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Abstract
We study the problem of testing isomorphism (equivalence
up to relabelling of the variables) of two Boolean functions
f, g : {0, 1}n → {0, 1}. Our main focus is on the most
studied case, where one of the functions is given (explicitly)
and the other function may be queried.

We prove that for every k ≤ n, the worst-case query
complexity of testing isomorphism to a given k-junta is
Ω(k) and O(k log k). Consequently, the query complexity

of testing function isomorphism is Θ̃(n).
Prior to this work, only lower bounds of Ω(log k) queries

were known, for limited ranges of k, proved by Fischer et
al. (FOCS 2002), Blais and O’Donnell (CCC 2010), and
recently by Alon and Blais (RANDOM 2010). The nearly

tight O(k log k) upper bound improves on the Õ(k4) upper
bound from Fischer et al. (FOCS 2002).

Extending the lower bound proof, we also show poly-
nomial query-complexity lower bounds for the problems of
testing whether a function can be computed by a circuit of
size ≤ s, and testing whether the Fourier degree of a func-
tion is ≤ d. This answers questions posed by Diakonikolas
et al. (FOCS 2007).

We also address two closely related problems –

1. Testing isomorphism to a k-junta with one-sided error:
we prove that for any 1 < k < n − 1, the query
complexity is Ω(log

(
n
k

)
), which is almost optimal. This

lower bound is a consequence of a proof that the query
complexity of testing, with one-sided error, whether a
function is a k-parity is Θ(log

(
n
k

)
).

2. Testing isomorphism between two unknown functions
that can be queried: we prove that the query complex-
ity in this setting is Ω(

√
2n) and O(

√
2nn logn).

1 Introduction

In this paper we address the following general question
in the area of property testing:

Question 1.1. What is the query complexity of testing
whether a black-box function g : {0, 1}n → {0, 1} is
isomorphic to a given function f ∈ C, for various classes
C of Boolean functions?

This question is particularly interesting because
testing many function properties, like those of being
a dictatorship, a k-monomial, a k-parity and more,
are equivalent to testing isomorphism to some function
f . More general properties can often be reduced to
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testing isomorphism to several functions (as a simple
example, notice that testing whether g depends on
a single variable can be done by first testing if g is
isomorphic to f(x) ≡ x1, then testing if g is isomorphic
to f(x) ≡ 1 − x1, and accepting if one of the tests
accepts). The “Testing by Implicit Learning” approach
of Diakonikolas et al. [DLM+07] can also be viewed as
a clever reduction from the task of testing a wide class
of properties to testing function isomorphism against a
number of functions.

On a wider perspective, an answer to Question
1.1 is an important step towards the meta-goal of
characterizing testable properties of Boolean functions,
as also suggested by [FKR+02] and [BO10].

There are several classes of functions for which
testing isomorphism is trivial. For instance, if f is
symmetric (invariant under permutations of variables),
then testing f -isomorphism is equivalent to testing iden-
tity. More interesting functions are also known to have
testers with constant query complexity. Specifically, the
fact that isomorphism to dictatorship functions and k-
monomials can be tested with O(1) queries follows from
the work of Parnas et al. [PRS02].

Fischer et al. [FKR+02] were the first to explic-
itly formulate the question of testing function isomor-
phism. They proved that isomorphism to any k-junta
(function that depends on at most k variables) can be
tested with roughly k4 queries, whereas there are k-
juntas for which testing isomorphism requires Ω(log k)
queries.1 Motivated by problems in machine learning,
the focus on juntas seems very natural in this context,
especially due to the importance of dealing with func-
tions on extremely large domains that depend only on
few variables.

Combining the ideas from the testing algorithms
of [FKR+02] with learning algorithms, Diakonikolas et
al. [DLM+07] developed a powerful framework, called
“Testing by Implicit Learning” for testing classes of
functions that are well approximated by O(1)-juntas.
Their results can be used to obtain isomorphism-testers
for k-juntas as well, with query complexity roughly k4

– similar to the one in [FKR+02]. We elaborate more

1[FKR+02] actually prove more than that – a lower bound of
Ω(
√
k) for non-adaptive testers.



on [DLM+07] and how our work relates to it in the
following section.

Blais and O’Donnell [BO10] proved query-
complexity lower bounds for testing f -isomorphism for
a wide class of functions. Specifically, [BO10] proved
that testing isomorphism to any proper k-junta f
(meaning that f is far from any k − 1 junta) requires
Ω(log k) non-adaptive queries, which implies a general
lower bound of Ω(log log k). In fact they establish
the existence of a class of k-juntas such that testing
isomorphism to any function in it requires Ω(log k)
non-adaptive (and Ω(log log k) adaptive) queries. They
also proved that there is a k-junta (in particular, a
majority on k variables) testing isomorphism to which
requires Ω(k1/12) queries non-adaptively, and therefore
Ω(log k) queries in general.

Several related results, partially overlapping this
work, were recently (and independently) obtained by
Alon and Blais [AB10]. They proved that testing iso-
morphism non-adaptively to a known function requires
Ω(n) queries in the worst case (a general lower bound
of Ω(log n) queries follows here too). With k = n,
our lower bound is Ω(n) and it holds against adaptive
testers as well. On the other hand, the lower bound
in [AB10] is shown to hold for almost all functions
f : {0, 1}n → {0, 1}, while our proof does not imply
that. Alon and Blais also prove bounds similar to ours
for the setting where both functions are unknown (see
details in the next section).

2 Our results

2.1 Lower bounds for testing function isomor-
phism. Our first result (Theorem 6.1) is a lower bound
of Ω(k), for any 1 ≤ k ≤ n, on the query complexity of
testing (adaptively, with two-sided error) isomorphism
to k-juntas.

In fact, our proof yields a stronger result. To state
it, let Fn

2±
√
n denote the set of all “truncated” functions

g : {0, 1}n → {0, 1} that satisfy g(x) = 0 for all
x with |x| /∈ n

2 ±
√
n; we prove the existence of k-

juntas f : {0, 1}n → {0, 1}, for all k ≤ n, such that
it is impossible to distinguish a random permutation
of f from a random g ∈ Fn

2±
√
n with o(k) queries.

Furthermore, such an f can be quite restricted – it
can be represented by a product of a threshold function
and a polynomial over F2 of degree logarithmic in k;
alternatively, it can be in (nonuniform) NC.

As a corollary we obtain a lower bound of Ω(d)
queries for testing if the Fourier degree of a Boolean
function is at most d (see Theorem 7.2),2 and a lower

2These bounds apply to the degree over any field. Better
bounds are known for finite fields; c.f. [AKK+03, JPRZ04, KR04].

bound of sΩ(1) queries for testing whether a function
has a circuit of size s (see Theorem 7.1). These resolve
open problems from [DLM+07].

We remark that the restriction of the foregoing in-
distinguishability result to truncated functions is essen-
tial – as Proposition 10 says (see Section 10), random
permutations of any f can be distinguished from com-
pletely random functions with Õ(

√
n) queries and ar-

bitrarily high constant success probability (note that if
the success probability is required to be only 3/4, a triv-
ial such tester exists that makes only two queries: 0̄ and
1̄).

2.2 Upper bounds for testing function isomor-
phism. Our second result (Theorem 8.1) is a nearly
matching upper bound of O(k log k) queries for testing
isomorphism to any fixed k-junta. One consequence of
our proof, which is of independent interest, is the fol-
lowing (see Proposition 8.2 for a formal statement):

Let ε > 0 and suppose we are given oracle access to a
k-junta g : {0, 1}n → {0, 1}. Then, after a preprocessing
step that makes O(k log k) queries to g, we can draw

uniformly random samples (x, a) ∈ {0, 1}k × {0, 1}
labelled by core(g) : {0, 1}k → {0, 1} – the “core” of
g, such that for each sample (x, a), core(g)(x) = a with
probability at least 1− ε. Furthermore, obtaining each
sample requires making only one query to g.

Generating such samples is one of the main ingre-
dients in the general framework of [DLM+07]; while the
procedure therein makes Ω(k) queries to g for obtaining
each sample (while executing k independence tests of
Fischer et al. [FKR+02]), our procedure requires only
one query to g per sample.

remark 2.1. In a subsequent work (currently in prepa-
ration), we used a variation of this sampler to signifi-
cantly improve the query-complexity of the testers from
[DLM+07] for various Boolean function classes.

2.3 Testing function isomorphism with one-
sided error. Our third result (Theorem 5.1) concerns
testing function isomorphism with one-sided error. The
fact that the one-sided error case is strictly harder
than the two-sided error case was proved by [FKR+02].
In particular, they showed the impossibility of testing
isomorphism to 2-juntas with one-sided using a num-
ber of queries independent of n (their lower bound is
Ω(log log n), which follows from an Ω(log n) lower bound
on non-adaptive testers). In this paper we prove nearly
tight lower bounds for the problem. Specifically, we
prove that the query complexity of testing isomorphism
to k-juntas, for any 2 ≤ k ≤ n, is between Ω(k log(n/k))
and O(k log n). (As we mentioned in the introduction,



for k = 1 it can be done with O(1) queries [PRS02].)
The lower bound actually follows by the following re-
sult: the query complexity of testing (with one-sided
error) whether a function is k-parity (i.e, an XOR of
exactly k indices of its input), for any 2 ≤ k ≤ n − 2,
is Θ(log

(
n
k

)
) = Θ(k log( n

min{k,n−k} )). (In contrast, the

well-known BLR test can test, with one-sided error, if a
function is k-parity for some k using O(1) queries).

2.4 Testing isomorphism between two un-
known functions. Finally, we consider the related
problem of testing isomorphism between two black-box
functions (i.e., both f and g need to be queried). We
show that the worst-case query complexity in this set-
ting is between Ω(

√
2n) and O(

√
2nn log n). As men-

tioned in the introduction, similar results for this setting
were independently obtained by Alon and Blais [AB10].

2.5 Summary.

In Table 1 we summarize our main results, and compare
them to prior work. A few remarks are in order:

• Some of the lower bounds from prior work were
obtained via exponentially larger lower bounds for
non-adaptive testers, and some of them held only
for limited values of k. The third column contains
the details. Our lower bounds apply to general
(adaptive, two-sided error) testers, and hold for all
k ≤ n.

• The exponent in our sΩ(1) bound for testing circuit
size depends on the size of the smallest circuit
that can generate s4-wise independent distributions
(see details in Section 7). In particular, standard
textbook constructions show that the exponent is
at least 1/8.

• The bounds in the last row have been indepen-
dently and simultaneously obtained in [AB10].

We also comment that nearly all our results extend
to functions with general product domains and general
ranges, along the lines of [DLM+07] and [Bla09].

Organization of this paper. After the necessary
preliminaries, we give a brief overview of the main proofs
in Section 4. The proofs for one-sided-error testing are
given in Section 5. In Section 6 we present the lower
bound on the query complexity of testing isomorphism
to k-juntas, and the lower bound for testing the Fourier
degree of a function. The lower bound for testing
whether a function has a circuit of size s is given in
Section 7. The algorithm for testing isomorphism to

k-juntas is given in Section 8. In Section 9 we prove
the bounds for testing isomorphism in the setting where
both functions have to be queried. In Section 10 we
prove that given any f , it is possible to distinguish,
with high probability, a random permutation of f from
a completely random function with Õ(

√
n) queries.

