
Complexity Theory II Notes
Fall 2022

1 Lecture 1

Scribe: Naman, BMC202026

1.1 Introduction

Grading Scheme:

1. Scribe Notes

2. Assignments

3. Take-Home Exam/Project

Books:

• Computational Complexity: A Modern Approach, Boaz Barak and Sanjeev Arora

• Pseudorandomness, Salil Vadhan

1.2 Randomized Algorithms

Over the past several years, computer scientists have determined a variety of randomized
algorithms to efficiently solve difficult problems with low time/space complexities. This leads
to a number of questions:

• Can every Randomized Algorithm be derandomized?

• Can every algorithm that uses randomness be substituted with a similarly efficient algo-
rithm that does not?

A major conjecture in computer science is that, yes, all random algorithms can be derandom-
ized.

1.3 Polynomial Identity Testing

Consider the following problem: given two multivariate polynomials f and g in F[x1, x2, . . . , xn],
is it the case that f ≡ g?

This problem, when posed with an efficient representation of polynomials, is known as Poly-
nomial Identity Testing.

Note 1. It is clear that representing the polynomial as a set of monomials is inefficient, as the
number of possible monomials for n-variate polynomials with degree d is

(
n+d
d

)
and grows

with nd.

1.3.1 Arithmetic Circuit Representation

We can represent polynomials as arithmetic circuits, which is a circuit that has + and × gates.
We can at this point refine our original question and ask the following problem: Consider a

polynomial h(x1, x2, . . . , xn) of degree ≤ d by an arithmetic circuit. Can we decide if h ≡ 0?

This problem is considered to be the most important problem in the study of psuedorandom-
ness, and is known to be solvable in randomized polynomial time.

1.3.2 Schwartz-Zippel Lemma

Theorem 1. Let f(x1, x2, . . . , xn) be an n-variate polynomial of degree ≤ d and S ⊆ F. Then
Pr[f(a1, . . . , an) = 0] ≤ d/|S| if the ai have been uniformly sampled from S.

Proof. We proceed by induction. Consider the case for n = 1. Since the number of roots
that a 1−variate polynomial of degree d can have is at most d, it follows immediately that the
probabilty is ≤ d/|S|.

Now consider the n variate case. Any polynomial in this regard can be written as a 1-variate
polynomial in the xn variable:

∑
k

fk(x1, . . . , xn−1)x
k
n

Let the highest nonzero degree of xn be j. Then the degree of fj is ≤ d− j. We know from the
induction hypothesis that the probability of fj being zero when supplied with a1, . . . , an−1, is
d − j/|S|. The probability of xj itself being zero is j/|S| by the base case. So the probability
that the entire term is 0 is

Pr[fj(a1, . . . , an−1)an = 0] ≤ d− j

|S|
+

j

|S|
=

d

|S|

and we are done.

So for solving this problem in a randomized manner, simply choose a big-enough subset from
which selection is being made and then repeatedly evaluate the polynomial until we can be
fairly confident that it is nonzero.

2

2 Lecture 2

(Scribe: Naman, BMC202026)

2.1 UREACH ∈RL

The UREACH problem asks to find whether given an undirected graph G and two vertices s, t,
the two vertices are in the same connected component.

2.1.1 Randomized Algorithm for UREACH

Idea Make a sufficiently long random walk from s and if we don’t reach t, reject (G, s, t).

We can assume WLOG that G is d−regular, since we can always simply add self-loops in order
to maintain regularity.

Adjacency Matrix Consider the normalized adjacency matrix of the graph, which is defined
as AG(i, j) = 1/d if (i, j) ∈ E, and 0 otherwise.

• AG is a real, symmetric matrix.

• AG is doubly-stochastic, ie. rows and columns add up to 1 (the rows and columns look like
probability distributions).

• Eigenvalues of AG are reals.

• If the eigenvectors of AG are normalized, ||vi||2 = ⟨vi, vi⟩ = 1, they form an orthonormal
basis for Rn.

Procedure Consider the probability distribution of the current node as a vector of n values,
which represents the probability of being on each node as the nth coordinate.

The vector at the beginning will be w = (1, 0, . . . , 0) assuming that s is taken to be the first
vector. After a single step, the vector will become AGw, and in particular for every neighbor of
s the probability will become 1/d.

Observations:

1. U is an eigenvector for AG of eigenvalue 1.

2. We arrange the eigenvectors in order of decreasing magnitude of eigenvalues. The uni-
form vector, u = v1, is the largest since the eigenvalue is 1. We label the eigenvalues as
v1, v2, . . . , vn.

Definition 1. Spectral Gap. The spectral gap, γ(G) = 1−λ2(AG), is the difference between the
biggest and second biggest eigenvalue.

We now write w = u+
∑n

j=2 µivi, where w is the distribution vector. It follows that

3

AGw = u+
n∑

j=2

µjAGvj = u+
n∑

j=2

µjλjvj

Taking the norm, it follows that

||AGw − u| |22 = ||
n∑

j=2

µjλjvj ||22 ≤ |λ2|2||w||22

This shows that after applying AG, we get closer and closer to the normal vector u.

If we make t rounds of random walks, then the probability vector At
Gw will be such that

||At
Gw − u||2 ≤ |λ2|t

Since λ2 < 1, we are getting closer and closer to the uniform distribution (1/n, 1/n, . . . , 1/n).

Definition 2. Alon-Bopanna Bound. If we have a d-regular, non-bipartite, connected graph,
then

γ(G) ≥ Ω

(
1

d2n2

)

Using this, we get that

|λ2|t ≤ e
−Ω

(
1

d2n2

)
t ≤ 1

nO(1)

It follows that we can get the result if we let t be such that

nO(1) ≤ e
t

d2n2 =⇒ t ≥ O(d2n2 log n).

2.2 How is UREACH derandomized?

Reference. Expander Graphs and their Applications, Hoory, Linial & Wignerson.

2.2.1 Expander Graphs

Definition 3. Vertex Expander. A graph family (over n vertices) is a (K,A)-vertex expander if
for any S ⊂ V such that |S| ≤ K, |N(S)| ≥ A|S|. Here,

N(S) = {u | ∃v ∈ S such that (u, v) ∈ E}

Definition 4. Spectral Expander. A family of graphs {Gn} is called a spectral expander if
|λ2(Gn)| ≤ ϵ.

4

These two notions are equal, proved by Jeff Cheeger.

5

3 Lecture 3

(Scribe: Diptaksho, BMC202015)

Lemma 1. λ2 = max
x⊥u

∥Ax∥
∥x∥

. Here λ2 is the second largest (by magnitude) eigenvalue, u is

the uniform distribution vector
[
1
n . . . 1

n

]
, A is the normalised adjacency matrix, and unless

mentioned otherwise, the norm is L2.

Consider the eigenbasis for A = {u, u2, · · · , uN}. Given any x ⊥ u, write it as a linear combi-

nation
N∑
j=2

βjuj . Note that we start from j = 2 as x ⊥ u. Now,

Ax =
N∑
j=2

λjβjuj

⇒ ∥Ax∥2 =
N∑
j=2

λ2
j · β2

j

≤ λ2
2

N∑
j=2

β2
j = λ2

2∥x∥2

⇒ λ2 ≥
∥Ax∥
∥x∥

Taking x = u2, we get the equality.

Theorem 2. Spectral Expansion ≡ Vertex Expansion [Cheeger]

3.1 Few Definitions and Observations

Let Π be a probability distribution over {1, · · · , N}. Define Coll(Π) (collision probability) as
Coll(Π) = ∥Π∥22. Notation: Π is the vector whose ith component is the probability distribution
of Π at i, i.e. Π(i).

Observation Write Π = α · u + Π⊥. Now, ⟨Π, u⟩ = α⟨u, u⟩ ⇒ 1
N = α · 1

N ⇒ α = 1. The first
simplification of the LHS comes from the fact that Π is a probability distribution, hence the
terms add up to 1. Then Π = u + Π⊥ ⇒ ∥Π∥2 = ∥u∥2 + ∥Π⊥∥2 = 1

N + ∥Π − u∥2 ⇒ Coll(Π) =
1
N + ∥Π− u∥2.

Cauchy-Schwarz Inequality Let a, b be two vectors. Then ⟨a, b⟩ ≤ ∥a∥ · ∥b∥.

Define the support of a probability distribution Π as supp(Π) = {i ∈ {1, · · ·N} | Π(i) > 0}.

6

Observation Coll(Π) ≥ 1

|supp(Π)|
. Define the vector 1supp(Π) as:

1supp(Π)[i] =

{
1, i ∈ supp(Π)

0, otherwise

Note that ⟨Π, 1supp(Π)⟩ = 1, and ∥1supp(Π)∥2 = |supp(Π)|. By C-S Inequality, 1 ≤ ∥Π∥·∥1supp(Π)∥ ⇒

∥Π∥ ≥ 1

∥1supp(Π)∥
⇒ Coll(Π) ≥ 1

|supp(Π)|
.

3.2 Proof of Spectral Expansion ⇒ Vertex Expansion

Given S ⊂ V , a subset of vertices, let π be the uniform distribution over S. The size of S is αN .
Note that Aπ is also a probability distribution. Now, Coll(π) = 1

N + ∥π − u∥2.

Coll(Aπ) =
1

N
+ ∥Aπ − u∥2

=
1

N
+ ∥A(π − u)∥2

≤ 1

N
+ λ2

2∥π − u∥2

⇒ 1

N
+ λ2

2∥π − u∥2 ≥ 1

|supp(π)|
=

1

|N(S)|

⇒ 1

N
+ λ2

2

(
Coll(π)− 1

N

)
≥ 1

|N(S)|

⇒ λ2
2

(
1

|S|
− 1

N

)
≥ 1

|N(S)|
− 1

N

⇒ λ2
2

N − |S|
N · |S|

≥ N − |N(S)|
N · |N(S)|

⇒ |N(S)|(|S|+ λ2
2N − λ2

2|S|) ≥ N · |S|

⇒ |N(S)|
|S|

≥ N

N(α+ λ2
2 − α · λ2

2)
=

1

α+ λ2
2 − α · λ2

2

Thus we get a 1
α+λ2

2−α·λ2
2
-expander graph from the spectral expansion graph.

3.3 Expander Mixing Lemma

Lemma 2. Expander Mixing Lemma Suppose we have two subsets S, T ⊂ V . Denote the
number of edges flowing from S to T as #E(S, T). Then we have the following inequality:∣∣∣∣#E(S, T)− d|S||T |

N

∣∣∣∣ ≤ dλ2

√
|S||T |

Note 2. Good expanders have high spectral expansion (γ = 1 − λ2), implying λ2 must be
small. The best known bound for λ2 in D-regular graphs is λ2 ≈ 1√

D
. Such graphs are called

Ramanujan graphs.

7

Exercise Prove that
d|S||T |

N
is a good approximation for #E(S, T) in random graphs.

