism is at least b

√
nc.

The following lemma has the most technical proof in this paper (see Section 3.4).

Lemma 3.13 (G-Agreeability Lemma for primitive groups). Let G be a primitive group. Then there exist
two full assignments x and y on [n] such that dG(x, y) ≥ n/6 and x and y are Ω̃(

√
n log |G|)-G-agreeable.

3.3 Proof of the lower bounds for primitive groups

The lower bound in Theorem 1.1(b) is immediate by combining Observation 3.9 and Lemma 3.13.

Next we prove the lower bound for query-1 complexity stated in Theorem 1.1(a).
We recall the example for lower bound of 1-sided query-1 complexity of graph isomorphism given by

Fischer and Matsliah [18]. In their case, the inputs are graphs. The unknown graph is the complete graph
on n vertices while the known graph is the union of n/2 isolated vertices and a complete graph on n/2

9

vertices. Note that without querying more than n/4 pairs of vertices it is impossible to give a certificate of
non-isomorphism. This gives the lower bound of n/4 for the graph isomorphism case.

We generalize this example to primitive groups of order > nc logn where c is the constant from Part 1
of Theorem 3.2, the structure theorem for primitive groups. If |G| ≤ nc logn then log |G| = Θ̃(1) and the
lower bound Ω̃(log |G|) holds vacuously.

Now assume |G| > nc logn. By part 2 of Theorem 3.2, combined with Fact 3.4 and inequality (7) (which
implies m ≥ 7),

(A(k)
m)` ≤ G ≤ S(k)

m o S` (10)

where the wreath product acts in its product action (“≤” denotes “subgroup”). Thus G is isomorphic to a
subgroup of Sm o S`, acting in its imprimitive action on V = ∪`i=1Vi, where |Vi| = m and the Vi are all
disjoint. This conversion translates any full assignment to a function from the set

(
V1,...,V`
k,k,...,k

)
to {0, 1} and the

group G can be thought of as acting on V .
Now we define the known and the unknown parts of the input. We partition V1 into three disjoint parts,

namely Va, Vb, and Vc, where |Va| = |Vb| = |Vc| = m/3. The known input is

y(w) = 1 iff w ∈
(
Va, Vc, V2 . . . , V`
1, k − 1, k, . . . , k

)
.

The unknown input is

x(w) = 1 iff w ∈
(

(Va ∪ Vb), Vc, V2, . . . , V`
1, k − 1, k, . . . , k

)
.

Note that one needs to make at least m/6 queries to give a certificate of non-isomorphism between the two

inputs. Now from inequality (7) we obtain a lower bound of Ω
(

log(|G|)
log n

)
.

3.4 Proof of the G-agreeability lemma for primitive groups

Proof of Lemma 3.13. We may assume n is large. If log |G| < (log n)3 then
√
n log |G| = Õ(

√
n) and the

result follows from the last sentence of Corollary 3.11.
Now assume log |G| ≥ (log n)3. Then, by Corollary 3.6, we have k <

√
n; we are in the second case of

Theorem 3.2; and equation (8) holds. It follows, as before, that equation (10) holds and we can perform the
translation from the product action of the wreath product to its imprimitive action as described above after
equation (10).

If ` = 1 and G = S
(2)
m then G is the group of automorphisms of the complete graph on m vertices. This

case was settled by Fischer and Matsliah [18]. We generalize their technique.
The rest of our proof has the following two parts:

• Define the full assignments x and y and prove that dG(x, y) > δn for some (absolute) constant δ > 0.

• LetQx andQy be the query sets for x and y, respectively, such that both |Qx| and |Qy| is Õ(
√
n log |G|).

Then we prove that there exist a permutation π = π1 × π2 × · · · × π` ∈ (A(k)
m)` such that Qπx and Qy

are compatible.

We start with defining x.

Definition of the full assignments x and y

10

Let ε be a small constant that will be specified later. Let U ⊆ V1 such that

|U | = m

(
1− 1

k

)
.

Now we define x. Consider a partition of V1\U into two parts, U1 and U2, such that

|U1| = m

(
1
2k

+ ε

)
and |U2| = m

(
1
2k
− ε
)
.

Set

x(w) = 1 iff w ∈
(
U1, U, V2, . . . , V`

1, k − 1, k, k, . . . , k

)
.

Now let us define y. Consider a partition of V1\U into two parts, W1 and W2, such that

|W1| = m

(
1
2k
− ε
)

and |W2| = m

(
1
2k

+ ε

)
.