3 Preliminaries

Most of our notation is quite standard or self explana-
tory; refer to Appendix A for clarification and for precise
definitions of terms such as k-junta, influence, relevant
variable and property tester. Here we only define the
specific notation and terminology used throughout.

For W ⊆ [n], we let {0, 1}n
W

denote the subset
of {0, 1}n containing strings with Hamming weight in
W , namely, {0, 1}n

W
= {x ∈ {0, 1}n : |x| ∈ W}.

Additionally, let

{0, 1}nn
2±h
, {x ∈ {0, 1}n :

n

2
− h ≤ |x| ≤ n

2
+ h}.

Given a permutation π ∈ Sym([n]), there is a per-
mutation φ(π) ∈ Sym({0, 1}n) mapping x = x1 . . . xn ∈
{0, 1}n to (φ(π))(x) , xπ(1) . . . xπ(n). (This is the nat-
ural action of π−1). We will denote φ(π) itself also
as π when no confusion is possible. We denote by
Gn ⊆ Sym({0, 1}n) the image of φ; |Gn| = n!. Given
a Boolean function f and π ∈ Gn, we write fπ for the
function fπ(x) ≡ f(π(x)). In this notation, g is isomor-
phic to f , denoted by g∼=f , if and only if there is π ∈ Gn
such that g ≡ fπ.

The distance up to permutations of variables, de-
noted by distiso(f, g) is defined as minπ dist(fπ, g).
Testing f -isomorphism is the task of distinguishing the
case distiso(f, g) = 0 (or in short f∼=g) from the case
distiso(f, g) ≥ ε, with the objective of making as few
queries to g as possible.

A function f : {0, 1}n → {0, 1} is a k-parity if there
is v ∈ {0, 1}n, |v| = k, such that f(x) =

⊕
i∈[n] xivi

for all x ∈ {0, 1}n. The set of all k-parities is denoted
PARk.

4 Brief overview of the main proofs

4.1 Overview of the lower bounds. The proof of
Theorem 6.1 is done in two steps. First, we prove the
existence of functions f : {0, 1}nn

2
±
√
n
→ {0, 1} that

are indistinguishable from random functions with fewer
than roughly n queries. By this we mean that it is
impossible to determine, with probability at least 2/3,
whether g is a random permutation of f or a completely
random function (on the domain {0, 1}nn

2
±
√
n
), unless

Ω(n) queries are made to g. Although it may seem that
such an indistinguishability result might be obtained
via straightforward probabilistic arguments, the actual



prior work non-adaptive this work

testing isomorphism to k-
juntas

Ω(log k) [FKR+02, BO10, AB10]

Õ(k4) [FKR+02, DLM+07]

Ω(
√
k) for k � n [FKR+02]

Ω(k1/12) for k � n [BO10]
Ω(k) for k = n [AB10]

Ω(k) (Thm. 6.1)
O(k log k) (Thm. 8.1)

testing isomorphism to k-
juntas with 1-sided error

Ω(log logn) [FKR+02] Ω(logn) [FKR+02]
Ω(k log (n/k)) (Thm. 5.1)
O(k logn) (Prop. 5.2)

testing the property of be-
ing a k-parity with 1-sided
error

Θ(k log(n/k)) (Thm. 5.1)

testing if a function can be
computed by a circuit of
size s

Ω̃(log s) [DLM+07] sΩ(1) (Thm. 7.1)

testing if a function has
Fourier degree ≤ d Ω(log d) [DLM+07] Ω(

√
d) [DLM+07] Ω(d) (Coro. 7.2)

testing isomorphism be-
tween two unknown func-
tions

Ω(
√

2n /n1/4) [AB10]

O(
√

2n n logn/ε) [AB10]

Ω(
√

2n)

O(
√

2n n logn/ε)
(Thm. 9.1)

Table 1: Summary of results

proof has to overcome some technical difficulties. The
main source of trouble is that we are dealing with a
specific subset of permutations of {0, 1}n, induced by
the set of permutations of [n].

In the proof we borrow ideas from the work of Babai
and Chakraborty [BC10], who proved query-complexity
lower bounds for testing isomorphism of uniform hyper-
graphs. However, in order to be applicable to our prob-
lem, we have to extend the method of [BC10] in several
ways. One of the main differences is that the permuta-
tion group in our case is not even transitive, which re-
quires additional argument to prove that a random per-
mutation “shuffles” the values of a function uniformly.
Another difference is that for the proof of Theorem 7.1
we need a hard-to-test f that has a circuit of polynomial
size, rather than just a random f . To address the sec-
ond issue we relax the notion of uniformity from [BC10]
to poly(n)-wise independence, and then apply standard
partial derandomization techniques.

In the second step of the proof we show the Ω(k)
lower bound for k-juntas by “padding” the hard-to-test
functions from the previous step. The main argument
in this part of the proof is showing that for any f, g :
{0, 1}k → {0, 1} and their extensions (paddings) f ′, g′ :
{0, 1}n → {0, 1}, distiso(f ′, g′) = Ω(distiso(f, g)).
(Notice that an exact equality between the two distances
does not hold; consider e.g. the functions f(x) ≡ |x|
mod 2 and g(x) ≡ 1− f(x)).

4.2 Overview of the upper bounds. The main
ingredient in the proof of Theorem 8.1 is the nearly-
optimal junta tester of Blais [Bla09]. In fact, a signifi-
cant part of our proof deals with analyzing the junta
tester of Blais, and proving that it satisfies stronger
conditions than what was required for the mere task
of junta-testing.

Let us briefly describe the resulting isomorphism
tester: The algorithm begins by calling the junta tester,
which may either reject (meaning that g is not a k-
junta), or otherwise provide a set of k′ ≤ k blocks
(subsets of indices) such that if g is close to some k′-
junta h′, then with high probability, h′ has at most one
relevant variable in each of the k′ blocks. Using these k′

blocks we define an extension h of h′ (if k′ < k), and a
noisy sampler S that provides random samples (x, a) ∈
{0, 1}k × {0, 1}, such that Pr[h(x) 6= a] is sufficiently
small. Finally, we use the (possibly correlated) noisy
samples of S to test if h is ε/10-close to the core function
of f or 9ε/10-far from it.

We note that our approach resembles the high-level
idea in the powerful “Testing by Implicit Learning”
paradigm of Diakonikolas et al. [DLM+07]. Further-
more, an upper bound of roughly k4 queries to our
problem follows easily from the general algorithm of
[DLM+07]. (It seems that using the recent results of
[Bla09], the algorithm of [DLM+07] can give an upper
bound of roughly k3.)

Apart from addressing a less general problem, there
are several additional reasons why our algorithm attains
a tighter upper bound of k log k. First, in our case
the known function is a proper junta, and not just
approximated by one. Second, while simulating random
samples from the core of the unknown function g,
we allow a small, possibly correlated, fraction of the
samples to be incorrectly labelled. This enables us
to generate a random sample with just one query to
g, sparing us the need to perform the Independence-
Tests of [FKR+02]. Then we perform the final test
(the parallel of Occam’s razor from [DLM+07]) with a
tester that is tolerant (i.e. it accepts even if the distance
to the defined property is small) and resistant against



(possibly correlated) noise.

4.3 Overview of the lower bound for testing
with one-sided error. As mentioned earlier, the lower
bound, which is the interesting part of Theorem 5.1, is
obtained via a lower bound for testing isomorphism to
k-parities with one-sided error.

We start with the simple observation that testing
isomorphism to k-parities is equivalent to testing iso-
morphism to (n − k)-parities. Since testing 0-parities
(constant zero functions) takes O(1) queries, and test-
ing 1-parities (dictatorship functions) takes O(1) queries
as well (by Parnas et al. [PRS02]), we are left with the
range 2 ≤ k ≤ n/2.

We split this range into three parts: small (con-
stant) k, medium k and large k. For small k’s a lower
bound of Ω(log n) is quite straightforward. For the other
two ranges, we use the Frankl–Wilson and Frankl–Rödl
theorems, which bound the size of families of subsets
with restricted intersection sizes. (The reason for this
case distinction is to comply with the hypotheses of the
combinatorial theorems). We obtain lower bounds of
Ω(k log(n/k)) and Ω(k), respectively.

In all three cases we follow the same argument:
suppose that we want to prove a lower bound of q =
q(n, k). We define a function g that is either a k′-
parity (for a suitably chosen k′ 6= k) 3 or a constant,
and depends only on n and k. This function has the
property that for all x1, . . . , xq ∈ {0, 1}n there exists a
k-parity f satisfying f(xi) = g(xi) for all i ∈ [q]. This
forces any one-sided error tester making ≤ q queries to
accept g, even though it is 1/2-far from any k-parity.

5 Testing function isomorphism with one-sided
error

Theorem 5.1. The query complexity of testing iso-
morphism to k-juntas with one-sided error is between
Ω(k log n

k ) and O(k log n).

Note that if f ∈ PARk, then testing isomorphism to
f is the same as testing membership in PARk. Hence
the lower bound in Theorem 5.1 follows from the next
proposition.

Proposition 5.1. Let ε ∈ (0, 1
2 ] be fixed. The following

holds for all n ∈ N:

• For any k ∈ [2, n − 2], the query complexity of
testing PARk with one-sided error is Θ(log

(
n
k

)
).

Furthermore, the upper bound is obtainable with a

3Note that not every choice of k′ works, even if k and k′ are

very close to each other. For example, if k′ = k + 1, it is easy to
tell PARk from PARk′ by simply querying the all-ones vector.

non-adaptive tester, while the lower bound applies
to adaptive tests, and even to the certificate size for
proving membership in PARk.

• For any k ∈ {0, 1, n − 1, n}, the query complexity
of testing PARk with one-sided error is Θ(1).

For every f : {0, 1}n → {0, 1} let Isomf denote the
set of functions isomorphic to f . The upper bound in
Theorem 5.1 follows from the next proposition.

Proposition 5.2. Isomorphism to any given f :
{0, 1}n → {0, 1} can be tested with O(log |Isomf |/ε)
queries.

This immediately implies the desired upper bound, since
|Isomf | ≤

(
n
k

)
·k! for any k ∈ [n] and k-junta f . This also

implies the upper bound in the first item of Proposition
5.1, since for a k-parity f , |Isomf | = |PARk| =

(
n
k

)
.

5.1 Proof of Proposition 5.1. We begin with the
following observation, which is immediate from the fact
that p is a k-parity if and only if p(x)⊕ x1 ⊕ . . .⊕ xn is
an (n− k)-parity:

Observation 5.1. Let ε ∈ (0, 1
2 ], n ∈ N and k ∈

[0, n]. Any ε-tester for PARk can be converted into an
ε-tester for PARn−k, while preserving the same query
complexity, type of error, and adaptivity.

As mentioned earlier, the upper bound in the first
item of Proposition 5.1 follows by Proposition 5.2. It is
also easy to verify that the second item holds for k = 0.
For k = 1, the bound follows from [PRS02], who show
that one-sided-error testing of functions for being a 1-
parity (monotone dictatorship) can be done with O(1)
queries. So, according to Observation 5.1 we only have
to prove the lower bound in the first item of Proposition
5.1 for k ∈ [2, bn/2c].

To this end we make a distinction between three
cases. First we prove a lower bound of Ω(log n) for any
k ∈ [2, bn/2c]. Then a lower bound of Ω(log

(
n
k

)
) is

shown for k ∈ [5, αn], where αn , bn/212c. Finally
we prove a lower bound of Ω(k) queries that works
for k ∈ [αn, bn/2c]. Combining the three bounds will
complete the proof.