3.3.1 Proof of Expander Mixing Lemma

For any subset U ⊂ V , define the characteristic vector 1U as:

1U [i] =

{
1, i ∈ U

0, otherwise

Define 1S and 1T in this way.

Observation #E(S, T) = ⟨1S , A× 1T ⟩ × d [Multiplication by d because A is normalised].

Write 1S = α · u + 1⊥S . Now, ⟨1S , u⟩ = α⟨u, u⟩ ⇒ |S|
N = α · 1

N ⇒ α = |S|. Similarly, writing
1T = β · u+ 1⊥T , we get β = |T |.

#E(S, T) = d× ⟨1S , A× 1T ⟩
= d× ⟨α · u+ 1⊥S , A× (β · u+ 1⊥T)⟩
= d× ⟨α · u+ 1⊥S , β · u+A× 1⊥T ⟩

= d×
(
α · β
N

+ ⟨1⊥S , A× 1⊥T ⟩
)

=
d|S||T |

N
+ d× ⟨1⊥S , A× 1⊥T ⟩

∴

∣∣∣∣#E(S, T)− d|S||T |
N

∣∣∣∣ = d|⟨1⊥S , A× 1⊥T ⟩|

≤ d · ∥1⊥S ∥ · ∥A× 1⊥T ∥ [C-S Inequality]

≤ d ·
√
|S| · λ ·

√
|T |

= dλ2

√
|S||T |

This is the desired result.

Random Walk on Expanders We have seen that ∥Atw − u∥ ≤ λ2
t. Write λ2 = 2−β . Taking

t = O(logN), the RHS becomes 1
NO(1) . A difference of less that 1

N implies the component of
each vertex in Atw is non-zero.

Corollary The diameter of a Spectral Graph is O(logN).

3.4 Next Class

Suppose A is an RP algorithm with error probability ≤ 1
3 , and A uses m(n) random bits for

inputs of size n. If we want to reduce the error probability to say 1
3k

, the algorithm would
require m × k random bits. But using expanders, we can bring the number of random bits
required to O(m+ k).

8

4 Lecture 4: Error Reduction in RP using Expander

(Scribe: Somnath, MCS202221)

Error reduction in RP and BPP is one of the applications of Expander graphs in the
area of probabilistic algorithm. In the standard way of error reduction, we perform the the
random event k times independently and output the majority value of the algorithm. Now it
surely reduces the error 1

3 to 2−Ω(k) (to be specific the error will be 2−|x|d where k = 8|x|2d+1,
for the detailed proof we will refer to the section 7.4.1 of the book by Arora and Barak). But it
uses too many random bits, if each event takes m many random bits and if we are repeating it
k many times then the amount of random bits will be mk.

The main problem is we are executing the events independently, but in expander graph
uses of random coins are correlated, hence it reduces the number of random bits, we will see
it reduces to m+O(k)

Central Idea:

We will deal with RP algorithm in this class.. The key idea is simple, if each event takes
m random bits, then we will take N = 2m vertex, λ-expander, D-regular graph G. We will
further more assume that G is strongly explicit, i.e., for any vertex v in G we can find the
neighbours of v efficiently. Note each vertex of G represents one random string. Here also we
will perform the event k many times, but the random strings say r1, . . . , rk will not be inde-
pendent. We will pick r1 uniformly at random and then start a k-length random walk on G, at
each point of the walk we will take that corresponding random string for the algorithm. If any
of this ri outputs 1 then we will output 1, else output 0.

So apart from the constructing such expander graph G, we are left with two questions.
First what is the number of random bits used here? It is easy to see that only r1 is picked
uniformly at random, and the remaining ris are random neighbour of ri+1, since the graph is
D-regular, the number of random bits used is m+ (k − 1) logD. So clearly number of random
bits is reduced.

The next question is the efficiency compare to the standard method ,ie, what is the
amount of the error? Actually theorem 1 will imply that expander walks are ergodic, that means
our current covered vertex set will expand with high probability during random expander
walk, so we eventually end up on the vertices which are responsible for correct answers. We
will proof this in details in the next section.

Correctness:

Before starting the error calculation we need to define Operator norm. For a linear oper-

ator A : Rn → Rn, the operator norm of A, denoted by ||A||, is defined by max
x∈Rn

||Ax||2
||x||2

where

||.||k is the lk norm.

From the definition it is clear that ||Av||2 ≤ ||A||.||v||2. Also in the previous classes we

9

https://theory.cs.princeton.edu/complexity/book.pdf

have proved that for any doubly stochastic non negative matrix A, ||A|| = λ2, the largest eigen
value after 1.

Define J :=

1
N . . . 1

N
...

. . .
...

1
N . . . 1

N

 which is the normalized adjacency matrix of a complete

graph. Then next lemma will indicate Expander graph G approximates complete graph.

Lemma 1. Let G be the N -vertex λ-expander D-regular graph G with normalized adja-
cency matrix A then ∃ E ∈ RN×N with ||E|| ≤ 1 s.t. A = (1− λ)J + λE

Proof : We will basically do the reverse calculation. Define E = 1
λ(A − (1 − λ)J) Now It is

easy to observe sum of the rows of E= 1
λ (sum of the rows of A− (1−λ)sum of the rows of J)=1

Similarly sum of the columns of E is also 1. Hence it is doubly stochastic. So ||E|| =
second largest eigen value ≤ 1 (Since 1 is the largest eigen value of any doubly stochastic non-
negative matrix). □

Let B ⊆ [N] be the set of all random strings which leads us to an error. Clearly for
error µ

|B| ≤ µN

The next theorem will imply that if we start the walk from some r1 and ends at rk, then
with high probability depending on k, rk is outside of B, that is our walk will expand from the
set B in expander graph.

Theorem 1. Let r1, . . . , rk denoting a k-step random walk on G from r1 where r1 is chosen
uniformly in [N] then

Pr[∀i ri ∈ B] ≤ µ((1− λ)µ+ λ)k−1

Let P be the projection of B in to [N] ,i.e., P be the N ×N matrix s.t.

P [i, j] =

{
1 if i = j ∈ B

0 otherwise

Note P is a diagonal matrix with diagonal entries 0/1, hence P 2 = P (Alternative proof
is any projection matrix is Idempotent because for P 2u, Pu is already in the projective set, so
P 2u = P (Pu) = Pu, hence P 2 and P is the same operator).

One more observation is Pr[r1 ∈ B] = ||Pu||1 where u = (1
N , . . . , 1

N). More generally we
can say probability that after t step we are still in B, ie,

Pr[∀i≤tri ∈ B] = ||(PA)t−1Pu||1
= ||(PAP)t−1Pu||1
=
√

µN ||(PAP)t−1Pu||2 (as support of Pv ≤ |B| = µN)

≤
√
µN ||PAP ||t−1||Pu||2

= µ||PAP ||t−1 (as ||Pu||2 =
√

µ
N)

..............(i)

10

From lemma 1

||PAP || = ||P [(1− λ)J + λE]P ||
≤ (1− λ)||PJP ||+ λ||PEP ||

...............(ii)

It can be easily observed that ||P || ≤ 1 (because support of Pv is atmost support of v, it van-
ishes all the components of v which are not in B), hence ||PEPv||2 ≤ ||P ||.||E||.||P ||.||v||2, or,
||PEP || ≤ 1(iii)

Now say Px = y, then Jy =
(

1
N

∑
yi, . . . ,

1
N

∑
yi

)
= (
∑

yi)u

So

||PJPx||2 = ||PJy||2
= ||(

∑
yi)Pu||2

≤ |
∑

yi|.||Pu||2
≤ ||y||1.||Pu||2

≤
√
µN ||y||2.

√
µ

N

≤ µ||Px||2
≤ µ||x||2

=⇒ ||PJP || ≤ µ

Combining this with (i),(ii),(iii) we get

Pr[∀i ri ∈ B] ≤ µ((1− λ)µ+ λ)k−1

□

Now clearly if input x ̸∈ L then |B| = 0, so our algorithm will always output 0, If x ∈ L,
the error will occur if after k steps we are still in B, which has probability µ((1−λ)µ+λ)k−1 =
O(2Ω(k) for small λ. Hence the error reduction is same as the standard method, but randomness
is reduced to m+O(log k) from mk.

11

5 Lecture 5

(Scribe: Diptaksho, BMC202015)

5.1 Error Reduction in BPP Algorithms

Chernoff Bound Suppose X1, X2, · · · , Xn are independent random variables distributed on
[0, 1]. Let X =

∑n
i=1 Xi

n and E(X) = µ. Then Pr[|X − µ| ≥ ϵ] ≤ 2e−Ω(ϵ2n).

Theorem 2. Let G be an (N,D, λ) graph. Let f : [N] → {0, 1} be a random variable with
expected value µ(f). Let Xi = f(vi), and X =

∑n
i=1Xi. Then

Pr
X1,··· ,Xt

[∣∣∣∣Xt − µ(f)

∣∣∣∣ ≥ λ+ ϵ

]
≤ 2e−Ω(ϵ2t).

We will prove one direction of this theorem.

Lemma 2. Pr[X ≥ t(µ+ λ+ ϵ)] ≤ e−Ω(ϵ2t).

Proof: Let r be a parameter we fix later. We want to study E[erX] = E[
∏t

i=1 e
rXi]. Define the

matrix

P =

erf(v1) 0 · · · 0

0 erf(v2) · · · 0
... 0

. . .
...

0 · · · 0 erf(vN)

 .

Then |Pu|1 is the expectation for a length 1 walk. Similarly, |(PM)t−1Pu|1 is the expectation
for a length t walk. As Mu = u, we have

|(PM)t−1Pu|1 = |(PM)tu|1
≤

√
N × ∥(PM)tu∥2 [by C-S Inequality]

≤
√
N × |(PM)t∥ × ∥u∥2

= ∥(PM)t∥
= ∥PM∥t

= ∥P ((1− λ)J + λE)∥t [From Lecture 4]

≤ ((1− λ)∥PJ∥+ λ∥PE∥)t .

Now, ∥P∥ ≤ max erf(vi) ≤ er. Then

λ∥PE∥ ≤ λ∥P∥
≤ λer

= λ(1 + r +O(r2)).

12

Next,

∥PJy∥22 =
∥∥∥(∑ yi

)
Pu
∥∥∥2
2

=
∣∣∣∑ yi

∣∣∣ ∥Pu∥22
≤ N × ∥y∥22 × ∥Pu∥22 [C-S Inequality]

= N × ∥y∥22 ×
1

N2
×
(∑

e2rf(vi)
)

=
1

N

(
N∑
i=1

1 + 2rf(vi) +O(r2)

)
× ∥y∥22

=
(
1 + 2rµ(f) +O(r2)

)
× ∥y∥22.