Set

y(w) = 1 iff w ∈
(
W1, U, V2, . . . , V`

1, k − 1, k, k, . . . , k

)
.

We will consider a map π : V → V that preserves Vi for all i, that is, for all iwe have π(Vi) = Vi. Such a
map gives a rearranges the positions in x. Note that weight of x (number of 1s) ism

(m(1− 1
k
)

k−1

)
(1
2k +ε)

(
m
k

)`−1

and the weight of y is m
(m(1− 1

k
)

k−1

)
(1
2k − ε)

(
m
k

)`−1. So from the difference in weights we see that

dG(x, y) ≥ 2εm
(
m(1− 1

k)
k − 1

)(
m

k

)`−1

.

For k = 1, the right-hand side is 2εm` = 2εn. If k 6= 1 then from Lemma 3.5 and the fact that(
1− 1

k

)k−1 ≥ 1
e we obtain, using Observation 3.5, that

2εm
(
m(1− 1

k)
k − 1

)
∼ 2ε

mk(1− 1
k))k−1

(k − 1)!
≥ εk2mk

ek!
= Θ

(
εk

(
m

k

))
.

So if we choose ε = 1
12Ck where C is the constant implied in the Θ notation, we have that

dG(x, y) ≥ 1
6

(
m

k

)`
=

1
6
n.

Now we move to the second part of the proof. Note that since G contains (A(k)
m)` it can permute the

elements in Vi for each i in a huge number of ways. Since x and y differ only in their association with
elements in V1, in order to make the life of the tester difficult the only tricky part is how to permute the
elements in V1 so that the tester will not find a certificate of non-isomorphism. Now consider the case that
a ∈ U1 and b ∈W2 and for any w′ if (a,w′) is queried then (b, w′) is not queried. If this is the case for a pair
(a, b) then one can map a to b and then all the answers to queries associated with a and b are compatible. If
there are a lot of such pairs (a, b), one can map each of those a ∈ U1 to its corresponding b ∈W2. And then

11

the rest of the elements in U1 can be mapped to W1 arbitrarily and the element of U2 to the rest of elements
of W2 arbitrarily. All we need to show is that if the number of queries is small, one can find such a map.

Now we formalize this idea. LetQx andQy be query sets for x and y, respectively, such that |Qx|, |Qy| ≤
M where M = m

18
√
k

√(m(1− 1
k
)

k−1

)(
m
k

)`−1.

To prove that x and y are M -G-agreeable, we have to construct π ∈ (A(k)
m)` ⊆ G that maps V to V such

that Qπx and Qy are compatible.
If a ∈ U1 then we define

qx(a) =
{
w ∈

(
U1, U, V2, . . . , V`
1, k − 1, k, . . . , k

) ∣∣∣w ∈ Qx and a ∈ w
}
.

Similarly if b ∈W2, let

qy(b) =
{
w ∈

(
W2, U, V2, . . . , V`
1, k − 1, k, . . . , k

) ∣∣∣w ∈ Qy and b ∈ w
}
.

Now by an averaging argument there exist sets A ⊆ U1 and B ⊆W2 such that |A| = |B| > 2m
9k and for

all a ∈ A and b ∈ B we have

|qx(a)|, |qy(b)| ≤
9
√
k

m
M.

Let H = A
(k−1)

m(1− 1
k
)
× (A(k)

m)`−1 acting on the set
(
U,V2,...,V`
k−1,k,k,...,k

)
. That is, every element in H maps U to

U and Vi to Vi for all i ≥ 2. Note that H acts transitively on the set
(
U,V2,...,V`
k−1,k,k,...,k

)
. Fix an arbitrary even

bijection from A to B, i. e., an even permutation of [n] which maps A to B. Let a ∈ A be mapped to
b ∈ B. For a π′ ∈ H we call a pair (a, b) π′-acceptable if qx(a)π

′ ∩ qy(b) = ∅. Using a simple probabilistic
argument we show that there exists at least one π′ ∈ H such that at least εm of the pairs are π′-acceptable.

Pick a random element π′ ∈ H . We want to calculate the probability of a pair (a, b) being π′-acceptable.
Consider the set qa defined as

qa = {w\{a} | w ∈ qx(a)} .

