
Report submitted for the course
Complexity Theory II

by
Saswata Mukherjee & Somnath Bhattacharjee

on

BPHSPACE(s)⊆ DSPACE(s3/2)

by

Michael Saks & Shiyu Zhou

January 8, 2023

Contents

1 Introduction 2

2 Key Idea 2
2.1 Why AMRS: . 2
2.2 Enough to Find a Good Randomized Algorithm for AMRS 2

3 Towards Construction and Analysis of the Main Algorithm 3
3.1 Recursive Use of PRS to Get Main Algorithm 3
3.2 Use of "Perturbing" to get one single good random string 4
3.3 Main Algorithm . 4
3.4 Glimps of Correctness . 5

4 Matrix Pseudorandom Repeated Squaring: PRS 5
4.1 Some More Definitions . 6
4.2 Family of Pairwise Independent Hash Functions Helps 6
4.3 Construction of Generator via Composition of Hash Functions 7

1

1 Introduction

Here we give the brief idea of the paper, which proves that any randomized algorithm
with bounded two sided error protocol which requires O(s) space, can be deramdomized in
O(s3/2) space. It improves the best known previous result which shows that BPHSPACE(s)⊆
DSPACE(s2).

2 Key Idea

At first let us define a problem.

Problem 2.1. [Approximate Substochastic Matrix Repeated Squaring (AMRS)]:

Input: M← d× d substochastic matrix, 2r,2a← in unary.
Output: d× d substochastic matrix M′ such that ||M2r −M′|| ≤ 2−a.

(We call such M′ to be a−approximation of M.)

We will mainly try to give randomized algorithm for this problem and then will de-
randomize it.

2.1 Why AMRS:

Now we give idea how our main goal can be reduced to the above problem 2.1.
If a TM uses s(n) space on input of size n, then we know that the number of configu-

rations of the TM will be d = 2O(s(n)), i.e., it uses d many steps. And also there is one Accept
and one Start configuration. Therefore, we can associate a markov matrix Md×d with this
situation, in the following way:
M(i, j) = probability of going from ith to jth configuration in one step.
=⇒ Md(i, j) = probability of going from ith to jth configuration in d-many steps.

Therefore, if (Start, Accept) entry of a−approximation matrix of Md is "sufficiently
good", we can say the input is in the language, and reject otherwise.

So, to solve our problem it is enough to give a deterministic algorithm for 2.1 (with
paremeters r = a = ⌈logd⌉), which uses O(log3/2 d) space.

2.2 Enough to Find a Good Randomized Algorithm for AMRS

In this section we will see finding a good enough randomized algorithm for AMRS is
sufficient to derandomized it. But before that we need to introduce the concept of off-line
randomness. Then we can decide what is good what is not.

A randomized algorithm A on any input x will be called off-linr randomized if it
will take some random string y ∈ {0,1}R(x) and after getting y the procedure is completely
deterministic ,ie, after fixing x and y the algorithm A(x,y) will note produce any random
string. We will say the random bit complexity of A is |y| = R(x) and the space required to

2

run A(x,y) once y is written down is processing space complexity. The over all space is sum
of these two.

Let F be a substocastic matrix function. In this case can think F to be the actual func-
tion for AMRS ,ie, on input M,z (where M is the input matrix and z denotes r and a) F
computes M2r . We will say an off-line randomized algorithm A approximates F with accu-
racy a ∈Z and error probability β ∈ [0,1] if there is polynomially bounded function R

Pr
y

u.a.r.←−−{0,1}R(M,z)
[||A(M,z,y)− F(M,z)|| 2−a]≤ β

Now for such offline randomized A approximating F, the naive derandomization of A
will be compute A(M,z,y) for each y ∈ {0,1}R(M,z) and then take the arithmetic average
of all the outputs. If the random bit complexity and processing space complexity of A is
R and S respectively. Note for each y, the processing space complexity can be reused and
and the space nedded to compute the average and store (A(M,z,y) is O(S + R) (for any
iteration we can store the average value for all the previous iterations and in the end of the
iteration we can use the corresponding output to modify the current average). So overall
space complexity will be O(S + R) for the deterministic algorithm. The following lemma
will prove the accuracy will not change that much.