It follows that ∥PJ∥2 ≤
(
1 + 2rµ(f) +O(r2)

)
⇒ ∥PJ∥ ≤ 1+ rµ(f)+O(r2). Combining all the

inequalities, we get

∥(PM)tu∥1 ≤
(
(1− λ)(1 + rµ+O(r2)) + λ(1 + r +O(r2))

)t
=
(
1 +O(r2) + r(λ+ µ)

)t
≤ 1 + rt(λ+ µ) +O(r2).

This gives us

Pr
[
erX ≥ ert(µ+λ+ϵ)

]
≤ E[erX]

ert(µ+λ+ϵ)

≤ e1+rt(λ+µ)+O(r2)

ert(λ+µ+ϵ)

≤ e−Ω(rtϵ).

Taking r = ϵ
c , we get the desired result.

5.2 Construction of Expander Graphs

Definition 5. Graph Product Let G = (N,D, λ) be a graph. Let G2 be the distance 2-graph for
this. Then the degree of G2 is D2. The adjacency matrix for G2 will be M2. Then the second
largest eigenvalue for M2 is λ2. Thus we get G2 = (N,D2, λ2).

Definition 6. Tensor Product of Graphs For two matrices A and B, their tensor product is
defined as

A⊗B =

a1,1B · · · a1,nB
...

. . .
...

an,1B · · · an,nB

 .

Suppose we have two graphs G1 = (N1, D1, λ1) and G2 = (N2, D2, λ2). Then G′ = G1 ⊗ G2

is constructed by taking V ′ = V1 × V2 and M ′ = M1 ⊗M2. Thus ((u1, u2), (v1, v2)) ∈ E′ ⇐⇒
(u1, v1) ∈ E1 and (u2, v2) ∈ E2. The degree of G′ is D1 ×D2. The eigenvectors for G′ are tensor
products of eigenvectors for G1 and G2. Thus λ′ = max(λ1, λ2).

13

6 Lecture 6

Scribe: Rohan Goyal, BMC202151

6.1 Zig-zag product

Let G = (N1, D1, γ1) be the outer graph on [N1] and H = (D1, D2, γ2) be the inner graph on [D1].1.

Now, to take the zig zag product, replace each vertex in G with ”clouds” of D1 vertices and
think of every cloud as a copy of H . Thus, we replace G with a graph on the vertex set
[N1] × [D1]. We now only use this model of ”copying H” for identification of vertices and
haven’t described the edge set yet. We call this vertex set V .

Now, consider any bijection f : V 7→ V between vertices of different clouds such that f((u, i)) =
(u′, i′) =⇒ (u, u′) ∈ E(G) and we have maps from the cloud u to cloud u′ with multiplicity of
edge (u, u′) in G only.

Now the edges of (u, i) are to the set {(u′, j′)|(i, i′) ∈ E(H), f((u, i′)) = (u′, j), (j, j′) ∈ E(H)}
and multiplicities are according to multiplicities of E(H). So, we take a jump using H followed
by a jump using our bijection and another jump using H .

Let Â be the permutation matrix corresponding to the bijection and let A,B be the normalized
adjacency matrices of G,H respectively.

Now, the above described graph is a (N1D1, D
2
2, γ) expander but we need to find γ. Also note

that the degree of G z⃝H is independent of G.

So, let M be the normalized adjacency matrix of G z⃝H . Now,

M = (IN1 ⊗B)Â(IN1 ⊗B)

Since H is a γ2 expander, we have B = γ2J + (1 − γ2)E where J is the complete graph on D1

vertices and E is the error graph and ||E|| ≤ 1.

Now, let x which is orthogonal to the uniform vector be any vector in MN1D1,1. We now con-
sider ||Mx||

||x|| and observe that anything in the expansion of M involving E can be estimated to
be having operator norm at most 1. Now,

||Mx||
||x||

≤ γ22
||(IN1 ⊗ J)Â(IN1 ⊗ J)

||x||
+ 1− γ22

Let Ĵ = (IN1 ⊗ J). Now, observe that ĴÂĴ = A⊗ J .

1γ1 and γ2 are respectively the spectral expansions of G and H i.e. 1− λ
(G)
2 , 1− λ

(H)
2 .

14

Thus, λĴÂĴ
2 = λA⊗J

2 = λG
2 . Thus, ||Mx||

||x|| ≤ (1−γ22)+γ22(1−γ1) = 1−γ22γ1. Thus, we get a lower
bound on the spectral expansion as well. γ ≥ γ22γ1. Thus, G z⃝H is atleast a (N1D1, D

2
2, γ

2
2γ1)

expander.

We can now use this to create expanders by alternating between normal graph products and
zig zag products.

15

7 Lecture 7

(Scribe: Tejas, GCS202102)

7.1 Recap

Let G (the outer graph) be (N1, D1, γ1) on [N1] and H (the inner graph) be (D1, D2, γ2) on [D1].
Here γ1 = 1 − λ

(1)
2 and γ2 = 1 − λ

(2)
2 are the spectral expansions of the 2 graphs. G z⃝H , the

zig-zag product of G and H is a multigraph on the vertex set

V = {(u, i) : u ∈ [N1], i ∈ [D1]}.

To define E(G z⃝H), consider the auxiliary graph, A on V as follows: For each u ∈ G, Cu =
{(u, i) : i ∈ [D1]} is thought of as a ‘cloud’ around u ∈ G. The second co-ordinates of vertices
in a cloud have the same edge relations as H . So, the ‘intra-cloud’ edges are determined by
E(H). Define a permutation, Φ on V as follows. For each u ∈ G, fix some ordering on NG(u).
If v is the i-element of NG(u) (in the ordering), then Φ((u, i)) is set to be some element of Cv. As
G is D1 regular and as each cloud has D1 many elements, Φ can be made into a permutation.
For all x ∈ V , put x− Φ(x) in E(A). So, E(G) and Φ determine the ‘inter-cloud’ edges in A.

Add an edge ((u, i), (v, j)) to E(G z⃝H) ⇐⇒ (v, j) is reachable in A from (u, i) using the
following transitions in order

1. Go from (u, i) to some (u, s) if (i, s) ∈ E(H) (this uses the intra-cloud edges of Cu).

2. Go from (u, s) to (v, l) for some l (this uses the inter-cloud edges between Cu and Cv).

3. Go from (v, l) to (v, j) if (l, j) ∈ E(H) (this uses the intra-cloud edges of Cv).

Fix some (u, i). As H is D2 regular, it can go to D2 many points in Cu in step (1). Now, it can
transition to a unique point via Φ in (2). In (3), it can again go to D2 many points (similarly to
(1)). So, G z⃝H is D2

2-regular multigraph. We showed that for any G and any H , a (D4, D, 7/8)
graph, the family (Gk)k, defined inductively by: Gk = G2

k−1 z⃝H has spectral gap atleast 3/4.

7.2 Reingold’s Theorem (2004)

We show that USTCONN is in Log-space. Two key observations are:

1. USTCONN for expanders is in L for expanders: We showed before that the diameter of an
expander is O(log(N)). So, to check s-t connectivity, we start from s and take O(log(N))
steps and output ‘yes’ iff we reach t. This takes O(log(N)) space as the indices of the
vertices in the path need to be stored (to ensure that the s− t path considered is acyclic)

2. Every graph can be ‘expanderized’ while maintaining reachability (this will be made
precise in what follows)

Given G, s, t, the algorithm is as follows: Add self loops to G to make it regular and to break
bipartiteness. Fix H , a (D4, D, 3/4) graph. Let G0 := G and recursively define

Gk = G2
k−1 z⃝H.

Check USTCONN in GO(log(N)).

16

7.2.1 Analysis

Let γ() denote the expansion and λ(), the second largest eigenvalue. As λ(S2) = λ2(S) for any
S,

γ(G2
k−1) = 1− λ(G2

k−1) = 1− λ2(Gk−1) = 1− (1− γ(Gk−1))
2

= 2γ(Gk−1)(1− γ(Gk−1)/2)

This and properties of z⃝ give,

γ(Gk) = γ(G2
k−1 z⃝H) ≥ γ(G2

k−1)γ
2(H) = γ2(H)2γ(Gk−1)(1− γ(Gk−1)/2)

= (9/8)γ(Gk−1)(1− γ(Gk−1)/2)

Case 1: γ(Gk−1) < 1/18. Then,

(9/8)γ(Gk−1)(1− γ(Gk−1)/2) ≥ (9/8)γ(Gk−1)(35/36) = γ(Gk−1)(35/32).

Case 2: γ(Gk−1) ≥ 1/18. Note that γ(Gk) ≥ γ(Gk−1) as the expansion cannot decrease by
powering a graph and by taking its z⃝ with another graph. So, γ(Gk) ≥ 1/18.

So, by both cases, γ(Gk) ≥ min{γ(Gk−1)(35/32), 1/18}

So, in one step, the expansion either has gone over 1/18 or increases by a factor of 35/32 > 1.
So, for k = O(log(n)), γ(Gk) > 1/18.

So, given any G with N vertices, we get a GO(log(N)) with (1) DO(log(N)) nodes and (2) with
atleast 1/18 expansion. We showed before that a spectral graph has diameter O(log(N)), where
the constant in the O(). depends on the spectral expansion. As, GO(log(N)) has an expansion
of atleast 1/18, it has a diameter of log(DO(log(N))) = Clog(n)), where C depends on 1/18 and
is hence independent of N . To summarize, we took any G and expanderized it into a graph
(GO(log(n))) with the same reachability properties as G, with diameter O(log(|G|)) and hence
on which, USTCONN can be solved in O(log(|G|)) space. I.e., USTCONN on G can be solved
in O(log(|G|)) space. This shows the correctness.

17

8 Lecture 8

(Scribe: Tejas, GCS202102)

8.1 Coding theory

We will not cover classical coding theory (for example block codes) but will rather focus on
those aspects of coding theory relevant to complexity theory. An excellent reference is: Essen-
tial Coding Theory by Venkatesan Guruswami, Atri Rudra and Madhu Sudan.

8.2 The Basic set-up

Roughly, we want to send a message m across a potentially noisy channel. To do this, we
encode m as enc(m) and send enc(m) through the channel. Due to noise, a corrupted version
of enc(m) is received, which is then decoded to recover m.

Formally: The messages will be words of length n over some alphabet A. So, M ⊆ An is the
set of messages. We will encode them into length n̂ words over the alphabet Σ. A code, C
is a subset of Σn̂ containing the encoded messages. I.e., for a message, m ∈ M , its encoding,
enc(m) will be in C. n̂ is called the block length of C. The enc() function is a bijection and so
M is in bijection with enc(M) ⊆ C ⊆ Σn̂. The word received on sending enc(m) ∈ C through
the channel will be an element of Σn̂. The rate of a code is given by

Rate(C) = n/n̂

A higher block length will allow for better decoding (by increasing redundancy) but will de-
crease the rate. We begin with a few basic notions:

Definition 7. Hamming distance. Given x ̸= y ∈ Σn̂,

dH(x, y) := Pri∈[n̂]((x(i) ̸= y(i)).