Similarly we define qb. Note that qa and qb are two subsets of
(
U,V2,...,V`
k−1,k,...,k

)
. Note that M is picked such

that the size of the set
(
U,V2,...,V`
k−1,k,...,k

)
is (18

√
kM/m)2. Since the sizes of both the sets qa and qb are less than

9
√
kM/m, from Corollary 3.11 we see that

Pr
π′∈H

[(a, b) is π′-acceptable] ≥ 3
4
.

So by linearity of expectation the expected number of pairs that are π′-acceptable is≥ 3
4

2m
9k

=
m

6k
> 2εm.

So there exists a permutation π′ ∈ H such that εm of the (a, b) pairs are acceptable. These acceptable pairs
along with the permutation π′ give a map from a set A′ ⊆ A ⊆ U1 to a set B′ ⊆ B ⊆ W2 such that
|A′| = |B′| = 2εm. Now we have

|U1\A′| = |W1|.

Hence π′ and the map from the acceptable pairs can be extended to a mapping π : V → V by mapping
U1\A′ to W1 and U2 in x to W2\B′. Thus Qπx and Qy are compatible.

Finally from Corollary 3.6 we have M = Ω̃(
√
n log |G|).

12

4 Upper bounds for transitive groups

In this section we prove Proposition 1.2.

Definition 4.1. We define a query sequence as the sequence positions (elements of [n]) of the input string
that are queried. If Q is a query sequence then |Q| is the number of elements in the sequence.

The proofs of both parts of Proposition 1.2 are rather simple applications of the Chernoff bound; we
describe the proofs for completeness.

Proof of Part (a) of Proposition 1.2. In this part we only have to query x. Let us choose a real number p,
0 < p < 1, appropriately (see below). The length of the query sequence Q will be less than 2pn. The
following is the test:

1. Construct the query sequenceQ by choosing elements of [n] independently at random with probability
p.

2. If m is more than 2pn then accept.

3. If |Q| ≤ 2pn then query x at Q. So we obtain the partial function x|Q.

4. If for some π ∈ G the partial function x|πQ and y are compatible then accept. Otherwise reject.

Note that the query complexity for the test is less that 2pn. Also note that if x and y are G-isomorphic
then the test always accepts. So all we need to show is that if x and y are ε-far from being G-isomorphic
then the test accepts with probability less than 1/3.

By Chernoff Bound we have that

Pr [|Q| > 2pn] < exp (−cnp) ,

where c is some constant. So the probability that the test accepts in Step 2 less than exp (−cnp).
Now if x and y are ε-far from being G-isomorphic then for any permutation π ∈ G, we know that xπ

and y differ in at least εn bits. For any fixed π ∈ G, x|πQ and y are compatible if and only if none of those εn
bit positions are not in Q. Since the bits are chosen at random the probability that x|πQ and y are compatible
is at most (1−p)εn. By union bound the probability that the tester accepts in Step 4 is less than |G|(1−p)εn.
Thus if x and y are ε-far from being G-isomorphic then

Pr [The tester accepts] < (exp (−cnp) + |G|(1− p)εn) .

If p = O((1 + log |G|)/εn) then the right hand side of the above equation and hence the probability of
error of the tester is less than 1/3. Thus the query complexity for this test is less thanO((1+log |G|)/ε).

Proof of Part (b) of Proposition 1.2. In this part we have to query both x and y. Again we choose a real
number p, 0 < p < 1, appropriately (see below). The total length of the query sequence will be 4pn. The
following is the test:

1. Construct two query sequences Q1 and Q2, by choosing the elements of [n] independently at random
with probability p for each query sequence.

13

2. If |Q1| or |Q2| is more than 2pn then accept.

3. Query the bits of x and y corresponding to Q1 and Q2 respectively. So we obtain the partial functions
x|Q1 and y|Q2 .

4. If for some group element π ∈ G, the partial function x|πQ1
and the partial function y|Q2 are compati-

ble then accept. Otherwise reject.

Note that the query complexity for the test is less that 4pn. Also note that if x and y are G-isomorphic
then the test always accepts. So all we need to show is that if x and y are ε-far from being G-isomorphic
then the test accepts with probability less than 1/3.

By Chernoff Bound and union bound we have that

Pr [|Q1| or |Q2| > 2pn] < 2 exp (−cnp) ,

where c is some constant. So the probability that the test accepts in Step 2 less than 2 exp (−cnp).
For any group element π, let Dπ be the set of positions of the bits of xπ that differ from y. By definition

if x and y are ε-far from being G-isomorphic then for any permutation π ∈ G, we know that |Dπ| > εn.
Now x|πQ1

and y|Q2 are compatible if only if for every Dπ ∩ Q1 ∩ Q2 = ∅. Since the bits are chosen at
random the probability that this happens is at most (1− p2)εn.