Lemma 1. If B is the naive derandomisation of A and if A has accuracy a error proba-
bility β≤ 2−(a+1), the B has accuracy a− 1

Hence finding an offline randomized algorithm for AMRS with small random bit
complexity and processing space complexity and exponentially small error probability is
sufficient.

3 Towards Construction and Analysis of the Main Algorithm

3.1 Recursive Use of PRS to Get Main Algorithm

Let us describe what the PRS algorithm does at first.

Problem 3.1.
Input: Integer m,r, substochastic matrix Md×d, offline random input h ∈ {0,1}2mr.
Output: For an integer a it outputs a−approximation of Λr(M) := M2r , which is M′,
with error probability 22a+3r+5logd/2m.
Space required O(m + r + logd)

We shall see in section 4 that there is a PRS algorithm for 3.1.
The parameter m defined above will be called the randomization parameter. In the

end we will set m = O(s) (s = max{r, a, logd})to get exponentially small error so the naive
derandomization will have space complexity Θ(rs) . So to improve that the next idea will
be apply PRS recursively. One can note if r = r1 × r2 then

Λ(r)(M) =
(
Λ(r1)

)r2(M) (ie, applying Λ(r1) r2 times on M)

3

Now using that idea if we compute Λ(r1) recursively r2 times we will have total r2

many iterations and each iteration will take 2mr1 length random string, so total random bit
complexity will be 2r1r2s = rs and processing space complexity will be O(r2s). The random
bit complexity increases because we are using different random strings in each iterations.
So what if we use the same random string in each iteration? We will say a random string
h is good for some randomised algorithm A if using h A gives the desired answer. Now
clearly we don’t know whether almost all random strings h are good for each iteration. We
will discuss this case in the next section.

3.2 Use of "Perturbing" to get one single good random string

Let M0 = M, M1, . . . , Mr2 be the sequence of matricies we compute in the algorithm
defined in section 3.1. And N0 = M, N1, . . . , Nr2 where Ni = N2r1

0 be the sequence of matrices
which ideally should be computed. One can view the problem in terms of approximating
Ni to Mi.

We already said that we don’t know whether almost all hs are good for all Mis or not.
But note almost all hs are good for all Nis if we apply PRS to Ni. Now using this observation
the paper gave a reasonable conjecture that if Ni and Mi are close and h is good for Ni then
PRS(Ni) and PRS(Mi) = Mi+1 is also close, hence applying induction one can prove almost
all hs are good for all Mi. But even if the conjecture is true the error growth is too high to
handle.

To tackle this obstacle we will perturb and then truncate each Mi entries and then
will apply PRS. the main idea behind this is by truncating low order bits of the entries, try
to make Ni and modified Mi close enough. Now note roughly if the modified Mi and Ni

are close enough then we can say almost all h are good for all Mi.

3.3 Main Algorithm

Before describing the main algorithm we have to define some notations.

Definition 3.1. For some non-negative real number δ the perturbation operator is Σδ :
[0,1]→ [0,1], Σδ(z) = max{z− δ,0}
for some non negative integer t, the truncation operator is ⌊.⌋z : [0,1]→ [0,1], ⌊z⌋t =
2−t⌊2tz⌋
Applying these two operator on a matrix means applying these operators in each en-
tries of the matrix.

We will call the algorithm MAIN which is just recursive application of PRS in a clever
manner. We will take r1 = r2 =

√
r, if r is not a perfect square then we will compute for the

largest perfect square smaler than r and from that we will compute manually.
MAIN will have additional parameters m, t, D,K of Θ(s) computed from the input

and will not change through out the process. m is PRS randomization parameter and t +
D = K.