This is called the relative Hamming distance between x and y. The Hamming distance between
x and y is the number of co-ordinates where x and y differ. We use the relative Hamming dis-
tance as it is a probability and amongst other things, lends itself nicely to define the agreement:

Definition 8. Agreement. Given x ̸= y ∈ Σn̂,

agr(x, y) = 1− dH(x, y).

Definition 9. Distance of a code, C. Given C ⊆ Σn̂,

dist(C) = min
x ̸=y,x,y∈C

(dH(x, y)).

8.3 List Decoding

A (δ, L)-list decoder does the following: Given a (received) a word, r ∈ Σn̂, it outputs all
messages m such that dH((enc(m), r) ≤ δ and it also has the property that the total number of
messages outputed for a given r is ≤ L. Clearly, it is conceivable that there are δ, L for which
no (δ, L)-list decoders exist.

18

8.4 Examples

8.4.1 Hadamard Code

Small bold letters denote vectors. All inner products are taken mod 2. A = Σ = {0, 1}. n̂ = 2n.
The encoding function is:

enc(a) = (⟨a,b⟩ : b ∈ An) ∈ An̂.

I.e., a message a is encoded as the word given by taking its inner product with all the n̂ many
vectors in An. So, enc(a) ∈ An̂. The Hadamard code is C = enc(An). Note that enc() defines a
bijection between An and C. We show that this code has distance = 1/2: Fix any two distinct
vectors in C. So, there are a ̸= a′ in An such that these two distinct vectors in C are enc(a) and
enc(a′). So, dH(enc(a),enc(a′)) = Prb∈[n̂](enc(a)(b) ̸= enc(a′)(b)) = Prb∈[n̂](⟨a,b⟩ ≠ ⟨a′,b⟩)

= Pr
b∈[n̂]

(⟨a− a′,b⟩ ≠ 0) = 1/2.

The last equality follows as the inner product with a − a′ ̸= 0 of a vector picked uniformly
randomly from An is 0 w.p. 1/2 and 1 w.p. 1/2. In fact, we have shown that an element of C
is at a distance of 1/2 from every other element of C.

8.4.2 Reed-Solomon Code

Let q be a prime power. The message space will be Fd
q (i.e., A = Fq, n = d). The encoding

function is: For a message , a = (a0, .., ad−1) let

Pa(x) =
∑
i

aix
i.

The encoding is:
enc(a) = (Pa(b) : b ∈ Fq) ∈ Fq

q.

The code, C is enc(Fd
q) and the rate is n/n̂ = d/q.

enc(a) ̸= enc(a′) =⇒ ∃b, Pa(b) ̸= Pa′(b) =⇒ (Pa(x)− Pa′(x)) ̸= 0 =⇒

Prb∈Fq((Pa(b)− Pa′(b)) ̸= 0) ≥ 1− (d− 1)/q ≥ 1− d/q

as the non-zero polynomial, Pa(x) − Pa′(x) has degree atmost d − 1 and so has atmost d − 1
roots in Fq. So, the distance of this code is atleast 1− d/q.

8.4.3 Reed-Muller Code

This is the multi-variate version of the Reed-Solomon code. Let q be a prime power. The
message space will be FN

q (i.e., A = Fq, n = N) where N is taken to be Cn+d
d for some n, d. There

are atmost N many monomials of degree d over x1, .., xn and let they be listed as m1, ..,mN .
The encoding function is: For a message , a = (a0, .., aN) let

Pa(x1, .., xn) =
∑
i

aimi.

The encoding is:
enc(a) = (Pa(b) : b ∈ Fn

q).

The code, C is enc(FN
q), has block length, qn and rate N/qn.

enc(a) ̸= enc(a′) =⇒ ∃b, Pa(b) ̸= Pa′(b) =⇒ (Pa(x1, .., xn)− Pa′(x1, .., xn)) ̸= 0 =⇒

Prb∈Fn
q
((Pa(b)− Pa′(b)) ̸= 0) ≥ 1− d/q

by the same argument as in Schwartz-Zippel applied to the non-zero polynomial, Pa(x1, .., xn)−
Pa′(x1, .., xn) with degree atmost d− 1. So, the distance is atleast 1− d/q.

19

8.5 Johnson Bound

We show the following theorem:

Theorem 3. Let C ⊆ Σn̂ be a code of distance 1− ϵ for some 0 < ϵ < 1.

Then C is ((1−O(
√
ϵ)), O

(
1√
ϵ

)
) list decodable.

Proof. Fix the C as in the theorem statement. To show the theorem we need to show that for
any received word, r, there are atmost ≤ O

(
1√
ϵ

)
messages which are (1 − O(

√
ϵ))-close to r.

Note that there is a bijection between the set of messages, M and the subset enc(M) ⊂ C. So, it
suffices to show that for any received word, r, if {ci}i∈s is the set of codewords in C which are
at distance ≤ 1− ϵ′ := 1−

√
ϵ from r, then s ≤ O

(
1√
ϵ

)
: To this end, fix r and {ci}i∈s as above.

Let N be the places in r which agree with some code word in {ci}i∈s. So, N/n̂ ≤ 1. For a fixed
ci in {ci}i∈s, let

Ai := {j ∈ [n̂] : r(j) = ci(j)}

So,
⋃

i≤sAi is the set of places where r agrees with some ci in {ci}i∈s. So, by inclusion-
exclusion,

N = |
⋃
i≤s

Ai| =
∑
i

|Ai| −
∑
i ̸=j

|Ai ∩Aj |

Dividing by n̂ and using the above,

1 ≥
∑
i

|Ai|/n̂−
∑
i ̸=j

|Ai ∩Aj |/n̂

Now, |Ai|/n̂ = agr(r, ci) = 1− dH(r, ci) ≥ ϵ′ by choice of the ci’s.

Also, ci agrees with cj on Ai ∩Aj as ci(t) = r(t) = cj(t) for any t ∈ Ai ∩Aj and so agr(ci, cj) ≥
|Ai ∩Aj |/n̂. So,

dist(C) = 1− ϵ ≤ dH(ci, cj) = 1− agr(ci, cj) ≤ 1− |Ai ∩Aj |/n̂,

giving that |Ai ∩Aj |/n̂ ≤ ϵ. Putting these in the above,

1 ≥
∑
i

ϵ′ −
∑
i ̸=j

ϵ ≥ sϵ′ − s2ϵ = sϵ′(1− sϵ′),

from which we have that, sϵ′ ≤ 1/2 which gives that s = O(1/ϵ′) as needed.

20

9 Lecture 9 (1 Sep 2022 - Thursday)

(Scribe: Harish Chandramouleeswaran, GCS202101)

9.1 List Decoding of Reed-Solomon Codes

Let q be a prime power. Let Fq = {y1, · · · , yq}. The message space is given by Fd+1
q . Let

ā := (a0, · · · , ad), and let fā(x) :=
d∑

i=0
aix

i. Note that deg f = d. The encoding is then given by :

Enc(ā) := (fā(y1), · · · , fā(yq)) ∈ Fq
q.

The vector (fā(y1), · · · , fā(yq)) is then sent on the communication channel, and the vector re-
trieved at the receiver’s end is given by the vector r := (r1, · · · , rq) as a result of noise in the
channel (say).

This received word r is interpreted as a function r : Fq → Fq, which is defined as follows :

∀i ∈ {1, · · · , q}, r(yi) := ri.

Fix an ϵ > 0. We will now consider the set of code words, whose encoding agrees with the final
received code word on ≥ ϵ fraction of the q coordinates.

LIST (r, ϵ) := {ā ∈ Fd+1
q | Agree(Enc(ā, r)) ≥ ϵ)}.

Let ā ∈ LIST (r, ϵ). The receiver will now interpolate r using a bivariate polynomial Q(Y, Z) :=∑
0≤i≤dY
0≤j≤dZ

ci,jY
iZj , where dY := degY (Q(Y, Z), and dZ := degZ(Q(Y,Z).

What we need :
∀y ∈ Fq, Q(y, r(y)) = 0. (q constraints) (9.1)

Unknowns to solve for : c(i,j). ((1 + dY)(1 + dZ) unknowns)

For a nontrivial solution (that is, for Q(Y,Z) ̸≡ 0), we need (1 + dY)(1 + dZ) > q. (9.2)

Let’s say we have found a Q(Y, Z) which satisfies the q constraints (9.1). Let F := {(y, fā(y)) |
y ∈ Fq}. For at least ϵq-many i in {1, · · · , q}, fā(yi) = r(yi) (= ri), since ā ∈ LIST (r, ϵ). So, for
at least ϵq-many elements (y, fā(y)) of F, we have Q(y, fā(y)) = 0.

Now, consider the (univariate) polynomial Q(Y, fā(Y)) in the variable Y , obtained by substi-
tuting Z := fā(Y) in the expression for Q(Y,Z). We note that degQ(Y, fā(Y)) ≤ dY + ddZ (as
a polynomial in Y).

Suppose we can ensure that ϵq > dY + ddZ . (9.3)

21

If (9.3) is satisfied, then we have Q(Y, fā(Y)) ≡ 0, since a nonzero polynomial of degree t has
at most t roots.

In other words, if (9.3) is satisfied, then fā(Y) is a root of Q(Y,Z) considered as a polynomial
in the variable Z with coefficients in Fq(Y) (the field of fractions of Fq[Y]).

Formally let Q̃(Z) := Q(Y,Z) =

dZ∑
i=0

c̃jZ
j , where, for each j, c̃j ∈ Fq(Y).

Our discussion so far is then summarized as : For each ā ∈ LIST (r, ϵ), its contents a0, · · · , ad

are the coefficients of the polynomial fā(Y) :=
d∑

i=0
aiY

i, and this fā(Y) will be one of the roots

of Q̃(Z), provided (9.1), (9.2), and (9.3) are met.

So, factoring Q̃ using an appropriate factoring algorithm will give us all the original code
words, possibly along with some other extra factors.

We note that d is chosen by the sender, and we have no control over it. We set dY ≈ ϵq
2 and

dZ ≈ ϵq
2d

to satisfy (9.3), and this requires ϵ ≈ 2
√

q
d ≈ √

ρ, where ρ is the rate of the code given

by ρ := d+1
q .

Summarising, given a list-decoding radius ϵ > 0, we can efficiently correct the errors of a Reed-
Solomon code with rate ρ ≈ Θ(ϵ2) using the procedure outlined in this lecture.

Note : It is in fact possible to efficiently correct the errors of a Reed-Solomon code with rate
ρ ≈ Θ(ϵ) using the Guruswami-Sudan list-decoding Algorithm!