By union bound the probability that the tester accepts in Step 4 is less than |G|(1− p2)εn. Thus if x and
y are ε-far from being G-isomorphic then

Pr [The tester accepts] <
(
2 exp (−cnp) + |G|(1− p2)εn

)
.

If we take p = O(
√

(1 + log |G|)/εn) the error is less than 1/3. Thus the query complexity for this test
is less than O(

√
n(1 + log |G|)/ε)

5 Lower bounds for Transitive Groups

In the section we prove Theorem 1.3.
We begin with two easy observations. Recall that a k-hypergraph is a family of k-subsets (“edges”) of

the vertex set V . The degree of vertex v ∈ V is the number of edges containing v. The hypergraph is regular
if every vertex has the same degree. A subset of the vertices is a cover it it hits every edge.

Observation 5.1. If a k-uniform regular hypergraph has n vertices then every cover has size ≥ n/k.

Proof. By straightforward counting: let the hypergraph have m edges and be r-regular. Let T be a cover.
Then km = rn and |T |r ≥ m.

Corollary 5.2. If G is a transitive permutation group and S is a k-subset of [n] then there exist at least
n/k2 pairwise disjoint G-shifts of S.

Proof. Let T be a maximal union of disjoint G-shifts of S. So T hits all G-shifts of S. The set of G-shifts
of S is a regular k-uniform hypergraph (regular because G is transitive); therefore, by Observation 5.1, we
have |T | ≥ n/k. This requires at least n/k2 shifted copies of S.

We shall need the following result.

14

Definition 5.3. Let D be any distribution on {0, 1}n. Then for any set Q ⊆ [n] we define D|Q to be the
distribution on {0, 1}|Q| obtained by picking x ∈ {0, 1}n according to the distributionD and then projecting
to the indices in Q.

Theorem 5.4 ([16, 19]). Let f : {0, 1}n → {0, 1} be a function. Let Y ⊆ {0, 1}n be the set of x such
that f(x) = 1 and let N ⊆ {0, 1}n be the set of x which are ε-far from satisfying f(x) = 1. Let DY and
DN be distributions on Y and N , respectively. If for all Q ⊆ [n] of size q, and all g ∈ {0, 1}|Q|, we have
2
3 PrDY |Q[g] < PrDN |Q[g] then any 2-sided-error property test for f requires at least q queries.

Proof of Theorem 1.3. Let x be a full assignment. For any subset P ⊆ [n] of size k and any z ∈ {0, 1}k let
nPz (x) = |{π ∈ G : xπ|P = z}|. We call x “almost k-universal” if for all z ∈ {0, 1}k and for all P ⊆ [n] of
size k, we have |nPz (x) − |G|

2k
| ≤ |G|

5(2k)
. Note that this means that if we pick π ∈ G at random then for any

z ∈ {0, 1}k and for any subset P we have∣∣∣∣ Pr
π∈G

[xπ|P = z]− µ
∣∣∣∣ ≤ µ/5

where µ = 1/2k.
We prove the existence of an almost k-universal string using the probabilistic method. Pick a random full

assignment x. For any subset P ⊆ [n] of size k and z ∈ {0, 1}k we will estimate nPz (x). By Corollary 5.2
we can place n

k2 disjoint G-shifts of the subset P in [n]. Let S denote the set of disjoint copies of P . Let
vzi (x) be the (0, 1)-indicator variable indicating whether the i-th G-shift of P in S is same as z. Since x is
chosen randomly the random variables vzi (x) are independent. Let vz(x) =

∑
vzi (x). That is vz(x) be the

number of times z occurs in S. The expected value of vz(x) is n
k22k

. Using the Chernoff bound we obtain

Pr
[∣∣∣vz(x)− n

k22k

∣∣∣ > n

5k22k
]
≤ 2 exp

(
−
c1/5n

k22k
)
.

So using the union bound we have

Pr
[
∀π ∈ G,∀z ∈ {0, 1}k, ∀P,

∣∣∣vz(xπ)− n

k22k

∣∣∣ ≤ n

5k22k
]
≥ 1− 2 exp

(
−
c1/5n

k22k
)
|G|
(
n

k

)
2k.