In all three cases we follow the argument sketched
in the overview (Section 4.3).

5.1.1 Lower bound of Ω(log n) for 2 ≤ k ≤ bn/2c.
Let q = blog nc − 1, and let x1, . . . , xq ∈ {0, 1}n be the
set of queries. For any k ∈ [2, bn/2c] we let g be the
(k − 2)-parity g(x) = xn−k+3 ⊕ · · · ⊕ xn (in case k = 2,
g is simply the constant zero function). Then we find
j, j′ ∈ [n−k+2], j 6= j′ such that xij = xij′ for all i ∈ [q];



such j and j′ must exist since 2q < n − k + 2. Let f
be the k-parity corresponding to {j, j′} ∪ [n− k + 3, n].
Then f(xi) = g(xi) for all i ∈ [q], so the tester must
accept g, even though it is 1/2-far from any k-parity.

This simple idea can only yield lower bounds of
Ω(log n). We need to generalize it in order to obtain
lower bounds that grow with k.

5.1.2 Lower bound of Ω(log
(
n
k

)
) for 5 ≤ k ≤ αn.

For this case we use the following version of the Frankl-
Wilson Theorem:

Theorem 5.2. ([FW81]; see also [FR87]) Let m ∈
N and let ` ∈ [m] be even, such that `/2 is prime

power. If F ⊆
(

[m]
`

)
is such that for all F, F ′ ∈ F ,

|F ∩ F ′| 6= `/2, then |F| ≤
(
m
`/2

)(
3`/2−1

`

)
/
(

3`/2−1
`/2

)
.

Let q = b 1
20 log

(
n
k

)
c. Given k ∈ [5, bn/2c], let k′ ≥ 1

be the smallest integer such that (k − k′)/2 is a power
of a prime; note that k′ < k/2 as k ≥ 5. We let g be
the k′-parity g(x) = xn−k′+1 ⊕ · · · ⊕ xn. With a slight
abuse of notation, let g also denote the n-bit string with
ones exactly in the last k′ indices. It suffices to show
that for any x1, . . . , xq ∈ {0, 1}n there exists y ∈ {0, 1}n
such that

• |y| = k − k′,

• y ∩ g = ∅ and

• 〈y, xi〉 ,
⊕n

j=1(yj · xij) = 0 for all i ∈ [q].

Indeed, if such a y exists, then the k-parity correspond-
ing to g ∪ y is consistent with g on x1, . . . , xq.

Let Y = {y ∈ {0, 1}n : |y| = k − k′ and y ∩ g = ∅}.
Partition Y into disjoint subsets {Yα}α∈{0,1}q , such that
y ∈ Yα if and only if 〈y, xi〉 = αi for all i ∈ [q].
Clearly, one of the sets Yα must be of size at least(
n−k′
k−k′

)
/2q. We interpret the elements of this Yα as `-

subsets of [m], where ` , k − k′ and m , n − k′,
and show that there must be y1, y2 ∈ Yα such that
|y1 ∩ y2| = `/2 = (k− k′)/2. Once the existence of such
a pair is established, the claim will follow by taking y
to be the bitwise XOR of y1 and y2. Indeed, it is clear
that |y| = k − k′ and y ∩ g = ∅, and it is also easy to
verify that 〈y, xi〉 = 〈y1, xi〉⊕ 〈y2, xi〉 = 0 for all i ∈ [q].

Let c , n/k; observe that c ≤ m/` ≤ 2c. In the
following we use the bounds b(log(a/b)) ≤ log

(
a
b

)
≤

b(log(a/b) + 2).

We have

log |Yα| ≥ log

((
n−k′
k−k′

)
2q

)
≥ log

(
m

`

)
− 1

20
log

(
n

k

)
≥ `(log(m/`))− 1

20
k(log(n/k) + 2)

≥ `(log c)− 1

10
`(log c+ 2)

= `

(
9

10
log c− 1

5

)
.

On the other hand,

log

((
m
`/2

)(
3`/2−1

`

)(
3`/2−1
`/2

) )
≤ `

2
(log(m/`) + 3) + 3`/2

≤ `

(
1

2
log c+

7

2

)
.

Since c ≥ 212, these inequalities together with Theorem
5.2 imply that there must be y1, y2 ∈ Yα such that
|y1 ∩ y2| = `/2, as desired.

5.1.3 Lower bound of Ω(k) for αn ≤ k ≤ bn/2c.
The reasoning in this case is very similar, but since for
large k the previous method does not work, we have
to change few things. One of them is switching to the
related theorem of Frankl and Rödl, using which we can
prove a lower bound of Ω(k) (instead Ω(log

(
n
k

)
)), but

for the current range of k they are asymptotically the
same.

Theorem 5.3. ([FR87], Thm. 1.9) There is an abso-
lute constant δ > 0 such that for any even k the follow-
ing holds: Let F be a family of subsets of [2k] such that
no two sets in the family have intersection of size k/2.
Then |F| ≤ 2(1−δ)2k.

Let n be large enough with respect to α and δ.
Given k ∈ [αn, bn/2c], we set q = δk. Assume first that
k is even – we mention the additional changes required
for odd k below.

We set g to be the zero function, and show that for
any x1, . . . , xq ∈ {0, 1}n there exists y ∈ {0, 1}n such
that

• |y| = k and

• 〈y, xi〉 = 0 for all i ∈ [q].

Let Y = {y ∈ {0, 1}n : y ⊆ [2k] and |y| = k}. As
in the previous case, partition Y into disjoint subsets
{Yα}α∈{0,1}q , such that y ∈ Yα if and only if 〈y, xi〉 = αi
for all i ∈ [q]. One of the sets Yα must be of size at least(

2k
k

)
/2q = 22k−1−q, which is greater than 2(1−δ)2k for



large enough n (and hence k). We interpret the elements
of this Yα as k-subsets of [2k] in the natural way. Thus,
by Theorem 5.3, there must be y1, y2 ∈ Yα such that
|y1∩y2| = k/2. Take y to be the bitwise XOR of y1 and
y2. Clearly |y| = k, and 〈y, xi〉 = 0 for all i ∈ [q].

For an odd k, we use the 1-parity g(x) = xn instead
of the zero function. We follow the same steps to find
y ⊆ [2k − 2] of size |y| = k − 1 such that 〈y, xi〉 = 0
for all i ∈ [q]. Then, the vector y ∪ {n} corresponds to
a function in PARk that is consistent with g on the q
queries.

5.2 Proof of Proposition 5.2 Consider the simple
tester described in Algorithm 1. It is clear that this is

Algorithm 1 (non-adaptive one-sided error tester for
the known-unknown setting)

let q ← 2
ε log |Isomf |

for i = 1 to q do
pick xi ∈ {0, 1}n uniformly at random
query g on xi

end for
accept if and only if there exists h ∈ Isomf such that
g(xi) = h(xi) for all i ∈ [q]

a non-adaptive one-sided error tester, and that it only
makes O(log |Isomf |/ε) queries to g. So we only need to
show that for any f and any g that is ε-far from f , the
probability of acceptance is small. Indeed, for a fixed
h ∈ Isomf the probability that g(xi) = h(xi) for all
i ∈ [q] is at most (1− ε)q. Applying the union bound on
all functions h ∈ Isomf , we can bound the probability
of acceptance by |Isomf |(1− ε)q ≤ |Isomf |e−εq < 1/3.

6 Ω(k) lower bound for testing isomorphism to
k-juntas

Definition 6.1. Let Fn
2±d
√
ne denote the set of all

“truncated” functions g : {0, 1}n → {0, 1}, i.e. those
satisfying g(x) = 0 for all x with |x| 6= n

2 ± d
√
ne;

a random truncated function is a random function
uniformly drawn from Fn

2±d
√
ne.

Observation 6.1. Let f : {0, 1}n → {0, 1} be any
function and g : {0, 1}n → {0, 1} a random truncated
function. Let ε0 be an arbitrary constant. Then, with
probability 1− o(1) over the choice of g, distiso(f, g) ≥
ε0.

It follows that, in order to prove lower bounds for
testing isomorphism to f , it suffices to show the stronger
claim that there is a function g such that no algorithm
is able to distinguish between a random permutation of
f and a random permutation of g:

Definition 6.2. Let f, g : D → {0, 1} be Boolean
functions on some domain D and ε > 0. We say that
the pair (f, g) is (q, ε)-hard if distiso(f, g) ≥ ε and, given
oracle access to a function h that is promised to be a
random permutation of f or g (each with probability
half), it is impossible to determine which is the case with
overall probability ≥ 2/3 unless q queries are made.

We can rephrase the previous observation as stating
that the existence of an q-hard pair f, g implies a
lower bound of q on the query complexity of testing
isomorphism to f (or g, for that matter).

Theorem 6.1. There is some ε > 0 such that for any
k ≤ n there is a k-junta f : {0, 1}n → {0, 1} with the
property that, for most truncated functions g : {0, 1}n →
{0, 1}, the pair (f, g) is (k − 5 log k, ε)-hard. Moreover,
f can have either one of the following properties:

• f can be written as a product of two threshold
functions and a polynomial of degree O(log k)

• f is in NC, i.e. it can be computed by circuits of
size poly(k) and depth O(polylog(k)).

The proof of Theorem 6.1 is done in three steps:

1. In the first (and main) step we show that there
is an (Ω(k),Θ(1))-hard pair of “nice” functions

f, g : {0, 1}kk/2±d√ke → {0, 1}. This is proved in
Proposition 6.1, which is the main technical result
of this section.

2. In the second step we show that there is an
(Ω(k),Θ(1)) pair of “nice” truncated functions f, g :

{0, 1}k → {0, 1}. This is proved in Corollary 6.1,
which follows easily from Proposition 6.1: we ex-
tend the function obtained in step one to the whole
cube, by assigning zeroes outside the middle layers;
then the claim follows by observing that inputs in
the middle layers constitute a constant fraction of
all inputs, and that the zeroes outside the middle
layers cannot help in the testing process. As we
mentioned in Section 2.1 in the introduction, this
step is essential (see Section 10 for a formal proof).

3. The last step in the proof of Theorem 6.1 uses a
“preservation of distance under padding” argument
(Lemma 6.1 below), which essentially allows us to
embed a function on k variables into one on n
variables, so that testing hardness remains roughly
the same.

6.1 The three steps and the proof of Theorem
6.1.



Proposition 6.1. (the main step) For any k there

is a function f : {0, 1}kk
2±d
√
ke → {0, 1} such that, with

probability 1−o(1) over the choice of a random truncated
g, pair (f, g) is is (k − 5 log k)−hard. Moreover, f can
have either of the following properties:

• f can be evaluated by a degree 4 log k polynomial
over F2,

• f can be computed by an NC circuit.

The proof is deferred to Section 6.2.

Corollary 6.1. (extending {0, 1}kk
2±d
√
ke to {0, 1}

k
)

For any k, there is a function f : {0, 1}k → {0, 1}
such that, with probability 1 − o(1) over the choice of

a random truncated function g : {0, 1}k → {0, 1}, pair
(f, g) is (k − 5 log k,Θ(1))-hard. Moreover, f can have
either of the following properties:

• f can be written as a product of two threshold
functions and a polynomial of degree O(log k),

• f can be computed by a NC circuit.