22

10 Lecture 10

Scribe: Saswata, MCS202220

10.1 Introduction

In last class we have seen (r, ϵ) list decoding algorithm for Reed-Solomon Code, where rate of
the code ρ ∼ ϵ2. Now we shall see another code, that is Parvaresh–Vardy Codes and (r, ϵ) list
decoder for it, where ϵ ∼ ρ log ρ.

10.2 Parvaresh–Vardy Codes

q be a prime power and h,m ∈ N which we shall set later suitably.
E(Y) ∈ Fq[Y] be an irreducible polynomial of degree > d (say, d+ 1).

1. Alphabet set Σ = Fm
q .

2. For a message a = (a0, a1, . . . , ad) ∈ Fd+1
q , say, f(Y) =

∑d
i=0 aiY

i.
Enumerate Fq = {y1, . . . , yq}.
Enc(a0, . . . , ad) = ((f0(y1), . . . , fm−1(y1)), . . . , (f0(yq), . . . , fm−1(yq))).

For each j ∈ [q], (f0(yj), . . . , fm−1(yj)) ∈ Σ and fi(Y) = (f(Y))h
i
(mod E(Y)).

We visualise recieved message r as a function r : Fq → Fm
q = Σ, where r(yj) = (r0, . . . , rm−1).

For each input y ∈ Fq epresent r as (y, r0, . . . , rm−1), this m+ 1-tuple.

Rate: Rate of this code =
d+ 1

mq
≈ d

mq
.

10.3 Construction of List Decoder

On input r : Fq → Fm
q , first construct nonzero polynomial Q(Y,Z0, . . . , Zm−1), by interpolation

such that,
∀y ∈ Fq, Q(y, r0(y), . . . , rm−1(y)) = 0

Say, dY = degY (Q) and dZi = degQ(Zi). We want, for all i, dZi ≤ h− 1.

Number of monimials in Q is (1 + dY)(1 + dZ0) . . . (1 + dZm−1) ≤ (1 + dY)h
m. Therefore to

have such Q, we need,

(1 + dY)h
m > q (I) [As there are q number of m+ 1 tuples (y, r0(y), . . . , rm−1(y))]

Now, consider the polynomial Q̃(Y) = Q(Y, f0(Y), . . . , fm−1(Y)).
fi(Y) = (f(Y))h

i
(mod (E(Y))) =⇒ deg(fi) ≤ d (As, degY E = d+ 1).

Therefore, deg(Q̃) ≤ dY + d(h− 1)m (As, degZi
Q ≤ h− 1).

If we can say, Q̃ ≡ 0, that is Q(Y, f(Y), . . . , fhm−1
(Y))(mod (E(Y))) ≡ 0, then, f will be a

root of Q∗(Y, Z) = Q(Y,Z, . . . , Zhm−1
) over Fq/(E(Y)). In that case, we can factor the polyno-

mial Q∗(Y,Z) = Q(Y, Z, . . . , Zhm−1
) over Fq[Y]/(E(Y)) and get (Z − f(Y)) as a factor, where

agr(Enc(f), r) > ϵ.

23

Number of f such that agr(Enc(f), r) > ϵ, is at least ϵq. To have our required conditions
to be satisfied, we need,

ϵq > dY + d(h− 1)m. (II).

Because, if number of roots of a univariate polynomial is greater than it’s degree then the poly-
nomial is identically zero.

Lemma 3. Q∗(Y, Z) = Q(Y,Z, Zh, . . . , Zhm−1
) ̸= 0.

Proof. Q =
∑

c(Y)Ze0
0 . . . Z

em−1

m−1 where c(Y) ∈ Fq[Y] and ei ≤ h− 1.
=⇒ Q∗ =

∑
c(Y)Ze0+he1+···+hm−1em−1 , ei ≤ h− 1.

As we know the map, (e0, . . . , em−1) 7→
∑

i eih
i is one-one, if ei ≤ h− 1, the substitution of Zi

by Zhi
does not cause non-trivial cancellation of monomials. Hence, Q∗ is non-zero.

Thus, Q∗ ̸= 0 and it will also be nonzero on (mod E(Y)).

So, if condition (I) and (II) holds, then list decoder can factor nonzero polynomial Q∗(Z) over
Fq[Y]/(E(Y)) and gives output the roots of it.
The factoring cam be done in poly(q, d, hm) time.

Now, we can take h = 2, i.e., degZi
Q ≤ 1 and m = log(q/d).

By condition (II), take dY ≈ ϵq − dhm.

Then, By condition (I), (qϵ− dhm)hm > q =⇒ ϵ ≈ 1

hm
+

dhm

q
≈ d

q
+ hm

d

q
≈ ρ log ρ.

24

11 Lecture 11

Scribe: Sagnik Dutta, MCS202112

In this class, we will see connections between list-decodable codes and expander graphs. Using
these connections, we will construct graphs with good vertex expansion from Parvaresh-Vardy
codes.

11.1 Two views

1. Graph view: Consider a bipartite graph G = (N,M,D) where the bipartition has the
vertex sets [N] and [M] and every vertex in [N] has degree D. The function Γ : [N]×[D] →
[M] is defined by Γ(x, y) = y-th neighbour of x in [M].

2. Code view: Consider a code Enc: [N] → [M]d. Let M ′ = DM . Think of [M ′] as [D]× [M].
The function Γ : [N]× [D] → [M ′] is defined by Γ(x, y) = (y, (Enc(x))y).

Definition 10. For T ⊆ [M], define

LISTΓ(T, ϵ) = {x ∈ [N] : Pr
y
[Γ(x, y) ∈ T] > ϵ}

LISTΓ(T, 1) = {x ∈ [N] : ∀y Γ(x, y) ∈ T}.

Exercise 1. Enc is a (1− 1/q− ϵ, k) LIST-decodable code iff ∀r ∈ [M]D, |LISTΓ(Tr, 1/q+ ϵ)| ≤ k
where Tr = {(y, ry) ∈ [M ′]}.

Definition 11. Fix k. A bipartite graph G is a (= k,A) vertex-expander if ∀S, |S| = k, we have
|N(S)| ≥ Ak.

Observation: G is a (= k,A) expander ⇐⇒ ∀k′ ≤ k, G is a (= k′, A) expander.

Lemma 4. Fix k. Γ : [N] × [D] → [M] is an (= k,A) expander iff ∀T ⊆ [M] such that
|T | < kA, we have |LISTΓ(T, 1)| < k.

Proof. ∃T ⊆ [M] such that |T | < kA and |LISTΓ(T, 1)| ≥ k
=⇒ ∃S ⊆ LISTΓ(T, 1), such that |S| = k and N(S) ⊆ T implying |N(S)| < kA.
=⇒ Γ is not an (= k,A)-expander.

Γ is not an (= k,A)-expander.
=⇒ ∃S ⊆ [N] such that |S| = k and |N(S)| < kA.
=⇒ For T = N(S), we have |T | < kA and S ⊆ LISTΓ(T, 1) implying |LISTΓ(T, 1)| ≥ k.

11.2 Parvaresh-Vardy codes

Every message aaa = (a0, . . . , an−1) in the message space Fn
q is viewed as a function faaa(x) =∑n−1

i=0 aix
i. Enumerate the elements of Fq as y1, . . . , yq. For an irreducible polynomial E(Y)

of degree n, define fi(Y) = fhi
(Y) mod E(Y). Define Γ : Fn

q × Fq → Fm
q as Γ(aaa, y) =

(faaa0 (y), . . . , f
aaa
m−1(y)).

25

Theorem 4. Γ is a (= kmax, A)-expander for kmax = hm and A = q − nhm.

Proof. By Lemma 4, it suffices to show that ∀T ⊆ Fm
q such that |T | ≤ Akmax − 1, we have

|LISTΓ(T, 1)| ≤ kmax − 1.

Interpolate T via a low-degree multivariate curve:

We want to find a polynomial Q(Y,Z0, Z1, . . . , Zm−1) with degY (Q) = dY = A−1 and degZi
(Q) ≤

h− 1 for 0 ≤ i ≤ m− 1 such that Q(y, r0(y), . . . , rm−1(y)) = 0 for all y ∈ Fq. Such Q exists since
the possible number of monomials in Q is (1 + dY)h

m and

(1 + dY)h
m = Ahm > Akmax − 1 ≥ |T |.

Want to argue that Q(y, f0(y), f1(y), . . . , fm−1(y)) = 0 for all f ∈ LISTΓ(T, 1):

This is ensured when q > dY + hmn = A − 1 + hmn [∵ if the number of roots of a univariate
polynomial is greater than the degree of the polynomial, then the polynomial is identically
zero].

After ensuring this, we will have Q(y, f, fh, . . . , fhm−1
) = 0 mod E(Y) for all f ∈ LISTΓ(T, 1).

Thus, all such f are roots of the polyomial Q̃(Z) = Q(y, Z, Zh, . . . , Zhm−1
) over Fq[Y]/E(Y).

We have |LISTΓ(T, 1)| ≤ degZ(Q̃) ≤ (h − 1) + h(h − 1) + h2(h − 1) + . . . + hm−1(h − 1) =

(h− 1).
hm − 1

h− 1
= hm − 1 = kmax − 1.

Setting the parameters suitably, we get

For every α > 0, every N, k, ϵ > 0, there is an explicit (k, (1 − ϵ)D) vertex expander with left
vertex set [N], and right vertex set [M] with D = O((logN)(log k)/ϵ)1+1/α and M ≤ D2k1+α.

26

12 Lecture 12

Scribe: Aryan Agarwala, BMC202010

In this lecture we will describe the Impagliazzo, Nisan, Wigderson (INW) pseudorandom gen-
erator.

We begin by formally defining two classes:

1. BPSPACE(f) - this is the set of languages L for which there exists a randomised Turing
machine M that uses f(n) work tape space on inputs of length n. On any given input x,
M correctly determines whether x ∈ L with probability ≥ 2

3 .

2. RSPACE(f) - this is the one-sided error version of BPSPACE(f). If x /∈ L, then M must
output 0 with probability 1. If x ∈ L, then M must output 1 with probability ≥ 1

2 .

Note that RSPACE(f) ⊆ NSPACE(f) ⊆ DSPACE(f2)

The first containment above is trivial, and the second is by Savitch’s theorem. Note that the
first containment does not hold true for BPSPACE. This begs the question: does a similar
statement hold true for BPSPACE? The INW pseudorandom generator answers this question
in the affirmative.

12.1 Pseudorandom Generator

We define an ϵ-PRG to be a function G : {0, 1}d → {0, 1}m with m >> d such that

∀x |Pr[M(x, y) = 1]− Pr[M(x,G(y)) = 1]| < ϵ

.

We will now see Impagliazzo, Nisan, and Wigderson’s construction of a pseudorandom gen-
erator for space bounded computation.

Let’s say that we have a randomised Turing machine M that runs in space s(n) on inputs of
length n.