MAIN will have offline random string h ∈ {0,1}2mr1 and q =∈ {0,1}Dr2 where q =

4

[q(1), . . . ,q(r2)] and each q(i) ∈ {0,1}D. Let δi = q(i)2−K. MAIN will basically compute

M = M0, MP
1 , MΣ

1 , M1, MP
2 , MΣ

2 , M2, . . . , MP
r2

, MΣ
r2

, Mr2

Basically in each step it is computing MP
i , MΣ

i , Mi from Mi−1 and each entries will have K
bits, where

MP
i = PRS(Mi−1,r1,m, h) (applying PRS on Mi−1)

MΣ
i = Σδi(MP

i) (Perturb last D bits of each entry randomly)
Mi = ⌊MΣ

i ⌋ (Truncate the entries upto first t bits)

In the end it will return Mr2 .

Note the random bit complexity will be 2r1m + r2D = O(r
1
2 s) and processing com-

plexity will be O(r2s) since it is computing 3r2 many matrices and each matrix can be com-
puted in O(s) time from the previous matrix, so it will compute entry by entry (ie, to com-
pute some entry (i, j) it will compute the entries of the previous matrix recursively). Hence
the naive deranomization will give O(r

1
2 s) deterministic algorithm.

3.4 Glimps of Correctness

Let us modify the Ni sequence in similar way:
Define M = N0, NP

1 , NΣ
1 , N1, NP

2 , NΣ
2 , N2, . . . , NP

r2
, NΣ

r2
, Nr2 where

NP
i = N2r1

i−1 (ARMS on Ni−1)
NΣ

i = Σδi(NP
i) (Perturb last D bits of each entry randomly)

Ni = ⌊NΣ
i ⌋ (Truncate the entries upto first t bits)

Now the following lemma will say that Ni and Mi sequences are close enough

Lemma 2. For any choice of q ∈ {0,1}Dr2 Nr approximates Λ(r)(M) with accuracy K−
D− 2r− logd.

Now note for a fixed q, Ni does not depends on h. We will say a q is good if for almost
h, Ni = Mi. And then we can prove for any q, almost all h are good for Ni, and a large
fraction of qs are good. Hence we can say Ni = Mi with high probability. Note error can
occur in two ways, either q is bad or for good q, h is bad. Now with calculation we can
prove the sum is very small.

4 Matrix Pseudorandom Repeated Squaring: PRS

In previous section, we have defined PRS, and in this section we are going to show a
brief proof idea and analysis of the algorithm vi a Nisan’s generator.

Take substochastic matrix Md×d = Normalized adjacency matrix of graph G.
Where G has d vertices and it is 2m−regular graph and for some i ∈V(G), all edges from i

5

is enumerated by elements of {0,1}m. We can interpret this as,

M[i, j] = Probability of going from i to jth configuration using m random bits.

So, Mp[i, j] = Probability of going from i to jth configuration using mp random bits.

Similarly define M′ ,M′[i, j] = {a ∈ {0,1}m : there is an edge a from i to j}.
(M′)p[i, j] = Set of all strings in ({0,1}m)p so that it defines a i→ j path of length p in G.

For any such M′, (M′)∗[i, j] = |M′[i, j]|2−m, and for any M, we can construct Q(M) = M′ so
that (Q(M))∗ = M.

We are going to construct an explicit PRG G : {0,1}t→{0,1}n where t n with a very
small error. More precisely, t = O(rm) = O(rs) as, we know m = O(s) and we want to find
approximate M2r . And n ≈ O(s2r). Instead of using large number of true random bits, if
we use pseudorandom bit, it will not cost us so much and moreover by 2.2, using small
amount of space we can reach our goal.

4.1 Some More Definitions

Take a map g : {0,1}m→ ({0,1}m)p, call it (m, p)−generator.
Define (M′g)d×d so that x ∈M′g[i, j] ⇐⇒ g(x) defines a path of length p from i to j.
Say, such g is ϵ−PR w.r.t M′ ⇐⇒ ||((M′)p)∗ − (M′g)∗|| ≤ ϵ.

Composition of PRGs:
If g is a (m, p)−generator and g′ is a (m, p′)−generator.

then define g ◦ g′(x) = g(g′(x))1, . . . , g(g′(x))p′ . Clearly, g ◦ g′ is a (m, pp′)−generator.
And it can be easily proved that M′g◦g′ = (M′g)g′ .