Proof. For a function h : {0, 1}kk
2±d
√
ke → {0, 1}, call

ext(h) : {0, 1}k → {0, 1} the extension of h to the whole

of {0, 1}k vanishing outside {0, 1}kk
2±d
√
ke. Observe that

a random truncated function is nothing more than the
extension of a random g : {0, 1}kk

2±d
√
ke. Also note that

for any pair f, g, the equality distiso(ext(f), ext(g)) =

α distiso(f, g) holds, where α , |{0, 1}kk
2±d
√
ke|/2

k =

Θ(1).
Let ε0 be as in Observation 6.1; then a random

truncated g satisfies distiso(f, g) ≥ ε0 with probability
1 − o(1); fix any such g. Any algorithm A(h′) distin-
guishing between random permutations of ext(f) and
ext(g) when allowed query access to h′ can be turned
into one distinguishing permutations of f and g in the
obvious way: given access to h : {0, 1}kk

2±d
√
ke → {0, 1},

run A(ext(h)). This works because h = fπ ↔ ext(h) =
ext(f)π. This shows that distinguishing between ran-
dom permutations of ext(f) and ext(g) is as hard as
distinguishing between random permutations of f and
g, which by hypothesis requires q queries. Since we also
have distiso(ext(f), ext(g)) = α distiso(f, g) ≤ ε, where
ε , αε0, we conclude that (ext(f), ext(g)) is (q, ε)-hard.

By Proposition 6.1, we have f : {0, 1}kk
2±d
√
ke →

{0, 1} that can either be represented by a degree
O(log k) polynomial or by a NC circuit. All that re-
mains to be shown is that ext(f) has the required
simplicity property; for this we need to compose f
with threshold functions. More specifically, let A,B :

{0, 1}k → {0, 1} be given by A(x) = 1 iff |x| ≥
k/2 − d

√
ke and B(x) = 1 iff |x| ≤ k/2 + d

√
ke. It

is well known that A,B ∈ NC, so the function f ′(x) =
f(x) ∧A(x) ∧B(x) has the desired properties.

Lemma 6.1. (extension from {0, 1}k to {0, 1}n)
Let k, n ∈ N, k ≤ n, and let f ′, g′ : {0, 1}k → {0, 1}
be a pair of functions. Define f = pad(f ′) to be the
padding extension of f ′, where f : {0, 1}n → {0, 1} is
given by f(x) = f ′(x�

[k]
) for all x ∈ {0, 1}n. Likewise,

define g = pad(g′). Then the following holds:

• distiso(f, g) ≥ distiso(f ′, g′)/3.

• If (f ′, g′) is (q, ε)-hard, then (f, g) is (q, ε/3)-hard.

Proof. Let ε , 3 · distiso(f, g); then dist(f, gπ) = ε/3
for some permutation π. Write A , π([k])− [k], and let
I(A) , Infgπ (A) denote the influence A on gπ. First
observe that I(A) ≤ 2 · dist(f, gπ) ≤ 2ε/3, due to the
fact that f does not depend on the indices in A at all.
This is easy to verify directly; see also Lemma 8.2.

Let σ : A→
(

[k]\π([k])
)

be an arbitrary bijection.

Consider the permutation π′ : [k]→ [k] defined as

π′(i) =

{
π(i) , i ∈ [k] and π(i) ∈ [k]
σ(π(i)) , i ∈ [k] and π(i) ∈ A

Informally, π′ is obtained from π by “bringing back”
to [k] all those i ∈ [k] that were mapped to A. We
have dist(gπ, gπ

′
) ≤ I(A) ≤ 2ε/3, and by the triangle

inequality, dist(f, gπ
′
) ≤ ε. Hence distiso(f ′, g′) ≤

dist(f ′, g′π
′
) = dist(f, gπ

′
) ≤ ε, equality due to π′

defining a valid permutation of [k].
It is clear that if f ′∼=g′ then f∼=g. Let there be

an algorithm A capable of distinguishing a random
permutation of f from a random permutation of g using
fewer than q queries. Based on A, we can construct an
algorithm to distinguish whether h′ : {0, 1}k → {0, 1} is
a random permutation of f ′ or a random permutation
of g′ in the following manner: pick a uniformly random
permutation σ ∈ Sym([n]), and apply A to pad(h)σ

(clearly, any query to h′ can be simulated by one query
to pad(h′)σ, and the distribution of pad(h′)σ is a random
permutation of either f or g). Hence no such A exists.

Combining Corollary 6.1 and Lemma 6.1 yields
Theorem 6.1. The rest of this section is devoted to the
proof of Proposition 6.1.

6.2 Proof of Proposition 6.1.

remark 6.1. For notational convenience and compati-
bility with external lemmas, we replace k with n through-
out the proof of Proposition 6.1.



6.2.1 Central lemmas. In the following, the nota-
tion a = (1± b)c will be understood to mean (1− b)c ≤
a ≤ (1 + b)c.

Definition 6.3. Let T be a finite domain and r ∈ N.
We say that a multiset F of functions from T to {0, 1}
is r-uniform (with regard to a group G of permutations
of T ) if

• F is closed under the action of G: for all π ∈ G
and f ∈ F , fπ ∈ F .

• F is r-independent: for all Q ∈
(
T
r

)
and a : Q →

{0, 1}, Prf∈F [f�
Q

= a] = 2−r.

In this section we will always take G = Gn to be the
“permutation of variables” subgroup of Sym({0, 1}n)
defined in the preliminaries. As an example, the family
of all Boolean functions on T is |T |-uniform with regard
to G.

Definition 6.4. Let δ ∈ R+, q ∈ N. We say that a
Boolean function f : T → {0, 1} is (q, δ)-regular if for
all Q ∈

(
T
q

)
and a : Q→ {0, 1}

Pr
τ∈G

[fτ �
Q

= a] = (1± δ)2−q,

That is, the probability in question is close to the prob-
ability that a random Boolean function on Q coincides
with a. The idea is that two functions that are both
regular will be hard to tell from each other.

Lemma 6.2. Let δ > 0 be a constant, N ,
(

n
n/2−d

√
ne
)

and F be an r-uniform family of Boolean functions on
{0, 1}nn

2±d
√
ne. If q = logN−5dlog ne and r = n4, then a

random function from F is (q, δ)-regular with probability
1− o(1).

Proof. Fix Q ∈
(
T
q

)
(where, T denotes {0, 1}nn

2±d
√
ne)

and a : Q → {0, 1}. For any g : {0, 1}nn
2±d
√
ne → {0, 1}

and τ ∈ G, define the indicator variable X(g, τ) =
I[gτ �

Q
= a]. Define A(f) , Prτ∈G[X(f, τ) = 1]; we

aim to compute the probability, over random f , that
A(f) deviates from p = 1/2q by more than δp. Notice
that Ef [A(f)] = Eτ Ef X(f, τ) = Eτ p = p, where we
made use of uniformity of F and the fact that r ≥ q.

Consider any pair σ1, σ2 ∈ G such that σ1(Q) ∩
σ2(Q) = ∅. Since 2q ≤ r, a random function from
F assigns values independently on each element of
σ1(Q) ∪ σ2(Q), so the random variables X(f, σ1) and
X(f, σ2) are independent conditioned on the choice of
σ1, σ2.

More generally, for any s permutations σ1, . . . , σs of
G under which the images ofQ are pairwise disjoint, and

for any π ∈ G, the variables X(f, π◦σ1), . . . , X(f, π◦σs)
are n3-wise independent, since r ≥ n3q. They are also
uniform because the distributions of f and fπ◦σi are the
same for f drawn from F . We will need a large set of
permutations with this property:

Lemma 6.3. There exist s , dN/q2e permutations
σ1, . . . , σs ∈ G such that σ1Q, . . . , σsQ are disjoint.

Proof. First note that for any x, y ∈ {0, 1}nn
2±d
√
ne,

Pr
π∈G

[πx = y] =

{
0, |x| 6= |y|

1

( n|x|)
, |x| = |y|

}
≤ 1

N
.

This holds because the orbit of x under G is the set of
all
(
n
|x|
)

strings of the same weight.

Let Σ ⊆ G be a maximal set of permutations
satisfying the hypothesis of the lemma; write s , |Σ|
and V =

⋃
σ∈Σ σQ. Then |V | = qs and maximality

means that every πQ has non-empty intersection with
V . Therefore 1 = Prπ∈G[∃x ∈ Q, y ∈ V such that πx =

y] ≤ q2s
N , where we used the the union bound over x and

y. Thus s ≥ N
q2 .

For any π ∈ G, A(f) = A(fπ) = Eτ∈GX(f, τ ◦ π).
In particular, drawing π from σ1, . . . , σs at random,
A(f) also equals the average value

A(f) = E
i∈[s]

E
τ∈G

X(f, τ ◦ σi)

= E
τ∈G

E
i∈[s]

X(f, τ ◦ σi) = E
τ
Y (f, τ),

where Y (f, τ) = EiX(f, τ ◦ σi). We need to show that
for typical f , Eτ Y (f, τ) is close to p; clearly it suffices
to prove that δ , maxτ |Y (f, τ)− p| is small for such f .

When τ is fixed, Y (f, τ) is the average of s k-
wise independent random variables (with k , n3), each
satisfying Ef X(f, τ◦σi) = p. We will need the following
version of Chernoff bounds:

Lemma 6.4. (Chernoff bounds for k-wise indep.)
[SSS95] Let X be the sum of s k-wise independent ran-
dom variables in the interval [0, 1], and let p = 1

s E[X].
For any 0 ≤ δ ≤ 1,

Pr[|X − p| ≥ δp] ≤ e−Ω(min(k,δ2ps)).

Since ps ≥ n3 and k = n3, using Lemma 6.4 we
obtain

∀τ Pr
f

[|Y (f, τ)− p| > pδ] = 2−Ω(δn3),

hence we can upper bound Prf [|A(f)− p| > pδ] by

Pr
f

[∃τ ∈ G : |Y (f, τ)− p| > pδ] ≤ |G|2−Ω(δn3).



To conclude, we apply the union bound again, this
time over all possible choices of Q and a ∈ {0, 1}Q,
yielding

Pr
f

[∃ Q, a : |A(f)− p| > p/5] ≤
(

2n

q

)
2qn!2−Ω(δn3),

which is o(1).

6.2.2 Proof of the main claim of Proposi-
tion 6.1. We first prove the existence of a function
f : {0, 1}nn

2±d
√
ne → {0, 1} satisfying all conditions ex-

cept the last two items on the “niceness” of f .
Let q , n − 5 log n. Take two random functions

f, g : {0, 1}nn
2±d
√
ne → {0, 1}, with f drawn from a

n4-uniform family and g uniformly random. With
probability 1 − o(1), distiso(f, g) = Ω(1). Also, by
Lemma 6.2, both functions are (q, δ)-regular, where we
picked some δ < 1/5.

Consider the following two distributions:

• DY : pick π ∈ G uniformly at random, and return
fπ.

• DN : pick π ∈ G uniformly at random, and return
gπ.

By definition, any y ∈ DY is isomorphic to f ,
whereas any n ∈ Dn is distiso(f, g)-far from it (and
isomorphic to g). Let h be in the support of DY or
DN . Then h is also (r, δ)-regular, implying that for any
Q ∈

(
T
q

)
(where, T , {0, 1}nn

2±d
√
ne) and a : Q→ {0, 1},

4

5 · 2q
< Pr

π
[hπ�

Q
= a] <

6

5 · 2q
,

so (2/3)Pry∈DY [y�
Q

= a] < Prn∈DN [n�
Q

= a] and an

appeal to Lemma A.1 establishes the main claim. Next
we prove the two items in Proposition 6.1.