We have seen before that if s(n) = Ω(log n) then the time taken by machine M is 2O(s(n)).

We look at the computation tableau of M on an input y of length n. We divide this tableau
into blocks of r = Θ(s(n)) configurations. There are at most 2O(s(n)) such blocks. Each of
these blocks can be thought of as an individual program that uses at most r random bits. Let’s
label these blocks from 1 to k. The work-tape configuration after the ith block runs can be
referred to as Ai, which is a function of the work tape configuration after (i− 1)th block, along
with the random bits fed to the ith block. We will somewhat abuse notation and write this as
Ai(Ai−1, ri) where ri is the s(n) length random string fed to the ith block.

The idea now is that we will pair up adjacent blocks. Instead of using completely random
strings ri and ri+1, we will use randomness to obtain the string ri, and then obtain the string
ri+1 by traversing the edge of an expander graph with 2r vertices. Let’s say that the expander
has degree 2m. This reduces the total randomness from kr to k

2 · (r+m). Our hope is that m is
much smaller than r. However, regardless of how small m is, this reduces the total randomness
by at most a factor of 2. How do we reduce it further? Let’s consider 4 adjacent blocks i, i+ 1,
i+ 2, i+ 3. (i, i+ 1) and (i+ 2, i+ 3) are paired blocks that take (r+m) random bits each. We

27

now pair up these pairs. We obtain the random string for (i, i + 1) from pure randomness. In
order to obtain the random string for (i+ 2, i+ 3), we again traverse the edge of an expander
graph with 2r+m vertices. Again, let the degree of the expander be 2m. This reduces the total
randomness to k

4 · (r + 2m). We repeat this process again and again, until we are left with
total randomness of r + log k · m = r + sm. We will show a family of expanders such that
m = O(s) =⇒ the total randomess is O(r + s2) = O(s2).

The family of strongly explicit expander graphs we are going to use was defined by Lubotzky,
Phillips, Sarnak. This family has the property that, for an expander with degree k, the spectral
gap λ is ≤

√
k−1. We select k to be 26s, which implies that λ ≤ 2−3s. Let the ith neighbour of

vertex v be denoted by ni(v). We now use the following version of the expander mixing lemma:

Lemma 3 (Expander Mixing Lemma). For any two sets S, T ⊆ V ,

|E(S, T)|
|E|

− |S||T |
|V |2

≤ λ

We will now bound the error made by the generator at the very first step of computation. It is
simple to extend this argument inductively.

Consider the first two blocks of computation. We want to show that ∀b ∈ {0, 1}s,

Pr
x∈{0,1}r,y∈{0,1}r

[A2(A1(x), y) = b]

is similar to
Pr

x∈{0,1}r,y∈{0,1}6s
[A2(A1(x), ny(x)) = b]

Let b′ ∈ {0, 1}s. We define two sets:

Sb′ = {x ∈ {0, 1}r|A1(x) = b′}

Tb′ = {x ∈ {0, 1}r|A2(b
′, x) = b

Now we have,

Pr
x∈{0,1}r,y∈{0,1}r

[A2(A1(x), y) = b] =
∑

b′∈{0,1}s

|Sb′ ||Tb′ |
22r

Similarly,

Pr
x∈{0,1}r,y∈{0,1}6s

[A2(A1(x), ny(x)) = b] =
∑

b′∈{0,1}s

|E(Sb′ , Tb′)|
|E|

Therefore, by triangle inequality, the difference between the two is bounded by∑
b′∈{0,1}s

| |E(Sb′ , Tb′)|
|E|

− |Sb′ ||Tb′ |
22r

|

28

By lemma 3, this is
≤ 2s · λ = 2s · 2−3s = 2−2s

In total there are 2s generators in this system. An extension of this argument will show that
the probability of error in any of the generators is ≤ 2−2s. Therefore, the overall probability of
an error is ≤ 2−s.

Let G denote our generator from O(s2) bits to O(2s) bits. Therefore we have that for any Turing
machine M with s work tape space on input x, ∀b ∈ {0, 1}s

| Pr
r∈{0,1}2s

[M(x, r) = b]− Pr
r∈{0,1}s2

[M(x,G(r)) = b]| ≤ 2−s

We can reduce the error by constant powers of 2 by simply increasing the degree of the ex-
pander.

29

13 Lecture 13

Scribe: Naman Kumar, BMC202026

We will see some basic proofs related to pseudorandom generators in motivation of our goal
to determine whether BPP = P.

Motivating Question We wish to determine the question of whether BPP = P, where BPP
is the class of problems which can be solved in polynomial time using polynomial number of
random bits.

Pseudorandom Generator We recall the concept of a pseudorandom generator, which is a
function G : {0, 1}d → {0, 1}m with m >> d such that the generated bits are computationally
indistinguishable from random bits. If such a generator can be built with d = O(logm) for all
BPP problems, then BPP = P, as a brute force search through all strings d works.

We now define the following notion.

Computational Indistinguishability. Let X and Y be two distributions over {0, 1}m. X,Y are
(t, ϵ)-computationally indistinguishable if for all non-uniform algorithms (circuits) of runtime
t, X,Y can take different values with at most ϵ. In other words, for all algorithms T such that
|T | ≤ t,

∣∣∣∣ Prx∼X
[T (x) = 1]− Pr

y∼Y
[T (y) = 1]

∣∣∣∣ ≤ ϵ

Exercise. Using the probabilistic method, show that ∀m, ϵ > 0, there exists an (m, ϵ)-PRG
G : {0, 1}d → {0, 1}m such that d = O(logm/ϵ).

13.1 Hybrid Algorithms

One of the most useful tools to analyze pseudorandom generators (introduced by Yao) are
hybrid arguments.

Lemma 5. If X,Y are (t, ϵ) indistinguishable, X⊗k and Y ⊗k are (t, kϵ)-indistinguishable.

Proof. We proceed through contradiction. Suppose X⊗k and Y ⊗k are not (k, ϵ)-indistinguishable.
Then there exists a circuit (or a nonuniform algorithm) family T of size at most t such that

∣∣∣∣ Pr
x∼X⊗k

[T (x) = 1]− Pr
y∼Y ⊗k

[T (y) = 1]

∣∣∣∣ > kϵ

We now define the following set of distributions.

H⊗i = X⊗i × Y ⊗k−i

30

Then we can rewrite our original equation as |Pr[T (H⊗0) = 1] − Pr[T (H⊗k) = 1]| > kϵ, and
we get

∣∣∣∣∣
k∑

Pr[T (H⊗i−1) = 1]− Pr[T (H⊗i) = 1]

∣∣∣∣∣
≤

k∑∣∣Pr[T (H⊗i−1) = 1]− Pr[T (H⊗i) = 1]
∣∣ > kϵ

And thus, from the pigeonhole principle, there exists an i for which

∣∣Pr[T (H⊗i−1) = 1]− Pr[T (H⊗i) = 1]
∣∣ > ϵ

Both the H differ on the ith value, and it follows that there are x ∈ X⊗i and y ∈ Y ⊗(i−1) for
which the circuit evaluation difference is greater than ϵ. However, such a circuit does not exist
since X and Y are (t, ϵ)-indistinguishable, and the proof follows.

13.2 Next-bit Predictors

We now define the following concept, which first came up in the context of cryptography.

Next Bit Predictivity. Suppose we have a distribution X ∼ {0, 1}m. X is then (t, ϵ)-next bit
unpredictable if for all circuits of size ≤ t,

Pr[T (x1x2 . . . xi−1) = xi] ≤
1

2
+ ϵ

These definitions are equivalent, as Yao proved the following theorem:

Theorem 5. Next-bit unpredictability is equivalent to pseudorandomness.

Proof. We proceed through proving the contrapositive. Assume that some distribution X is
not next-bit unpredictable. Then suppose that ∃T of size t such that

Pr[T (x1 . . . xi−1) = xi] >
1

2
+ ϵ

Then we can define the following test T̂ , which works as

T̂ (x1x2 . . . xi−1) =

{
1 if T (x1 . . . xi−1) = xi

0 otherwise

Then a circuit for this test can be easily shown to determine whether X is computationally
indistinguishable from the uniform distribution, which is t−O(1).

31

We now show the other direction. To do this, suppose that X is not (mϵ)-pseudorandom. This
imploes that there exists some test |T | ≤ t for which

|Pr[T (X1X2 . . . Xm)− 1]− Pr[T (U1U2 . . . Um) = 1]| > mϵ

We define the distributions H⊗i as we did in the previous hybrid argument. Repeating the
proof, we get that ∃i such that

∣∣Pr[T (H⊗i−1) = 1]− Pr[T (H⊗i) = 1]
∣∣ > ϵ

Then considering Xi, Ui, we can define Ui as 1
2

(
Xi +Xi

)
. Then substituting into the equation,

we have,

1

2

∣∣Pr[T (X1X2 . . . XiUi+1 . . . Um) = 1]− Pr[T (X1X2 . . . XiUi+1 . . . Um) = 1]
∣∣ > ϵ

We will use this information to construct a next-bit predictor for the bit i.

32

14 Lecture 14

Scribe: Aryan Agarwala, BMC202010

14.1 Next Bit Unpredictability and Pseudorandomness

In this section we will continue our proof from last time, and show that if a distribution is next
bit unpredictable, then it must be pseudorandom.

X ∼ {0, 1}m

Suppose X is not (t,m, ϵ) pseudorandom.

Then there exists a non uniform algorithm T which takes time at most t such that

| Pr
x∼X

[T (x) = 1]− Pr
u∼{0,1}m

[T (u) = 1]| > mϵ

=⇒ | Pr
x∼X

[T (x1, x2, · · · , xm) = 1]− Pr
u∼U

[T (u1, u2, · · · , um) = 1] > mϵ|

By an averaging argument, there must exist i such that

Pr[T (x1, · · · , xi, ui+1, · · · , um) = 1]− Pr[T (x1, · · · , xi−1, ui, ui+1, · · · , um) = 1] > ϵ

Note that ui = 0.5xi + 0.5x̄i

=⇒ |Pr[T (x1, · · · , xi, ui+1, · · · , um) = 1]− 1

2
Pr[T (x1, · · · , xi−1, x̄i, · · · , um) = 1]

−1

2
Pr[T (x1, · · · , xi, ui+1, · · · , um) = 1]| > ϵ

=⇒ |Pr[T (x1, · · · , xi, ui+1, · · · , um) = 1]− Pr[T (x1, · · · , xi−1, x̄i, · · · , um) = 1]| > 2ϵ

Let this value be δ. Also, without loss of generalisation, assume that Pr[T (x1, · · · , xi, ui+1, · · · , um) =
1] > Pr[T (x1, · · · , xi−1, x̄i, ui+1, · · · , um) = 1].

We define our next bit predictor P (x1, · · · , xi−1) as follows:
We evaluate T on uniformly random bits ui, · · · , um as T (x1, · · · , xi−1, ui, · · · , um). If the result
is 1, then we output xi = ui, else we output xi = ūi.