Lemma 3.
If g is ϵ−PR and g′ is ϵ′−PR w.r.t. M′, then g ◦ g′ is (ϵ′ + p′ϵ)−PR w.r.t M′.

4.2 Family of Pairwise Independent Hash Functions Helps

Definition 4.1.
Hk = { f : f {0,1}k → {0,1}k} be a pairwise independent family of hash functions, if
∀x1 ̸= x2,y1,y2 ∈ {0,1}k,

Prh∼Hk [h(x1) = y1 ∧ h(x2) = y2] = 2−2k

We have proved expander mixing lemma for Expander graphs. We can prove that kind of
lemma for pairwise independent hash family.

Take A, B⊆ {0,1}m, then, we say h ∈H is ϵ−good if

|Prx[x ∈ A ∧ h(x) ∈ B]− ρ(A)ρ(B)| ≤ ϵ.

6

Where ρ(.) is the density of the set.

Lemma 4.
For any A, B, Prh∼Hm [h is not ϵ− good]≤ 1

ϵ22m .

M′ is as defined before, then, we say h ∈Hm is (M′,ϵ) good if,

∀i, j,k ∈ [d], h is ϵ− good w.r.t. (A = Q[i, j], B = Q[j,k])

Lemma 5.
Prh∼Hm [h is not (M′,ϵ) good]≤ d

ϵ22m .

4.3 Construction of Generator via Composition of Hash Functions

Pick h1←Hm uniformly at random, and define G1(x) = (x, h1(x)) for x ∈ {0,1}m.

Lemma 6.
If h1 is (M′ = Q(M),ϵ)−good, then the (m,2) generator G1 is ϵd2−PR w.r.t. M′.

Proof:
. M′G1

[i,k] = {x : ∃j such that x ∈M′[i, j], h1(x) ∈M′[j,k]}.
Now, |((M′)2)∗[i,k]− (M′G1

)∗[i,k]|
= |∑j ρ(M′[i, j])ρ(M′[j,k])− Prx[x ∈M′[i, j ∧ h1(x) ∈M′[j,k]
≤∑j |ρ(M′[i, j])ρ(M′[j,k])− Prx[x ∈M′[i, j ∧ h1(x) ∈M′[j,k]| [h1 is (M′,ϵ)−good.]
≤ ϵd. ■

Now, to construct our generator we randomly sample h1, . . . , hr←{Hm}.
Take Gr = G1 ◦ G2 ◦ · · · ◦ Gr, it will be (m,2r)−generator.
Define g1 ◦ · · · ◦ gr to be ϵ well behaved if for all i, gi is M′g1◦...gi−1

,ϵ good.

• We can prove that if h1, . . . , hr ∈Hm is picked randomly, then, with probability rd
ϵ22m ,

Gr is not ϵ well behaved.

• Also, by induction, if Gr is (M′,ϵ)−good then, it is (2rϵd2)− PR.

So, by randomly picking h1, . . . , hr, with prob ≥ 1− rd522r

ϵ22m , Gr is ϵ−PR, w.r.t. M′, M.

PRS Algo:
Randomly sample (h1, . . . , hr) ∈ {0,1}O(mr).
c=0
for all α ∈ {0,1}M:

if Gr(α) defines a path from i to j:
c += 1.

end if.

7

end for.
Output M[i, j] = c2−m.

Analysis:
From 4.3, to achieve accuracy 2−a, we have to allow error probability 22a+3r+5logd/2m.
And for space analysis, observe that it uses O(mr) random bits and using ≈ O(m + r +
logd) space. So, combining these, we are done.

8

	Introduction
	Key Idea
	Why AMRS:
	Enough to Find a Good Randomized Algorithm for AMRS

	Towards Construction and Analysis of the Main Algorithm
	Recursive Use of PRS to Get Main Algorithm
	Use of "Perturbing" to get one single good random string
	Main Algorithm
	Glimps of Correctness

	Matrix Pseudorandom Repeated Squaring: PRS
	Some More Definitions
	Family of Pairwise Independent Hash Functions Helps
	Construction of Generator via Composition of Hash Functions