6.2.3 Proof of item 1 of Proposition 6.1. We
need the following lemma, which gives us a n4-uniform
family of functions to draw f from, which is all required
at this point to establish item 1.

Lemma 6.5. Let Fd be the set of all polynomials p :
Fn2 → F2 of degree at most d. Then Fd is (2d+1 − 1)-
uniform.

Proof. Fd is obviously closed under permutations of
variables. With regard to independence, is enough to
prove the following claim: for any set S ⊆ Fn2 of size
|S| < 2d+1, and any function f : S → F2, there is a
polynomial q ∈ Fd such that q�

S
= f ; this fact has

been generalized in the works of [KS05] and [BEHL09].
Indeed, if the claim holds then Prp∈Fd [p�

S
= f ] =

Prp∈Fd [(p ⊕ q)�
S

= 0] = Prp′∈Fd [p′�
S

= 0], since the

distributions of p and p′ , p ⊕ q are uniform over Fd.
Therefore this probability is the same for every f .

We prove now this fact by induction on |S| + n;
it is trivial for |S| = n = 0. Suppose that, after
removing the first bit of each element of S, we still get
|S| distinct vectors; then we can apply the induction
hypothesis with S and n − 1. Otherwise, there are
disjoint subsets A,B,C ⊆ {0, 1}n−1

such that S =
{0, 1} ×A ∪ {0} ×B ∪ {1} × C, and A 6= ∅.

We can find, by induction, a polynomial p0A,0B,1C

of degree ≤ d on n − 1 variables that computes f on
{0}×A∪ {0}×B ∪ {1}×C. As |S| = 2|A|+ |B|+ |C|,
either |A| + |B| or |A| + |C| is at most |S|

2 < 2d;
assume the latter. Then any function g : A ∪ C → F
can be evaluated by some polynomial pAC(y) of degree
≤ d − 1; consider g(y) = 0 if y ∈ C and g(y) =
f(1, y)− p0A,0B,1C(1, y) if y ∈ A. Then the polynomial
p(x, y) = p0A,0B,1C(y) + xpAC(y) does the job.

6.2.4 Proof of item 2 of Proposition 6.1. We
show that there are (q, 1/6)-regular functions f that
can be computed by small circuits. For this we need
the following theorem:

Theorem 6.2. ([AS92]) It is possible to construct B
bits that are r-wise independent using O(r logB) ran-
dom bits.

Moreover, the construction can be carried out in
NC; that is, there is a bounded fan-in circuit of depth
O(polylog(r logB)) and polynomial size that, given as
input i ∈ [B] and m random bits, computes the i-th
variable.

Putting B , |{0, 1}nn
2±d
√
ne|, r = n4, we see that

the family of functions f : {0, 1}nn
2±d
√
ne → {0, 1} given

by Theorem 6.2 is n4-independent. Furthermore, each
f is in NC. Taking the closure of this family under
Gn (considered as a multiset) we obtain a n4-uniform
family. By Lemma 6.2, there is a way to fix the
poly(n) random bits so that the resulting function is
(n−O(log n), 1/6)-regular.

7 Lower bounds for testing size-s Boolean
circuits and degree-d Boolean functions

Theorem 7.1. There is a constant c > 0 such that for
all s ≤ nc testing size-s Boolean circuits requires Ω(s1/c)
queries.

Proof. By Corollary 6.1, for all r there is a function
f ′ : {0, 1}r → {0, 1} such that f ′ can be computed by



circuits of size rc (for some constant c depending on the
depth of the circuit computing f ′ that is guaranteed by
Corollary 6.1) and if g′ : {0, 1}r → {0, 1} is a truncated
random function then any algorithm that makes o(r)
queries cannot distinguish a random permutation of f ′

from a random permutation of ext(g′). Now with high
probability the random truncated function g′ will be far
from all functions computed by circuits of size 2Θ(n) �
rc. Hence we have functions f ′, g′ : {0, 1}r → {0, 1}
such that f ′ can be computed by circuits of size rc and
g′ is far from all functions computed by circuits of size
2Θ(n) � rc, yet any algorithm that makes o(r) queries
cannot distinguish a random permutation of f ′ from a
random permutation of g′.

We can choose r = Θ(s1/c). Given f, g′ and before,
consider their padding extensions f, g : {0, 1}n →
{0, 1}, where f = pad(f ′) and g = pad(g′). define
f : {0, 1}n → {0, 1} to be the padding extension
of f ′, where From Lemma 6.1 we obtain that any
algorithm making o(r) queries cannot distinguish a
random permutation of f from a random permutation
of g. Since the extension does not change the size of
the Boolean circuit that computes the corresponding
functions, the query complexity of testing a function of
size-s Boolean circuits is Ω(r) = Ω(s1/c).

As any k junta can be written as a polynomial
of degree4 at most k, whereas almost all truncated
functions are far from all polynomials of degree n−Θ(1),
Theorem 6.1 implies the following:

Theorem 7.2. The query complexity of testing whether
a function f : {0, 1}n → {0, 1} has degree at most d is
Ω(d), for any d ≤ n− ω(1).

8 O(k log k) upper bound for testing
isomorphism to k-juntas

Theorem 8.1. Isomorphism to any k-junta can be
tested with O(k log k

ε2 ) queries.

High-level overview of the proof. The first
ingredient in our proof is a tolerant, noise-resistant
and bias-resistant isomorphism tester RobustIsoTest
(Algorithm 2 below). Informally, RobustIsoTest allows
us to test isomorphism of an unknown g to a known
function f , even if instead of an oracle access to g we
are given a sampler that produces pairs (x, a), where

• there is some h that is close to g, and Pr[h(x) = a]
is large;

4The term “degree” here refers to the degree of f : {0, 1}n →
{0, 1} when viewed as a polynomial p ∈ F[x1, . . . , xn] with

coefficients in some field F. (In particular, when F = Q we speak
of the Fourier degree).

• the distribution of the x’s from the sampled pairs
is close to uniform.

The basic idea that allows us to use RobustIsoTest
for testing isomorphism to k-juntas is the following:
if we could simulate a noisy almost-uniform sampler
to the core of h, where h : {0, 1}n → {0, 1} is
the presumed k-junta that is close to g : {0, 1}n →
{0, 1}, then we could test whether g is isomorphic to
f . What we show is, roughly speaking, that for the
aforementioned simulation it suffices to detect k disjoint
subsets J1, . . . , Jk ⊆ [n] such that each subset contains
at most one relevant variable of the presumed k-junta
h : {0, 1}n → {0, 1}.

To obtain such sets we use the second ingredient,
which is the optimal junta tester of Blais [Bla09]. This
tester, in addition to testing whether g is a k-junta,
can provide (in case g is close to some k-junta h) a set
of ≤ k blocks (sets of indices), such that each block
contains exactly one of the relevant variables of h. The
trouble is that the k-junta h may not be the closest
one to g. In fact, even if g is a k-junta itself, h may
be some other function that is only close to g. Taking
these considerations into account constitutes the bulk
of the proof.

8.1 Testing isomorphism between the cores. In
the following we use the term black-box algorithm for
algorithms that take no input.

Definition 8.1. Let g : {0, 1}k → {0, 1} be a function,
and let η, µ ∈ [0, 1). An (η, µ)-noisy sampler for g
is a black-box probabilistic algorithm g̃ that on each
execution outputs (x, a) ∈ {0, 1}k × {0, 1} such that

• x ∈ {0, 1}k is distributed according to some dis-

tribution D on {0, 1}k, such that the total vari-
ation distance between D and the uniform distri-
bution is at most µ; namely, for all A ⊆ {0, 1}k,∣∣∣Prx∼D[x ∈ A]− |A|/2k

∣∣∣ ≤ µ;

• Pr[a = g(x)] ≥ 1− η,

where the probability is taken over the randomness of g̃,
which also determines x.

We stress that the two items are not necessarily
independent; e.g., it may be that for some α ∈ {0, 1}k,
Pr[a = g(x) | x = α] = 0.

The following is essentially a strengthening of Oc-
cam’s razor that is both tolerant, noise-resistant and
bias-resistant:

Proposition 8.1. There is an algorithm
RobustIsoTest that, given ε ∈ R+, k ∈ N, a func-
tion f : {0, 1}k → {0, 1} and a (η, µ)-noisy sampler g̃



for some g : {0, 1}k → {0, 1}, where η ≤ ε/100 and
µ ≤ ε/10, satisfies the following:

• if distiso(f, g) < ε/10, it accepts with probability at
least 9/10;

• if distiso(f, g) > 9ε/10, it rejects with probability at
least 9/10;

• it draws O(k log k
ε2 ) samples from g̃.

Proof. Consider the tester described in Algorithm 2. It

Algorithm 2 (RobustIsoTest – tests if f∼=g, tolerantly
with noise)

let q ← c log(k!)
ε2 , where c is a constant chosen later

obtain q independent samples (x1, a1), . . . , (xq, aq)
from g̃
accept if and only if there exists a permutation π of

[k] such that
∣∣∣{i ∈ [q] : fπ(xi) 6= ai

}∣∣∣ < εq/2.

is clear that RobustIsoTest uses O(k log k
ε2 ) queries.

Fix a permutation π. Let δπ = dist(fπ, g) and let

∆π ⊆ {0, 1}k, |∆π| = δπ2k, be the set of inputs on
which fπ and g disagree. Since the x’s are indepen-
dent random variables, distributed according to some
distribution D that is µ-close to uniform, we have

ζπ , Pr
x∼D

[x ∈ ∆π] = δπ ± µ

(by a = b± c we mean |a− b| ≤ c).
Using Chernoff bounds (additive form) we can

upper bound

Pr
[∣∣∣|{i ∈ [q] : fπ(xi) 6= g(xi)}| − ζπq

∣∣∣ > εq/10
]

by 2−Ω(ε2q), which is less than 1
20(k!) for sufficiently large

constant c. Therefore, with probability at least 19/20,

|{i ∈ [q] : fπ(xi) 6= g(xi)}| = ζπq ± εq/10 =

= δπq ± (µq + εq/10)

holds for all permutations π. To relate this to the
fraction of samples (x, a) for which fπ(x) 6= a, we use
Markov’s inequality:

Pr
[
|{i ∈ [q] : ai 6= g(xi)}| ≥ εq/5

]
≤

≤ Pr
[
|{i ∈ [q] : ai 6= g(xi)}| ≥ 20ηq

]
≤ 1/20.

Therefore, with probability at least 9/10,

|{i ∈ [q] : fπ(xi) 6= ai}| = δπq ± (µq + 3εq/10)

= δπq ± 2εq/5

for all π.
The result follows, since if distiso(f, g) < ε/10 then

there exists π such that δπq + 2εq/5 < εq/2; and if
distiso(f, g) > 9ε/10 then for all π, δπq − 2εq/5 > εq/2.

8.2 Some definitions and lemmas.

Definition 8.2. Given a k-junta f : {0, 1}n → {0, 1}
we define corek(f) : {0, 1}k → {0, 1} to be the restriction
of f to its relevant variables (where the variables are
placed according to the natural order). In case f has
less than k relevant variables, corek(f) is extended to a

{0, 1}k → {0, 1} function by adding dummy variables.