If |G| = 2O(n1−ε) then for any positive ε and k ≤ (ε − γ)(log n) (where γ > 0), this probability is
non-zero. Now since we had exactly (n/k2) number of disjoint copies of P , so there is a string x such that

∀z ∈ {0, 1}k, ∀P ⊆ [n], |P | = k,

∣∣∣∣ Pr
π∈G

[xπ|P = z]− µ
∣∣∣∣ ≤ µ/5

where µ = 1/2k. Thus for any positive ε and k ≤ (ε − γ)(log n) (where γ > 0) there exists an “almost
k-universal” string. Let it be xY .

Similarly one can show that existence of a full assignment such that it is 1
3 -far from xY and still “almost

k-universal.” Probability that a random string is 1
3 -close to xY is 1

2Ω(n) . Using the same argument as above we
can say that the probability that a random string is 1

3 -far from xY and is an “almost universal” string is more

than
(

1− 1
2Ω(n) − 2 exp

(
− c1/5n

k22k

)
|G|
(
n
k

)
2k
)

. This is also positive for k ≤ ε logn
2 (since |G| = 2O(n1−ε)).

Hence for k ≤ ε logn
2 there exists a full assignment in {0, 1}n which is 1

3 -far from xY and is “almost
k-universal.” Let it be xN .

Now let xY be the string to which we have full access. The unknown string is chosen from the following
two distributions.

15

• DY : Uniform random G-shift of xY .

• DN : Uniform random G-shift of xN .

Now we know that xY and xN are 1
3 -far. Also since xY and xN are “almost k-universal” for k =

(ε/2) log n, so for all subsets P ⊆ [n] of size (ε/2) log n and all z ∈ {0, 1}(ε/2) logn, we have

2/3 Pr
π∈G

[xπY |P = z] ≤ Pr
π

[xπN |P = z] .

Now by Theorem 3.5 we can say that it will be impossible to test G-isomorphism with less than (ε/2) log n
queries. So the query-1 complexity of any property tester of G-isomorphism is Ω(log n).

6 Tight bounds and comparisons

Our main result, Theorem 1.1, gives tight bounds for primitive groups in the 1-sided error model.
In this section we point out that we have tight bounds for small transitive groups; “small” means their

order is polynomially or quasiolynomially bounded as a function of their degree. These include a number of
classes of groups of interest. In particular, all permutation represetations of all finite simple groups except
the alternating groups have size nO(logn). Moreover, all finite simple groups except the alternating groups
and the “classical groups” of unbounded dimension (linear, symplectic, orthogonal, and unitary groups)
have polynomially bounded order (cf. [15]).

Corollary 6.1. Let G be a transitive permutation group. Assume |G| = nO(1). Then the query-1 complexity
of 1-sided-error and 2-sided-error property testing of G-isomorphism is Θ(log n).

Proof. If |G| = no(1) then from Proposition 1.2 we obtain the upper bound of O(log n) for both 1-sided-
error and 2-sided-error cases. Theorem 1.3 gives the matching lower bound.

Corollary 6.2. LetG be a transitive group. Assume log(|G|) = (log n)O(1). Then the 1-sided-error query-2
complexity of G-isomorphism is Θ̃(

√
n).

Proof. The lower bound follows from Corollary 3.12; the upper bound from Proposition 1.2.

7 Open questions

We have obtained tight bounds for the 1-sided-error query complexity when the group is primitive. Ob-
taining tight bounds for the 2-sided error query complexity that match the Fischer–Matsliah bounds in the
special case of Graph Isomorphism would be of considerable interest. We note that no tight bounds are
known even for Graph Isomorphism in the 2-sided error, query-2 model.

Another natural direction would be to extend our bounds to all transitive groups in the one-sided error
model. For primitive groups, we expressed our tight bounds in terms of the (approximate) values of the
parameters n and |G| (the degree and the order of the permutation group). It is possible that these parameters
alone do not suffice in the case of transitive groups and any tight bound must depend on the finer structure
of the transitive group G.

16

A test case would be the automorphism group of a complete binary tree in its action on the leaves. Let
Tn denote the complete binary tree with n = 2h leaves. Let G be the action of the automorphism group of
the tree on the leaves. (This is the h-fold iterated wreath product S2 oS2 o · · · oS2.) Let us index the positions
in the string x of length n by the leaves of Tn. Then G permutes the positions of x. For this particular
transitive group, the query-1 and query-2 complexities of testing G-isomorphism are wide open both in the
1-sided error and 2-sided error models.

