CPTH II 1

Saswata Mukherjee Somnath Bhattacharjee

January 8, 2023

Question 1. Exercise 2.5

a. Let f be a D degree polynomial over a finite field \mathbb{F} with $|\mathbb{F}| = q$, now for some $d \leq D$, the number of distinct irreducible factors of f of degree D polynomials will be at most $\frac{D}{d}$. This is because if there are l such factors then $ld \leq D$.

Now we know that for some constant c there are atleast $c\frac{q^{d+1}}{d}$ many ireeducible polynomials of degree d. (As we know that number of irreducible degree d monic polynomial N_d is nearly $\frac{q^d}{d} + O(\frac{q^{\frac{d}{2}}}{d})$). Also there are q^{d+1} many polynomials of degree d (as there can be d+1 many coefficients and each has q many choices). Now

$$\begin{aligned} \Pr[g(x) \not| f(x)] &\geq \Pr[g(x) \not| f(x) \text{ and } g(x) \text{ is irreducible}] \\ &= \Pr[g(x) \not| f(x) \Big| g(x) \text{ is irreducible }] \times \Pr[g(x) \text{ is irreducible }] \\ &\geq \left[1 - \frac{D/d}{cq^{d+1}/d} \right] \times \frac{cq^{d+1}/d}{q^{d+1}} \\ &= \frac{1}{d} - \frac{D}{dq^{d+1}} \end{aligned}$$

Now if we set $d = \log_q(2D) - 1$, we will have $\Pr[g(x) \not| f(x)] \ge \frac{1}{2d} = \frac{1}{\Omega(\log D)}$ So we are done

Say our input is a s size circuit C computing f(x). Assume k is the maximum number of bits of the exponents in C.

Now our algorithm is :

- Pick $ts \log k$ many random $d := cs \log k$ degree univariate polynomials $\{g_i(x)\}$ independently

- For each $i = 1(1)t \log D$ check whether $g_i(x)$ divides f(x) or not.

- If all the $g_i(x)$ divides f(x) return $f(x) \equiv 0$, else f(x) is non zero.

To check whether g(x) divides f(x) or not, we can simply do a BFS from bottom in the circuit of f, for each node v we will divide v by g, note $v \mod g$ is univariate d degree polynomial, so sparsity will be d + 1, so entire checking can be done in poly(d) = O(poly(s)) time. So the running time is surely poly(ts), we will take t = poly(s) to adjust the error value.

Note the maximum degree computed by the circuit C is $k^s =: D$, so degree of $f \leq D$ Now if $f(x) \equiv 0$ then the algorithm will not give any error, but if $f(x) \neq 0$ then the error probability is less than $(1 - \frac{1}{c' \log D})^{ts} \leq e^{-tc'}$. Now we can adjust t s.t. the error probability becomes less than $\frac{1}{2}$.

b. Let *C* be a multivariate *s* size circuit computing $f(x_0, \ldots, x_n)$ od degree *d* we will apply Kronecker map on *f* to make it univariate. Let say q(y) be the polynomial after setting $x_i = y^{d^i}$ in *f*, we have proved in the class that this map preserves the non-zeroness ,ie, f = 0 iff q = 0. To compute y^{d^i} we need $i \log d$ size univariate exponentiation circuit. To create the circuit that computes *q*, we can construct the circuit for y^{d^i} individually and then connect the output gate with the x_i input gate of *C*. So total size of the final circuit computing *q* will be $n^2 \log d$ and since $n, s = O(s^c)$ the circuit size will be poly of *s*.

Question 2. Exercise 2.7

1. Let λ be an eigen value of M with eigen vector v, then

$$\begin{aligned} ||\lambda v|| &= ||Mv|| \\ &\leq ||M||.||v|| \\ \implies |\lambda| &\leq ||M|| \end{aligned}$$

Now from birkhoff von newmann theorem we know M is in convex span of the permutation matrices ,ie, there exists $0 \leq \lambda_1, \ldots, \lambda_k \leq 1$ with $\sum \lambda_i = 1$ s.t. if P_i s are the permutation matrices

$$M = \sum \lambda_i P_i$$

$$\implies ||M|| \le ||\sum \lambda_i P_i||$$

$$\le \sum \lambda_i ||P_i||$$

$$\le \sum \lambda_i = 1$$
 (norm of permutation matrices is 1)

(We can prove it directly as well by taking a λ eigen value with $|\lambda| > 1$, Now say $Mv = \lambda v$, say v_i is the highest entry of v in absolute value, WLOG $v_i > 0$, Now $|\lambda|v_i$ can be written as convex sum of all the v_j s which contradicts $|\lambda| > 1$. But we need the operator norm upper bound in the next problem.)

2. (\implies) Let the graph G is not connected and WLOG it has two connected components, then we can say the normalised matrix M for G is a diagonal block matrix with two blocks $A_{n_1 \times n_1}, B_{n_2 \times n_2}$ (where $n_1 + n_2 = N$) each is normalised adjacency matrix for the connected components ,ie,

$$M = \begin{bmatrix} A & 0\\ 0 & B \end{bmatrix}$$

And each A and B are doubly stochastic matrix, hence each have eigen value 1 with multiplicity atleast 1, so M has eigen value 1 with multiplicity atleast 2.