Throughout this section, a random partition I =
I1, . . . , I` of [n] into ` sets is constructed by starting
with ` empty sets, and then putting each coordinate
i ∈ [n] into one of the ` sets picked uniformly at random.
Unless explicitly mentioned otherwise, I will always
denote a random partition I = I1, . . . , I` of [n] into
` subsets, where ` is even; and J = J1, . . . , Jk will
denote an (ordered) k-subset of I (meaning that there
are a1, . . . , ak such that Ji = Iai for all i ∈ [k]).

Definition 8.3. (Operators replicate and extract)
We call y ∈ {0, 1}n I-regular if the restriction of y on
every set of I is constant; that is, if for all i ∈ [`] and
j, j′ ∈ Ii, yj = yj′ .

• Given z ∈ {0, 1}`, define replicateI(z) to be the
I-regular string y ∈ {0, 1}n obtained by setting
yj ← zi for all i ∈ ` and j ∈ Ii.

• Given an I-regular y ∈ {0, 1}n and an ordered
subset J = (J1, . . . , Jk) of I define extractI,J (y)

to be the string x ∈ {0, 1}k where for every i ∈ [k]:
xi = yj if Ji 6= ∅ and j ∈ Ji; and xi is a uniformly
random bit if Ji = ∅.

Definition 8.4. (Distributions DI and DJ ) For
any I and J ⊆ I as above, we define a pair of
distributions:

• The distribution DI on {0, 1}n: A random y ∼ DI
is obtained by

1. picking z ∈ {0, 1}` uniformly at random
among all

(
`
`/2

)
strings of weight `/2;

2. setting y ← replicateI(z).

• The distribution DJ on {0, 1}|J |: A random x ∼
DJ is obtained by

1. picking y ∈ {0, 1}n at random, according to
DI ;



2. setting x← extractI,J (y).

Lemma 8.1. (Properties of DI and DJ )

1. For all α ∈ {0, 1}n, Pr
I,y∼DI

[y = α] = 1/2n;

2. Assume ` > 4k2. For every I and J ⊆ I,
the distance in the L∞ norm between DJ and

the uniform distribution on {0, 1}|J | is bounded
by 2−k4|J |2/`, and therefore the total variation
distance between the two is at most 4|J |2/`.

Proof. 1. Each choice of z ∈ {0, 1}`, |z| = `/2, in
Definition 8.4 splits I into two equally-sized sets:
I0 and I1; and the bits corresponding to indices in
Ib (where b ∈ {0, 1}) are set to b in the construction
of y. For each index i ∈ [n], the block it is assigned
to is chosen independently at random from I, and
therefore falls within I0 (or I1) with probability
1/2, independently of other j ∈ [n]. (This actually
shows that the first item of the lemma still holds if
z is an arbitrarily fixed string of weight `/2, rather
than a randomly chosen one).

2. Let k = |J |. We only need to take care of the case
were all sets Ji in J are non-empty; having empty
sets can only decrease the distance to uniform. Let
w ∈ {0, 1}k. The choice of y ∼ DI , in the process
of obtaining x ∼ DJ , is independent of J ; thus, for
every i ∈ [k] we have

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≤ `/2

`− k
<

1

2
+
k

`
,

and

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≥ `/2− k
`− k

>
1

2
−k
`
.

Using the inequalities 1 − my ≤ (1 − y)m for all
y < 1,m ∈ N and (1 + y)m ≤ emy ≤ 1 + 2my for
all m ≥ 0, 0 ≤ my ≤ 1/2, we conclude

Pr
x∼DJ

[x = w] =

(
1

2
± k

`

)k
=

1

2k

(
1± 4k2

`

)
.

whereas a truly uniform distribution U should
satisfy Prx∼U [x = w] = 1/2k. Hence the total
variation distance between U and DJ is at most
4k2/`.

Definition 8.5. (Black-box algorithm sampler)
Given I,J as above and oracle access to
g : {0, 1}n → {0, 1}, we define a probabilistic

black-box algorithm samplerI,J (g) that on each exe-

cution produces a pair (x, a) ∈ {0, 1}|J | × {0, 1} as
follows: it picks a random y ∼ DI and outputs the pair
(extractI,J (y), g(y)).

Note that just one query is made to g in every
execution of samplerI,J (g). Notice also that the x

in the pairs (x, a) ∈ {0, 1}|J | × {0, 1} produced by
samplerI,J (g) is distributed according to distribution
DJ defined above.

8.3 From junta-testers to noisy-samplers.
Throughout this section Junk will denote the class of
k-juntas (on n variables), and for A ⊆ [n], JunA will
denote the class of juntas with all relevant variables in
A. In addition, given a function g : {0, 1}n → {0, 1},
we denote by g∗ : {0, 1}n → {0, 1} the k-junta that
is closest to g (if there are several k-juntas that are
equally close, break ties using some arbitrarily fixed
scheme). Clearly, if g is itself a k-junta then g∗ = g.

Lemma 8.2. [FKR+02] For any f : {0, 1}n → {0, 1}
and A ⊆ [n]

dist(f, JunA) ≤ Inff ([n] \A) ≤ 2 · dist(f, JunA).

We will also use the fact (see [FKR+02, Bla09] for
a proof) that influence is monotone and subadditive;
namely, for all f : {0, 1}n → {0, 1} and A,B ⊆ [n],

Inff (A) ≤ Inff (A ∪B) ≤ Inff (A) + Inff (B).

For the following definition and lemma we recall the
distributions DI and DJ from Definition 8.4.

Definition 8.6. Given δ > 0, function g : {0, 1}n →
{0, 1}, partition I = I1, . . . , I` of [n] and a k-subset J of
I (where ` > 4k2), we call the pair (I,J ) δ-good (with
respect to g) if there exists a k-junta h : {0, 1}n → {0, 1}
such that the following conditions are satisfied.

1. Conditions on h:

(a) Every relevant variable of h is also a relevant
variable of g∗ (recall that g∗ denotes the k-
junta closest to g);

(b) dist(g∗, h) < δ.

2. Conditions on I:

(a) For all j ∈ [`], Ij contains at most one
variable of corek(g∗); 5

5Note that this, along with 1a, implies that every block Ij
contains at most one relevant variable of h, since the variables of
corek(g∗) contain all relevant variables of g∗.



(b) Pry∼DI [g(y) 6= g∗(y)] ≤ 10 · dist(g, g∗);

3. Conditions on J :

(a) The set
⋃
Ij∈J Ij contains all relevant vari-

ables of h;

Lemma 8.3. Let δ, g, I be as in the preceding definition.
If the pair (I,J ) is δ-good, then for some permutation
π : [k]→ [k],

Pr
y∼DI

[g(y) 6= corek(g∗)π(extractI,J (y))] <

< 2δ + 8k2/`+ 10 · dist(g, g∗).

Proof. By item 2b in Definition 8.6, it suffices to prove
that

Pr
y∼DI

[g∗(y) 6= corek(g∗)π(extractI,J (y))] < 2δ + 8k2/`

for some π.
Let h be the k-junta that witnesses the fact that

the pair (I,J ) is δ-good. Let V ⊆ [n] be the set of k
variables of corek(g∗). (Recall that V may actually be
a superset of the relevant variables of g∗.) Let J ′ ,
{Ij ∈ I : Ij ∩ V 6= ∅} be an ordered subset respecting
the order of J , and let π be the permutation that maps
the i-th relevant variable of g∗ (in the standard order)
to the index π(i) of the element of J ′ in which it is
contained. We assume without loss of generality that π
is the identity map.

It follows from Definition 8.6 that |J ′| = |V | = k,
since each block in I contains at most one variable of
corek(g∗). For any I-uniform y ∈ {0, 1}n, let x ,
extractI,J (y) and x′ , extractI,J ′(y) denote the k-bit
strings corresponding to J and J ′. By definitions, we
have the equalities

(1) g∗(y) = corek(g∗)(x′),
(2) corek(h)(x) = corek(h)(x′).

The first equality is by Definition 8.3, and the second
one follows from items 1a and 3a in Definition 8.6. From
item 1b we also have

(3) Prr∈{0,1}k [corek(g∗)(r) 6= corek(h)(r)] < δ,
where r is picked uniformly at random. However, by the
second item of Lemma 8.1, the distribution DJ is 4k2/`
close to uniform 6; combining this with (3) we also get

(4) Pry∼DI [corek(g∗)(x) 6= corek(h)(x)] < δ +
4k2/`.
Likewise, we have

(5) Pry∼DI [corek(g∗)(x′) 6= corek(h)(x′)] < δ +
4k2/`,

6Recall that DJ is a distribution on {0, 1}k, where a random

x ∼ DJ is obtained by picking a random y ∼ DI and setting

x← extractI,J (y).

thus, using (2, 4, 5) and the union bound we get
(6) Pry∼DI [corek(g∗)(x′) 6= corek(g∗)(x)] < 2δ+

8k2/`.
Combining (1) and (6) we conclude that

Pr
y∼DI

[g∗(y) 6= corek(g∗)(x)] < 2δ + 8k2/`,

and the claim follows.

Corollary 8.1. If the pair (I,J ) is δ-good (with
respect to g), then samplerI,J (g) is (η, µ)-noisy sampler
for a permutation of corek(g∗), with η ≤ 2δ + 8k2/` +
10 · dist(g, g∗) and µ ≤ 4k2/`.

Proof. Recall that samplerI,J (g) is a probabilistic
black-box algorithm, that on each execution produces
a pair (x, a) ∈ {0, 1}k × {0, 1} as follows: it picks
a random y ∼ DI and outputs the pair (x, a) ,
(extractI,J (y), g(y)).

To be an (η, µ)-noisy sampler for corek(g∗)π,
samplerI,J (g) has to satisfy the following:

• the distribution of x ∈ {0, 1}k in its pairs should
be µ close to uniform (in total variation distance);

• Pr(x,a)←samplerI,J (g)

[
a = corek(g∗)π(x)

]
≥ 1− η.

The first item follows from the second item of Lemma
8.1. The second item follows from Lemma 8.3.

Now we set up a version of the junta tester from
[Bla09] that is needed for our algorithm. A careful
examination of the proof in [Bla09] yields the following:

Theorem 8.2. (Corollary to [Bla09]) The prop-
erty Junk can be tested with one-sided error using
O(k log k + k/ε) queries.

Moreover, the tester T[Bla09] can take a (random)
partition I = I1, . . . , I` of [n] as input, where ` =
`[Bla09](k, ε) = Θ(k9/ε5) is even, and output (in case
of acceptance) a k-subset J of I such that for any
g the following conditions hold (the probabilities below
are taken over the randomness of the tester and the
construction of I):

• if g is a k-junta, T[Bla09] always accepts;

• if g is ε/2400-far from Junk, then T[Bla09] rejects
with probability at least 9/10;

• for any g, with probability at least 4/5 either
T[Bla09] rejects, or it outputs J such that the pair
(I,J ) is ε/600-good (as per Definition 8.6). (In
particular, if g is a k-junta then with probability at
least 4/5, T[Bla09] outputs a set J such that (I,J )
is ε/600-good.)