We have reason to believe that a solution for this group would bring us close to solving the corresponding
problem for all transitive groups.

References

[1] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large graphs.
In Combinatorica, volume 20, pages 451–476, 2000.

[2] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characterization of the
testable graph properties: It’s all about regularity. In Proc. 38th ACM Symp. on Theory of Computing
(STOC), pages 251–260, 2006.

[3] Noga Alon and Asaf Shapira. Testing subgraphs in directed graphs. In Proc. 35th ACM Symp. on
Theory of Computing (STOC), pages 700–709, 2003.

[4] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties testabale with one-
sided error. In Proc. 46th Ann. Symp. on Foundations of Computer Science (FOCS), pages 429–438,
2005.

[5] Noga Alon and Asaf Shapira. Linear equations, arithmetic progressions and hypergraph property
testing. In Proc. 16th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 708–717, 2005.

[6] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience (John Wiley & Sons),
New York, 1992.

[7] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification
and hardness of approximation problems. In J. ACM, volume 45, pages 501–555, 1998.

[8] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP. In
J. ACM, volume 45, pages 70–122, 1998.

[9] László Babai. On the order of uniprimitive permutation groups. In Annals of Mathematics, volume
113, pages 553–568, 1981.

[10] László Babai. On the order of doubly transitive permutation groups. In Inventiones Math., volume 65,
pages 473–484, 1982.

[11] László Babai, Lance Fortnow, and Carsten Lund. Nondeterministic exponential time has two-prover
interactive protocols. In Computational Complexity, volume 1, pages 3–40, 1991.

[12] László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proc. 15th ACM Symp. on Theory
of Computing (STOC), pages 171–183, 1983.

17

[13] László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Proc. 19th ACM
Symp. on Theory of Computing (STOC), pages 409–420, 1987.

[14] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to nu-
merical problems. In J. of Computer and System Sciences, volume 47, pages 549–595, 1993.

[15] Peter J. Cameron. Finite permutation groups and finite simple groups. In Bull. London Math. Soc.,
volume 13, pages 1–22, 1981.

[16] Eldar Fischer. The art of uninformed decisions: A primer to property testing. In G. Rozenberg G. Paun
and A. Salomaa, editors, Current Trends in Theoretical Computer Science: The Challenge of the New
Century, volume I, pages 229–264. World Scientific Pub. Co. Inc., 2004.

[17] Eldar Fischer. The difficulty of testing for isomorphism against a graph that is given in advance. In
SIAM J. on Computing, volume 34, pages 1147–1158, 2005.

[18] Eldar Fischer and Arie Matsliah. Testing graph isomorphism. In SIAM J. on Computing, volume 38,
pages 2007–225, 2008.

[19] Eldar Fischer, Ilan Newman, and Jiři Sgall. Functions that have read-twice constant width branching
programs are not necessarily testable. In Random Structures and Algorithms, volume 24, pages 175–
193, 2004.

[20] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and
approximation. In J. ACM, volume 45, pages 653–750, 1998.

[21] Martin W. Liebeck, Cheryl E. Praeger, and Jan Saxl. On the O’Nan-Scott theorem for finite primitive
permutation groups. In J. Austral. Math. Soc. Ser. A, volume 44, pages 389–396, 1988.

[22] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. In J.
Computer and System Sciences, volume 25, pages 42–65, 1982.

[23] Dana Ron. Property testing. In J. H. Reif S. Rajasekaran, P. M. Pardalos and J. D. P. Rolim, edi-
tors, Handbook of Randomized Computing, volume II, chapter 15, pages 597–650. Kluwer Academic
Publishers, 2001.

[24] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications to
program testing. In SIAM J. on Computing, volume 25, pages 252–271, 1996.

[25] Leonard L. Scott. Representations in characteristic p. In Proc. Sympos. Pure Math, volume 37, pages
319–322. A.M.S., 1980.

18

	Introduction
	Preliminaries
	Group actions
	Strings, G-isomorphism
	Prior work
	Chernoff bounds

	Primitive groups, 1-sided-error: tight bounds
	Structure of primitive groups
	G-Agreeability
	Proof of the lower bounds for primitive groups
	Proof of the G-agreeability lemma for primitive groups

	Upper bounds for transitive groups
	Lower bounds for Transitive Groups
	Tight bounds and comparisons
	Open questions