Now we show that our predictor is correct with probability > 0.5 + ϵ,

Pr[P (x1, · · · , xi−1) = xi] = Pr[T (x1, · · · , xi−1, ui, · · · , um) = 1|ui = xi] Pr[ui = xi]

+Pr[T (x1, · · · , xi−1, ui, · · · , um) = 0|ui ̸= xi] Pr[ui ̸= xi]

=
1

2
(Pr[T (x1, · · · , xi, ui+1, um) = 1] + (1− Pr[T (x1, · · · , x̄i, ui+1, · · · , um) = 1]))

≥ 1

2
+ δ >

1

2
+ ϵ

Therefore, X is not (t, ϵ) next bit unpredictable.

This proves that (t, ϵ) next bit unpredictability implies (t,m, ϵ) pseudorandomness.

Combined with our proof in the previous lecture, this shows that next bit unpredictability and
pseudorandomness are equivalent.

33

14.2 Average Case Hardness

Given parameters (s, δ), a function {0, 1}l 7→ {0, 1} is defined to be (s, δ)-hard if for any (non-
uniform) algorithm A of size ≤ s,

Pr
x∼{0,1}l

[A(x) = f(x)] ≤ 1− δ

By setting δ = 1
2 − ϵ, we can alternatively define a function to be (s, ϵ)-hard if

Pr
x∼{0,1}l

[A(x) = f(x)] ≤ 1

2
+ ϵ

Our goal to show that that the existence of average case hard functions implies the existence
of pseudorandom functions. In order to do this, we first need to introduce the concept of a
design.

14.3 Design

An (m, d, l, a) design is S1, S2, · · · , Sm such that each Si ⊂ [d], |Si| = l and for all pairs i, j, we
have |Si ∩ Sj | ≤ a.

Consider the finite field Fp where p is a prime. Now, let p1, · · · be the set of polynomials in
Fp[x] with degree ≤ k. There are pk such polynomials.

Consider the sets S1, · · · , Spk defined by

Si = {(j, pi(j)|j ∈ Fp}

|Si ∩ Sj | = {(x ∈ Fp|pi(x) = pj(x)}

By the Schwartz-Zippel lemma, this is bounded by k.

Therefore, S1, · · · , Spk defines a (pk, [p]× [p], p, k) design.

14.4 Average Case Hardness and Pseudorandomness

Let’s say we have a (m, d, l, a) design S1, · · · , Sm, along with an average case hard function
f : {0, 1}l 7→ {0, 1}. Let Si(j) refer to the jth element of Si.

For x ∈ {0, 1}d, we define xSi ∈ {0, 1}l for 1 ≤ i ≤ m by (xSi)j = 1 if and only if the xSi(j) = 1.

Now we define g : {0, 1}d 7→ {0, 1}m by

g(x) = f(xS1) · f(xS2) · · · f(xsm)

We claim that g is (t, ϵ) pseudorandom for t = s−ma2a.

We will do this by showing that it is (t, ϵ/m) next bit unpredictable.

Assume that that there exists a predictor P such that Pr[P (f(xS1), f(xS2), · · · , f(xSi−1)) =
f(xSi)] >

1
2 + ϵ

m

34

We can fix the bits in [d] Si such that, by an averaging argument, the following still holds:

PrxSi(1)
xSi(2)

···xSi(l)
[P (f(xS1)f(xS2) · · · f(xSi−1)) = f(xSi)] >

1
2 + ϵ

m

Since a is small, you can embed this function deterministically in a circuit with small size. This
will contradict the average case hardness of the function.

35

15 Lecture 18: Razborov-Smolensky: Lower bound for Parity (Oct
13)

Scribe: Tejas Bhojraj, GCS202102

Today we start with boolean circuit lower bounds. Recall that AC0[d] is the class of fami-
lies circuits with constant depth, d and unbounded fanin. Define the boolean function on n
bits: PARITYn(x1, .., xn) :=

∑
i xi(mod 2). Using the polynomial method of Razborov and

Smolensky, we show that:

Theorem 6. If (Cn)n ∈ AC0[d] computes the family (PARITYn)n (i.e., PARITYn = Cn

for all n), then |Cn| ≥ 2Ω(n1/2d)/
√
n.

The main idea is ”AC0[d] circuits can be well-approximated by low-degree polynomials but
PARITYn cannot”. A polynomial p(x1, .., xn) ∈ F3[x1, .., xn] is said to be proper if it takes
value 0 or 1 on inputs from {0, 1}n. The following 2 lemmas imply the above theorem

Lemma 6. Fix d and a depth d AC0 circuit C on n variables. For any t, there is a degree
(2t)d proper polynomial, p ∈ F3[x1, .., xn] that disagrees with C on atmost |C|2n−t points.

Lemma 7. Any proper p ∈ F3[x1, .., xn] with degree atmost
√
n disagrees with PARITYn

on atleast 2n/
√
n points.

The proof of the main theorem follows:

Proof. Take a Cn assumed by the Theorem. Let t = n1/2d in the first lemma to get a proper
p ∈ F3[x1, .., xn] of degree (2t)d ≤

√
n which disagrees with Cn on the set D. The 2 lemmas

give that 2n/
√
n ≤ |D| ≤ |Cn|2n−n1/2d

implying that |Cn| ≥ 2n
1/2d

/
√
n

The first lemma says that an AC0 circuit can be well approximated by a low-degree polynomial
while the second says that PARITYn cannot.

Proof of the first Lemma:

Proof. Assume that C has only NOT and OR gates (this is wlog as replacing all AND gates
with an OR and a NOT gates will increase the depth and size of C by a factor of atmost 2).
For each gate, g of C we define a proper pg ∈ F3[x1, .., xn] inductively. As pg will be defined
using randomness when g is an OR gate, po, the polynomial at the output gate o depends on
the random choices made while picking pg’s for OR gates g. The required p will be po for a
suitable fixing of random choices.

The inductive construction is: For a leaf, l = xi, let pl = xi (pl is proper as xi is boolean). If g is
a NOT gate with input h, then let pg = 1− ph. As ph is proper (inductively), so is pg. Suppose
now that g is an OR gate with inputs, g1, .., gk. Inductively, we have proper polynomials,
pi := pgi ∈ F3[x1, .., xn] for all i. Pick sets, S1, .., St ⊆ [k] independently, u.a.r. and for all j ∈ [t],

36

let
qj =

(∑
i∈Sj

pi
)2

and let
pg = 1−

∏
j

(1− qj).

qj is proper for all j (as 22 = 1) and hence so is
∏

j(1 − qj) and hence pg is proper. If b = the
maximum degree of the pj ’s, then deg(qj) ≤ 2b and so deg(pg) ≤ 2bt. So, the degree of the poly-
nomial increases by a factor of atmost 2t at every level. As there are d levels, deg(po) ≤ (2t)d as
required, where o is the output gate.

Note that naively defining pg := 1−
∏

i≤k(1−pi) would have ensured that pg = 1 ⇐⇒ ∃i, pi =
1 and so there is no error in this case. Defining pg := 1 −

∏
i≤k(1 − pi), however only gives

that deg(pg) ≤ bk. So the degree may increase by a factor of k at each level giving merely that
deg(p) ≤ kd, which is bad as k (the fanin) is unbounded. While the naive choice would have
ensured that the output polynomial, albeit of high degree, equals Cn at all input points, our
choice of p is low-degree but disagrees with Cn at some points. We now show that the dis-
agreement is small:

Consider the error at the OR gate g as above. Suppose that for all i, pi = the boolean function
computed by gi (i.e., all pi are correct). If pi = 0 for all i, then qj = 0 for all j and hence
pg = 0, which is correct. Now, suppose that pl = 1 for some l. An error occurs at g ⇐⇒
pg = 0 ⇐⇒ qj = 0 for all j.
Let’s first compute

PrSj (qj = 0) = PrSj [
(∑
i∈Sj

pi
)2

= 0]

given that pl = 1 for some l. Let T− be the set of subsets of [k] not containing l and let T+
be the set of subsets of [k] containing l. So |T + | = |T − | = 2k−1. S 7→ π(S) := S ∪ {l}
is a bijection from T− to T+. For j ∈ {0, 1, 2}, let T−j := {S ∈ T− :

∑
i∈S pi = j} and

T+j := {S ∈ T+ :
∑

i∈S pi = j}. Note the following

1. If S ∈ T−0, then π(S) ∈ T+1 and if S ∪ {l} ∈ T+1, then π−1(S ∪ {l}) = S ∈ T−0. So,
π|T−0 is a bijection between T−0 and T+1, showing that |T −0 | = |T +1 |.
Similarly, we see that |T −1 | = |T +2 | and |T −2 | = |T +0 |.

2. So, |T −0 | ≤ |T − | − |T −2 | = 2k−1 − |T +0 |, giving that |T +0 |+ |T −0 | ≤ 2k−1

3. qj = 0 ⇐⇒ Sj ∈ T +0 ∪T−0.

4. As Sj is picked u.a.r from T + ∪T−, PrSj (qj = 0) = |T +0 ∪T −0 |/2k ≤ 1/2.

As the Sj ’s are picked independently, Pr(pg makes an error) = Pr(∀j ∈ [t], qj = 0) =
∏

i Pr(qj =
0) ≤ 2−t where the Pr is over the random choice of the S1, .., St. po is wrong ⇐⇒ one of the
pg’s is wrong. So, by the union bound, Pr(C ̸= po) = Pr(∃g ∈ C, pg makes an error)≤ |C|2−t.

In summary, we have shown that for a fixed input a1, .., an, Pr(p(a1, .., an) ̸= C(a1, .., an)) ≤
|C|2−t, where the probability is over the choice of the Si’s at all OR gates.

37

Fix some big enough R such that a random choice of the Si’s at all OR gates can be represented
by a string in {0, 1}R. Denote by po,r, the po polynomial obtained when r ∈ {0, 1}R is the
random string used to pick the Si’s. Take a 2n × 2R matrix, M the rows indexed by {0, 1}n, the
inputs to C and the columns indexed by random strings, {0, 1}R. Let M(x, r) = 1 if C(x) =
po,r(x) and let M(x, r) = 0 otherwise. The fraction of zeros in the row indexed by x, equals
Prr(po,r(x) ̸= C(x)). So, by above, each row of M has atmost |C|2R−t zeros and so M has
≤ |C|2n+R−t zeros. So, there must be a column, indexed by some r′ which has ≤ |C|2n−t zeros
(If all columns have > |C|2n−t zeros, then M has > |C|2R+n−t zeros). So, po,r′(x) ̸= C(x) for
≤ |C|2n−t many x’s. This po,r′ is the required p.