Proof. In view of the results stated in [Bla09], only the
last item needs justification. 7

We start with a brief description of how T[Bla09]

works. Given the partition I, T[Bla09] starts with an
empty set S = ∅, and iteratively finds indices j ∈
[`] \ S such that for some pair of inputs y, y′ ∈ {0, 1}n,
y�

[n]\Ij
= y′�

[n]\Ij
but g(y) 6= g(y′). In other words,

it finds j such that Ij contains at least one influential
variable (let us call such a block Ij relevant). Then j
is joined to S, and the algorithm proceeds to the next
iteration. T[Bla09] stops at some stage, and rejects if
and only if |S| > k. If g is not rejected (i.e. if T[Bla09]

terminates with |S| ≤ k), then
(∗) with probability at least 19/20 the set S

satisfies Infg

(
[n] \ (

⋃
j∈S

Ij)
)
≤ ε/4800.

We will use this S to construct the subset J ⊆ I as
follows:

• for every j ∈ S, we put the block Ij into J ;

• if |S| < k then we extend J by putting in it k−|S|
additional “dummy” blocks from I (some of them
possibly empty), obtaining a set J of size exactly
k.

Now we go back to proving the third item of
Theorem 8.2. Recall that g∗ denotes the closest k-junta
to g. Let R ∈

(
[n]
≤k
)

denote the set of the relevant

variables of g∗, and let V ∈
(

[n]
k

)
, V ⊇ R, denote

the set of the variables of corek(g∗). Assume that
dist(g, Junk) ≤ ε/2400, 8 and T[Bla09] did not reject.
In this case,

• by (∗), with probability at least 19/20 the set J
satisfies

Infg

(
[n] \

( ⋃
Ij∈J

Ij
))

≤ Infg

(
[n] \

(⋃
j∈S

Ij
))

≤ ε/4800;

• since ` � k2, with probability larger than 19/20
all elements of V fall into different blocks of the
partition I;

• by Lemma 8.1, PrI,y∼DI

[
g(y) = g∗(y)

]
=

dist(g, g∗); hence by Markov’s inequality, with
probability at least 9/10 the partition I satisfies
Pry∼DI [g(y) 6= g∗(y)] ≤ 10 · dist(g, g∗).

7The somewhat different constants can be easily achieved by

increasing (by a constant factor) the number of iterations and

partition sizes of the algorithm.
8For other g’s the third item follows from the second item.

So with probability at least 4/5, all three of these events
occur. Now we show that conditioned on them, the pair
(I,J ) is ε/600-good.

Let U = R∩(
⋃
Ij∈J Ij). Informally, U is the subset

of the relevant variables of g∗ that were successfully
“discovered” by T[Bla09]. Since dist(g, g∗) ≤ ε/2400, we
have Infg([n] \ V ) ≤ ε/1200 (by Lemma 8.2). By the
subadditivity and monotonicity of influence we get

Infg([n] \ U) ≤ Infg([n] \ V ) + Infg(V \ U) ≤

≤ Infg([n] \ V ) + Infg

(
[n] \ (

⋃
Ij∈J

Ij)
)
≤ ε/960,

where the second inequality follows from V \ U ⊆
[n] \ (

⋃
Ij∈J Ij). This means, by Lemma 8.2, that there

is a k-junta h in JunU satisfying dist(g, h) ≤ ε/960, and
by triangle inequality, dist(g∗, h) ≤ ε/2400 + ε/960 <
ε/600. Based on this h, we can verify that the pair
(I,J ) is ε/600-good by going over the conditions in
Definition 8.6.

8.4 Putting everything together. Consider the
tester described in Algorithm 3. The proof of Theorem
8.1 follows from the next lemma:

Algorithm 3 (tests isomorphism to a k-junta f)

1: let ` = `[Bla09](k, ε) = Θ(k9/ε5)
2: randomly partition [n] into I = (I1, . . . , I`)
3: test g for being a k-junta, using T[Bla09] with I =
I1, . . . , I` (see Theorem 8.2)

4: if T[Bla09] rejects then
5: reject
6: end if
7: let J ⊆ I be the set output by T[Bla09]

8: construct samplerI,J (g) (see Section 8.2)
9: accept iff RobustIsoTest(corek(f), samplerI,J (g))

accepts (see Section 8.1)

Lemma 8.4. Algorithm 3 satisfies the following condi-
tions:

• if g∼=f then it accepts with probability at least 2/3;

• if distiso(f, g) ≥ ε then it rejects with probability at
least 2/3;

• its query complexity is O(k log k/ε2).

Proof of item 1. Assume g∼=f , and hence
corek(g)∼=corek(f). Since g is a k-junta, Algorithm 3
does not reject on line 5, because T[Bla09] has one-sided
error. So in this case, by Theorem 8.2, with proba-
bility at least 4/5 the pair (I,J ) is ε/600-good. If so,



by Corollary 8.1, samplerI,J (g) is a (η, µ)-noisy sampler
for a function isomorphic to corek(g∗) = corek(g), where
η ≤ 2ε/600 + 8k2/` + 10 · 0 < ε/100 and µ ≤ 4k2/` <
ε/10, and hence RobustIsoTest accepts with probability
at least 9/10. Thus the overall acceptance probability
is at least 2/3.

Proof of item 2. If distiso(f, g) ≥ ε then one of
the following must hold:

• either g is ε/2400-far from Junk,

• or dist(g, Junk) = dist(g, g∗) ≤ ε/2400 and
distiso(corek(f), corek(g∗)) ≥ ε− ε/2400 > 9ε/10.

If the first case holds, then T[Bla09] rejects with proba-
bility greater than 2/3 and we are done. So assume that
the second case holds.

By the third item of Theorem 8.2, with probability
at least 4/5, T[Bla09] either rejects g, or the pair (I,J )
is ε/600 good. If T[Bla09] rejects then we are done.
Otherwise, if an ε/600-good pair is obtained, then by
Corollary 8.1, samplerI,J (g) is a (η, µ)-noisy sampler for
a function isomorphic to corek(g∗), where η ≤ 2ε/600 +
8k2/`+ 10 · ε/2400 < ε/100 and µ ≤ 4k2/` < ε/10, and
hence RobustIsoTest rejects with probability at least
9/10. Thus the overall rejection probability is at least
2/3.

Proof of item 3. As for the query complexity,
it is the sum of O(k log k + k/ε) queries made by
T[Bla09], and additional O(k log k/ε2) queries made by
RobustIsoTest.

This completes the proof of Theorem 8.1.

8.5 Query-efficient procedure for drawing ran-
dom samples from the core. We conclude this sec-
tion by observing that the tools developed above can
be used for drawing random samples from the core of a
k-junta g, so that generating each sample requires only
one query to g.

Proposition 8.2. Let γ > 0 be an arbitrary constant.
There is a randomized algorithm A, that given oracle
access to any k-junta g : {0, 1}n → {0, 1} satisfies:

• Algorithm A has two parts: preprocessor AP and
sampler AS. AP is executed only once; it makes
O(k log k) queries to g, and produces a state α ∈
{0, 1}poly(n)

. The sampler AS can then be called on
demand, with the state α as an argument; in each
call, AS makes only one query to g and outputs a
pair (x, a) ∈ {0, 1}k × {0, 1}.

• With probability at least 4/5, the state α produced
by AP is such that for some permutation π : [k]→
[k],

Pr
(x,a)←AS(α)

[core(g)π(x) = α] ≥ 1− γ.

Furthermore, the x’s generated by the sampler AS
are independent random variables, distributed uni-
formly on {0, 1}k.

Proof. The preprocessor AP starts by constructing a
random partition I and calling the junta tester T[Bla09]

with ε , γ. Then AP encodes in the state α the
partition I and the subset J ⊆ I output by T[Bla09]

(see Theorem 8.2).
The sampler, given α = (I,J ), obtains a pair

(x, a) ∈ {0, 1}k × {0, 1} by executing samplerI,J (g)
(once). Then, with probability px (defined bellow), AP
outputs (x, a); and with probability 1 − px it draws a

uniformly random z ∈ {0, 1}k and outputs (z, 0).
By Theorem 8.2 (third item), since g is a k-junta,

with probability at least 4/5, the pair I,J is ε/600-
good. So, by Corollary 8.1, samplerI,J (g) is a (η, µ)-
noisy sampler for a function isomorphic to corek(g∗) =
corek(g), where η ≤ 2ε/600 + 8k2/` + 10 · 0 < ε/100
and µ ≤ 4k2/` < ε/100. Moreover, the distribution of
x in the pairs produced by samplerI,J (g) is 2−kµ <

ε2−k/100 close to uniform in L∞ norm. Since we
need this distribution to be uniform, we use rejection
sampling, with the only difference being that since
µ ≤ ε/100 � 1, we can stop after one execution of
samplerI,J (g) at the cost of a small increase in the error
probability.

Concretely, after drawing sample (x, a) from
samplerI,J (g), we accept it with probability

px ,
Prx1∼U [x1 = x]

(1 + µ) Prx2∼DJ [x2 = x]
;

and with probability 1 − px we reject the sample (and
output a uniformly random pair (z, 0) instead). It is
easy to verify that the overall acceptance probability
is Ex∼DJ px = 1/(1 + µ) and thus, conditioned on
acceptance, the distribution of x is uniform. In the case
of rejection (which occurs with probability µ/(1 +µ)) it
is uniform by definition; hence the overall distribution of
x is uniform too, and Pr[a 6= g(x)] ≤ ε/100+µ/(1+µ) <
ε/50 < γ.

9 Testing isomorphism between two unknown
functions

An ε-tester for function isomorphism in the unknown-
unknown setting is a probabilistic algorithm A that,
given oracle access to two functions f, g : {0, 1}n →
{0, 1}, satisfies the the following conditions: (1) if
f∼=g it accepts with probability at least 2/3; (2) if
distiso(f, g) ≥ ε it rejects with probability at least 2/3.
The query complexity of A is the worst-case number of
queries it makes to f and g before making a decision. A



is non-adaptive if its choice of queries does not depend
on the outcomes of earlier queries. A has one-sided error
if it always accepts in case f∼=g.

In the rest of the section we prove the following
Theorem

Proposition 9.1. The following holds for any fixed
ε > 0.

1. There exists a non-adaptive one-sided ε-tester for
function isomorphism in the unknown-unknown
setting that has query complexity O(2n/2

√
n log n).

2. Any adaptive tester for function isomorphism in the
unknown-unknown setting must have query com-
plexity Ω(2n/2).

9.1 Proof of Proposition 9.1, part 1: up-
per bound. In this section we show that isomor-
phism of a pair of unknown functions can be tested
with a one-sided error non-adaptive tester that makes
O(2n/2

√
n log n) queries. The tester is described in Al-

gorithm 4.

Algorithm 4 (non-adaptive one-sided error tester for
the unknown-unknown setting)

Q← ∅
add every x ∈ {0, 1}n to Q with probability

√
n logn
ε2n ,

independently of each other

if |Q| > 10
√

2n

ε n log n then

accept
end if
query both f and g on all points in Q
accept if and only if there exists π such that for all
x ∈ Q, either f(x) = g(π(x)) or π(x) /∈ Q

It is clear that Algorithm 4 is non-adaptive, has
one-sided error and it makes O(2n/2

√
n log n) queries.

So we only need to prove that ε-far functions are
accepted with probability at most 1/3. Since the event

|Q| ≤ 10
√

2n

ε n log n occurs with probability 1 − o(1),

we can condition the rest of the argument over it.
Let f and g be ε-far. That is, for all π there exist
ε2n inputs x ∈ {0, 1}n such that f(x) 6= g(π(x)).
Fixed π and such an x, the probability that both x
and π(x) are in Q is at least n logn

ε2n , so any such π
passes the acceptance condition with probability at
most (1−n log n/(ε2n))ε2

n ≤ e−n logn = n−n = o(1/n!).
The proof follows by taking the union bound over all n!
permutations.