Proof of the second lemma

Proof. Suppose p ∈ F3[x1, .., xn] with deg(p) ≤
√
n and let S′ ⊆ {0, 1}n be the set on which

p = PARITYn. Define a transformation f : {0, 1} −→ {1,−1} (mod 3) by f(xi) = 1 + xi (mod
3). So, f(0) = 1, f(1) = −1. By abuse of notation, let f also be the transformation f : {0, 1}n −→
{1,−1}n (mod 3) obtained by applying f to each co-ordinate. So, the transformation changes
PARITYn : {0, 1}n −→ {0, 1} to another function {1,−1}n −→ {1,−1} (mod 3) which should
be 1 when its input has even many −1’s and should be −1 if its input has odd many −1’s. We
now describe this transformed function: Define the function PARITY ′

n : {−1, 1}n −→ {−1, 1}
(mod 3) by

PARITY ′
n(y1, .., yn) =

∏
i

yi.

Then,
PARITYn(x1, .., xn) = 1 ⇐⇒ PARITY ′

n(f(x1, .., xn)) = −1,

and so,
f(PARITYn(x1, .., xn)) = PARITY ′

n(f(x1, ..xn)).

So, PARITY ′
n is the required transformed function. Let p′ be the transformed version of p. I.e.,

p is a polynomial such that f(p(x)) = p′(f(x)) . So, for any x ∈ S′,

PARITY ′
n(f(x)) = f(PARITYn(x)) = f(p(x)) = p′(f(x)),

where the second equality follows by the the choice of S′. I.e., f(S′) := S is the set on which p′

agrees with PARITY ′
n. |S′| = |S| as f is a bijection.

Let F be the class of functions from S to F3 (So, |F| = 3|S|). To any f ∈ F , we associate a
polynomial pf ∈ F3[x1, .., xn] defined on S as follows :

pf = gf |S ,

where
gf (x1, .., xn) =

∑
y∈S

f(y)
∏
i

(yixi + 1).

Note that (letting n be even) f(x) = pf (x) for all x ∈ S. As −12 = 1 = 12, we may assume
that pf is multilinear by replacing any x2i by 1. Let T be any monomial in pf with degree
> n/2 +

√
n. As PARITY ′

n = p′ on S, for all (x1, .., xn) ∈ S, we have that

p′(x1, .., xn) = PARITY ′
n(x1, .., xn) =

∏
i∈[n]

xi =
∏

i:xi∈T
xi
∏

i:xi /∈T

xi.

Multiplying both sides by
∏

i:xi /∈T xi,

p′(x1, .., xn)
∏

i:xi /∈T

xi =
∏

i:xi∈T
xi.

38

Now, deg(p′) = deg(p) ≤
√
n. As T has > n/2 +

√
n many variables (by multilinearity),

there are ≤ n − (n/2 +
√
n) = n/2 −

√
n many xi’s in the product on the LHS. So, the LHS

has degree ≤ deg(p′) + n/2 −
√
n ≤ n/2. The monomial T is a scalar multiple of the RHS

(
∏

i:xi∈T xi). By replacing this by the LHS, the degree of T can be reduced to ≤ n/2. Doing
this for all monomials T with deg(T) > n/2+

√
n transforms pf into a polynomial with degree

≤ n/2 +
√
n.

In summary, for any f ∈ F , there is a polynomial, pf ∈ F3[x1, .., xn] defined on S with degree
≤ n/2 +

√
n. There are atmost

m :=

n/2+
√
n∑

i=0

(
n

i

)
≤ (49/50)2n/

√
n

many monomials on n variables of degree ≤ n/2 +
√
n. So, there are 3m polynomials defined

on S in F3[x1, .., xn] with degree atmost n/2 +
√
n. So, 3|S| = |F| ≤ 3m and so |S| ≤ m ≤

(49/50)2n/
√
n. So, p disagrees with PARITYn on 2n − |S| ≥ 2n − 2n/

√
n ≥ 2n/

√
n.

39

16 Lecture 21

Scribe: Rohan Goyal, BMC202151

We now analyze the gap amplification under σ′ in G′.

A verifier does the following test via an ASRW.

16.1 Idea:

1. Do an ASRW from an arbitrary vertex. Say the path is from A to B.

2. If for any (u, v) on the path, if distG(a, u) ≤ t, distG(v, b) ≤ t and σ′ : V 7→ Σ′, we have
(σ′(a)u, σ

′(b)v) falsifies (u, v) in the original constraint, we reject.

3. Else, accept.

σ′ best assignment, extract an assignment σ for the older graph. σ(v) = From v, do a BSRW,
conditioning on the fact that BSRW stops within t steps.

This gives a distribution on the vertices reachable within t steps. Let this distribution be {Pv,w}.

∀a ∈ Σ : Pa =
∑

(σ′(w))v=a

Pv,w

Assign σ(v) = a s.t Pa is maximized.

16.2 Faulty Edges:

Let F be the set of falsified edges under σ. =⇒ gap ≤ |F |
|E| .

Faulty Edges: In verifier’s ASRW walk an edge (u, v) ∈ E is faulty:

1. (u, v) ∈ F .

2. d(a, u) ≤ t ∧ (σ′(a))u = σu

3. d(b, v) ≤ t ∧ (σ′(b))v = σv

Let N be the random variable that counts the number of faulty steps in the ASRW, then:

gap′ ≥ Pr[N > 0] ≥ E[N]2

E[N2]

This is true since the verifier rejects if N > 0 and for the second part we use Second Moment
Method. Now, we try to get bounds on E[N] and E[N2].

16.3 Analysis of E[N]

40

Lemma 8. E[N] ≥ t|F |
8|Σ|2 |̇E|

Proof. Let Nu,v be the expected value of (u, v) being faulty in the given walk.

N =
∑

(u,v)∈F

Nu,v =⇒ E[N] =
∑

(u,v)∈F

E[Nu,v]

Thus, it is enough to show that

E[Nu,v] ≥
t

8|Σ|2|E|

Now,

Pr[d(a, u) ≤ t ∧ σ′(a)u = σ(u)|k u → v steps.] = Pr[d(a, u) ≤ t ∧ σ′(a)u = σ(u)]

≥
(
1− 1

t

)t

Pr[σ′(a)u = σ(u)|d(a, u) ≤ t]

≥ 1

2|Σ|

E[Nu,v] =
∑

kPr[k u → v steps] · Pr[u 7→ v step is faulty|k u → v steps]

=
∑

kPr[k u → v steps] · Pr[d(a, u) ≤ t ∧ (σ′(a)u = σ(u))

∧ (σ′(b)v = σ(v)) ∧ d(v, b) ≤ t|k u → v steps]

≥
(

1

2|Σ|

)2∑
kPr[k u → v steps]

≥ t

8|Σ|2|E|

c

17 Lecture 22

Scribe: Rohan Goyal, BMC202151

We now analyze E[N2]. For that we begin with the following lemma:

Lemma 9. Let G = (n, d, γ) expander where λ is dλ′ where λ′ is the spectral expansion of
the expander. Now, given a set F ⊂ E, and the condition that the zeroth step of a random
walk starts from a random edge ∈ F , the probability that the random walk visits an edge

41

in F in the tth step is ≤ |F |
|E| +

(
λ
d

)t−1

Proof. Let x be the probability distribution on the vertices of G of the walk starting. Let xv be
the probability that the walk starts at v. Now, if A is the normalized adjacency matrix of G and
y is the probability distribution of taking an edge in F in the tth step. Now, yw = 2|F |xw

d as xw
is the number of edges in F adjacent to w divided by 2|F | but yw is the same value divided by d.

We have that the requisite probability is

P =
〈
At−1x, y

〉
=

2|F |
d

< At−1x, x >

We can now let x = x∥ + x⊥ where x∥ is the component of x along the uniform vector and x⊥

is the component perpendicular to the uniform vector.

Thus,

P =
2|F |
d

(〈
x∥, x∥

〉
+
〈
At−1x⊥, x⊥

〉)
≤ 2|F |

dn
+
2|F |
d

(
λ

d

)t−1 〈
x⊥, x⊥

〉
≤ |F |

|E|
+
2|F |
d

(
λ

d

)t−1

⟨x, x⟩

Thus, we just want ⟨x, x⟩ ≤ d
2|F | . Now, ⟨x, x⟩ ≤ maxv xv(

∑
xv) ≤ maxv xv ≤ d

2|F | if all its
neighbours are in F .

Now, let χi be the 0−1 random variable which is 1 iff the ith step of the random walk is faulty.

E[N2] = E[(
t∑

i=1

χi)
2]

≤ 2
∑
i≥1

Pr[χi = 1]

∑
j≥i

χj = 1|χi = 1

≤ 2

∑
i≥1

Pr[χi = 1]

1 +
∞∑
j≥1

(
|F |
|E|

+

(
λ

d

)j−1
)
(1− 1

t
)j

≤ O(1)E[N](1 +

|F |t
|E|

)

≤ O(1)E[N]

since we can assume t|F | ≤ |E| as we will work with t large constant and we would have
amplified gap to a constant already.

Thus, we get gap′ ≥ Pr[N > 0] ≥ E[N]2

E[N2]
≥ O(1)E[N] ≥ O(t|F |

|Σ|2|E|)

42

	Lecture 1
	Introduction
	Randomized Algorithms
	Polynomial Identity Testing
	Arithmetic Circuit Representation
	Schwartz-Zippel Lemma

	Lecture 2
	UREACH RL
	Randomized Algorithm for UREACH

	How is UREACH derandomized?
	Expander Graphs

	Lecture 3
	Few Definitions and Observations
	Proof of Spectral Expansion Vertex Expansion
	Expander Mixing Lemma
	Proof of Expander Mixing Lemma

	Next Class

	Lecture 4: Error Reduction in RP using Expander
	Lecture 5
	Error Reduction in BPP Algorithms
	Construction of Expander Graphs

	Lecture 6
	Zig-zag product

	Lecture 7
	Recap
	Reingold's Theorem (2004)
	Analysis

	Lecture 8
	Coding theory
	The Basic set-up
	List Decoding
	Examples
	Hadamard Code
	Reed-Solomon Code
	Reed-Muller Code

	 Johnson Bound

	Lecture 9 (1 Sep 2022 - Thursday)
	List Decoding of Reed-Solomon Codes

	Lecture 10
	Introduction
	Parvaresh–Vardy Codes
	Construction of List Decoder

	Lecture 11
	Two views
	Parvaresh-Vardy codes

	Lecture 12
	Pseudorandom Generator

	Lecture 13
	Hybrid Algorithms
	Next-bit Predictors

	Lecture 14
	Next Bit Unpredictability and Pseudorandomness
	Average Case Hardness
	Design
	Average Case Hardness and Pseudorandomness

	Lecture 18: Razborov-Smolensky: Lower bound for Parity (Oct 13)
	Lecture 21
	Idea:
	Faulty Edges:
	Analysis of E[N]

	Lecture 22