9.2 Proof of Proposition 9.1, part 2: lower
bound. In this section we prove that any two-sided

adaptive tester in the unknown-unknown setting must
make Ω(2n/2) queries.

We define two distributions DY and DN on pairs
of functions such that any pair of functions drawn
according to distribution DY are isomorphic, while any
pair drawn according to distribution DN is 1/8-far from
isomorphic.

Recall from Definition 6.1 that a random truncated
function f : {0, 1}n → {0, 1} is defined as follows: if
n
2 −
√
n ≤ |x| ≤ n

2 +
√
n then f(x) = 1 with probability

1/2 and if |x| is less than n
2 −
√
n or greater than n

2 +
√
n

then f(x) = 0.
The distribution DY is constructed by letting the

pair of functions consist of a random truncated function
f : {0, 1}n → {0, 1} and a function g that is obtained
by permuting f using a random permutation in Sn.

For the distribution DN the pair of functions are
two independently chosen random truncated functions
f and g. Now with probability 1−o(1) the two functions
are 1/8 far from each other (Observation 6.1). For
any set Q = {x1, . . . , xt} ⊆ {0, 1}n of queries and any
p, q ∈ {0, 1}t let Pr(f,g)∈DY [(f, g)�

Q
= (p, q)] be the

probability that for all 1 ≤ i ≤ t, f(xi) = pi and
g(xi) = qi when f and g are drawn according to DY .
Similarly we define Pr(f,g)∈DN [(f, g)�

Q
= (p, q)].

Without loss of generality we assume that |xi| ∈
[n/2 −

√
n, n/2 +

√
n] for all i ∈ [t]. By definition,

if the pair f, g is drawn from DN , the answers to the
queries will be uniformly distributed, meaning that for
any p, q ∈ {0, 1}t, we have

Pr
(f,g)∈DN

[(f, g)�
Q

= (p, q)] = 1/22t.

Now let the pair be drawn according to DY and let π
be the permutation on [n] that defined the pair. Let EQ
denote the event that π(Q) and Q are disjoint, that is,
for all i, j inequality π(xi) 6= xj holds. Conditioned on
EQ, the answers to the queries will again be distributed
uniformly, that is

Pr
(f,g)∈DY

[(f, g)�
Q

= (p, q)|EQ] = Pr
(f,g)∈DN

[(f, g)�
Q

= (p, q)]

(note that the event in question is independent of EQ
when the pairs is drawn from DN ).

Claim 9.1. Pr[EQ] ≥ 2/3.

Proof. [Of Claim 9.1] For any i and taking a random
permutation π, the probability that π(xi) = xj for some
j is less than t/

(
n
k

)
where k = |xi|. Since n

2 −
√
n < k <

n
2 +
√
n, this probability is bounded by 25t/2n. Hence,

by the union bound, with probability 1− 25t2

2n for all i, j

we have π(xi) 6= xj . So if t < 2n/2/10, with probability
at least 2/3 event EQ happens.



Now Pr(f,g)∈DY [(f, g)�
Q

= (p, q)] is at least

(Pr[EQ]) Pr
(f,g)∈DY

[(f, g)�
Q

= (p, q) | EQ] ≥

≥ (2/3) Pr
(f,g)∈DN

[(f, g)�
Q

= (p, q)].

This implies (by Lemma A.1) a lower bound of 2n/2/10
on the adaptive query complexity for the two-sided
testing for the unknown-unknown setting.

10 Distinguishing two random functions with
Õ(
√
n) queries

In light of the fact that two trimmed random functions
are hard to distinguish with fewer than roughly n
queries, we may ask whether the restriction to trimmed
functions is necessary. In this section we show that
without such a restriction, the aforementioned task can
be completed with only Õ(

√
n) queries. We prove the

following proposition, which says in particular that any
function can be distinguished from a completely random
function using Õ(

√
n) queries.

Proposition 10.1. Let δ > 0 be an arbitrary constant.
For any function f and any distribution Dy over func-
tions isomorphic to f , it is possible to distinguish g ∈ Dy
from g ∈ U with probability 1− δ using Õ(

√
n) queries.

Note that querying g only on inputs of Hamming
weights 1, 2, n − 1, n cannot help much. By querying
the all-zero and all-one inputs, we can distinguish
between the two cases only with probability 3/4.9

When considering singletons (and likewise, inputs
of weight n − 1), then f, g are isomorphic only if
|{x ∈ L1 : f(x) = 1}| = |{x ∈ L1 : g(x) = 1}|. So
a natural (and only) approach would be to test the
equality of these measures by sampling. But notice
that for most f , with very high probability (over
the choice of g), these two measures will be at most
O(
√
n) away from each other, which means that dis-

tinguishing the two cases requires at least Ω(n) samples.

Due to space constraints, the proof of Proposition
is not included here. Here we present a sketch.

We show that Õ(
√
n) queries into inputs of weight

≤ 2 are sufficient for distinguishing g ∈ Dy from g ∈ U
with high probability. One way to do this is to interpret
the restriction of f and g to

(
[n]
2

)
as adjacency functions

of graphs on n vertices. It is not hard to prove that
for any f and a randomly chosen g, the corresponding

9Notice that this success probability cannot be amplified, since

the probability is taken over the choice of functions, rather than
the randomness of the tester.

graphs Gf , Gg are 1/3-far from being isomorphic with
overwhelming probability. On the other hand, if f is
isomorphic to g then Gf is obviously isomorphic to Gg.
Hence, we can use the isomorphism tester of [FM08] (in
the appropriate setting) to distinguish between the two
cases.

But in fact, the graph case is more complicated,
since it is concerned with the worst case scenario (i.e., it
should work for any pair of graphs). In our case, we only
wish to distinguish a (possibly random) permutation of
some given f from a random function g. Indeed, it turns
out that we can reduce our problem directly to the task
of testing equivalence of a samplable distribution to an
explicitly given one. Then we can use an algorithm of
Batu et al. [BFF+01] that solves exactly this problem

with Õ(
√
n) queries.

The formal details are worked out in the full version
of the paper, available at http://homepages.cwi.nl/

~david/downloads/fiso.pdf.
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A Definitions and tools from earlier works

Generalities. Let n, k ∈ N and x ∈ {0, 1}n. We use
the following standard notation:

• [n] = {1, . . . , n} and [k, n] = {i ∈ [n] : k ≤ i ≤ n};

• |x| = |{i ∈ [n] : xi = 1}|;

Given a subset I ⊆ [n], x�
I

denotes the restriction of x to

the indices in I, and for y ∈ {0, 1}|I|, x
I←y denotes the

string obtained by taking x and substituting its values
in I with y (according to the natural ordering of [n]).

For a set S and k ∈ N,
(
S
k

)
is the collection of all

k-sized subsets of S and
(
S
≤k
)

is the collection of all
subsets of size at most k; a similar notation is used for
binomial coefficients

(
m
≤k
)
.

Given a pair f, g : D → {0, 1} of Boolean functions,
dist(f, g) , Prx∈D[f(x) 6= g(x)]. (Throughout this
paper, e ∈ S under the probability symbol means that

an element e is chosen uniformly at random from a
(multi)set S.) For a collection (property) P of functions
D → {0, 1}, dist(f,P) = ming∈P dist(f, g). For ε ∈ R+,
f is ε-far from P if dist(f,P) ≥ ε, otherwise it is ε-close
to P.

Influence, Juntas, Parities. For a function g :
{0, 1}n → {0, 1} and a set A ⊆ [n], the influence of
A on g is defined as

Infg(A) , Pr
x∈{0,1}n, y∈{0,1}|A|

[
g(x) 6= g(x

A←y)
]
.

Note that when |A| = 1, this value is half that of the
most common definition of influence of one variable; for
consistency we stick to the previous definition instead
in this case as well.

An index (variable) i ∈ [n] is relevant with respect
to g if Infg({i}) 6= 0. A k-junta is a function g that
has at most k relevant variables; equivalently, there is
S ∈

(
[n]
k

)
such that Infg([n] \ S) = 0.

A parity is a linear form on Fn2 . Such a linear
f : {0, 1}n → {0, 1} can be identified with a unique
vector v ∈ {0, 1}n such that f(x) =

⊕
i∈[n] xivi for all

x ∈ {0, 1}n. We say that f is a k-parity if its associated
vector has Hamming weight exactly k. The set of all
k-parities will be denoted PARk.

Isomorphism testing. An ε-tester for f -isomorphism
is a probabilistic algorithmA that, given oracle access to
g, satisfies the following conditions: (1) if f∼=g it accepts
with probability at least 2/3; (2) if distiso(f, g) ≥ ε
it rejects with probability at least 2/3. The query
complexity of A is the worst-case number of queries it
makes to g before making a decision. A is non-adaptive
if its choice of queries does not depend on the outcomes
of earlier queries. A has one-sided error if it always
accepts in case f∼=g. By default, in all testers (and
bounds) discussed in this paper we assume adaptivity
and two-sided error, unless mentioned otherwise.

Note that testing f -isomorphism is equivalent to
testing the property Isomf , {fπ : π ∈ Gn} in the
usual property testing terminology.

For any function f the query complexity for testing
f -isomorphism is the query complexity of the best ε-
tester for f -isomorphism. If C is a set of functions, then
the query complexity for testing isomorphism to C is the
maximum, taken over all f ∈ C, of the query complexity
for testing f -isomorphism.

Lemma for proving non-adaptive lower bounds.
Let P be a property (subset) of functions mapping T to
{0, 1}. Define

R , {f ∈ {0, 1}T | dist(f,P) ≥ ε}.



Any tester for P should, with high probability, accept
inputs from P and reject inputs from R.

We use the following lemma in various lower bound
proofs for two-sided adaptive testing. It is proven
implicitly in [FNS04], and a detailed proof appears in
[Fis01]. Here we strengthen it somewhat, but still, the
same proof works in our case too (we reproduce it here
for completeness).

Lemma A.1. Let P,R be as in the preceding discussion,
and let DY and DN be distributions over P and R,
respectively. If q is such that for all Q ∈

(
T
q

)
and

a ∈ {0, 1}Q we have

2

3
Pr

f∈DY
[f�

Q
= a] < Pr

f∈DN
[f�

Q
= a],

then any tester for P must make more than q queries.

Proof. Assume towards a contradiction that there is
such a tester making ≤ q queries; clearly we can assume
it always makes exactly q queries. Define a distribution
D obtained by selecting one of DY and DN with
probability 1/2, and drawing an f from it. Fix a random
seed so that the tester works for f ∈ D with probability
at least 2/3; now the behaviour of the tester can be
described by a deterministic decision tree of height q.
Each leaf corresponds to a set Q ∈

(
T
q

)
, along with an

evaluation a : Q → {0, 1}; the leaf is reached if and
only if f satisfies the evaluation. Consider the set S
corresponding to accepting leaves; f is accepted if and
only if there is (Q, a) ∈ S such that f�

Q
= a. These |S|

events are disjoint, so the probability of acceptance of
f is

∑
(Q,a)∈S Pr[f�

Q
= a].

Let p = Prf∈DY [f is accepted], r =
Prf∈DN [f is rejected]. Now a standard averaging
argument shows that 2/3p < r, so p − r < p/3 ≤ 1/3.
The overall success probability when f is taken from D
is 1/2 + (p− r)/2 < 2/3, contradicting our assumption.