(\Leftarrow) We will prove a lemma first, which says for a set of variables $\{x_1, \ldots, x_n\}$, if x_i can be written as convex combination of all the x_i s then $x_i = x_i$.

Lemma 1. For any k, for any $0 < \lambda_1, \ldots, \lambda_k < 1$, and $\sum \lambda_i = 1$, if $x_1 = \sum \lambda_i x_i$ has some real solution, then $x_i = x_1$ for all i

We will induct strongly on k. When k = 2

$$x_1 = \lambda x_1 + (1 - \lambda) x_2 \implies x_1 = x_2$$

Assume it is true for all $k \leq t$ for some $t \geq 2$. Now for t + 1, since $\lambda_1 \neq 0$ we can say $\lambda_{t+1} \neq 1$

$$x_1 = \sum \lambda_i x_i + \lambda_{t+1} x_{t+1}$$
$$= (1 - \lambda_{t+1}) \frac{\sum \lambda_i x_i}{1 - \lambda_{t+1}} + \lambda_{t+1} x_{t+1}$$

Hence from induction hypothesis, $x_{t+1} = x_1$ and $\frac{\sum_{i=1}^{t} \lambda_i x_i}{1 - \lambda_{t+1}} = x_1$

Now as

$$\sum_{i=1}^{t} \frac{\lambda_i}{1 - \lambda_{t+1}} = \frac{1 - \lambda_{t+1}}{1 - \lambda_{t+1}} = 1$$

So again from induction hypothesis $x_i = x_1 \ \forall i = 1(1)t$

Now say Mv = v for some v then any v_i can be written as convex combination of v_r s where rs are the neighbours of i. So from the lemma $v_i = v_r$. Now the graph is connected, so v_1 will be same with all the neighbours of 1, and they will be same as their neighbours and so on , and this way all the v_i will be same. So $v = \mathbf{1}_v$. \Box

 (\implies) Say the vertex sets are A, B. It can also be seen that M has two 3. diagonal 0 blocks of order $|A| \times |A|$ and $|B| \times |B|$. So

$$M = \begin{bmatrix} 0_A & P_{|A| \times |B|} \\ Q_{|B| \times |A|} & 0_B \end{bmatrix}$$

Also P, Q are doubly stochastic. Consider the vector $v = (\underbrace{1, \dots, 1}_{|A| \text{ many}}, \underbrace{-1, \dots, -1}_{|B| \text{ many}})$ So Mv = -v as P, Q are doubly stochastic.

 (\Leftarrow) Let v be an eigen vector of M with eigen value -1. Let u be the vector

with $u_i = |v_i|$. Now

Now since ||u|| = ||v||, we can say all the inequalities will convert to equality. From the (i) step $v_i v_j \leq 0$ and $M_{ii} = 0$. So for all $(i, j) \in E$ we have $i \neq j$ and one $v_i > 0$ and another $v_j < 0$. So the vertex decomposition is $A = \{i | v_i \geq 0\}, B = \{j | v_j < 0\}$. We can say there are no internal edges in A or B, hence G is bipartite.

4. We will prove the hint first. Say the $n \times n$ matrix D = dM, so D_{ij} is the number of edges between v_i and v_j . So $\sum_{i,(i,j)\in E} D_{ij} = \sum_{j,(i,j)\in E} D_{ij} = d$

$$\begin{aligned} \langle v, Mv \rangle &= \sum_{i,j} v_i M_{ij} v_j = \sum_i v_i^2 M_{ii} + 2 \sum_{(i,j) \in E, i \neq j} v_i M_{ij} v_j \\ &= \frac{1}{d} \sum_i v_i^2 D_{ii} + \frac{1}{d} \sum_{(i,j) \in E, i \neq j} D_{ij} (2v_i v_j) \\ &= \frac{1}{d} \sum_i v_i^2 \left(d - \sum_{j,(i,j) \in E, i \neq j} D_{ij} \right) + \frac{1}{d} \sum_{(i,j) \in E, i \neq j} D_{ij} (2v_i v_j) \\ &= \sum_i v_i^2 + \frac{1}{d} \sum_{(i,j) \in E, i \neq j} D_{ij} (2v_i v_j - v_i^2 - v_j^2) \\ &= ||v_i||^2 - \frac{1}{d} \sum_{(i,j) \in E} D_{ij} (v_i - v_j)^2 \\ &= 1 - \frac{1}{d} \sum_{(i,j) \in E} D_{ij} (v_i - v_j)^2 \end{aligned}$$
max $\langle v, Mv \rangle = 1 - \min \sum_{i \neq j} D_{ij} (v_i - v_j)^2$

 $\implies \max_{v \text{ with the conditions}} \langle v, Mv \rangle = 1 - \min_{v \text{ with the conditions}} \sum_{(i,j) \in E} D_{ij} (v_i - v_j)^2$

Now note $W := \{x \mid \sum x_i = 0\} = \{x \mid \langle x, \mathbf{1} \rangle = 0\} = \mathbf{1}^{\perp}$ Hence dim(W) = n - 1Now say multiplicity of 1 eigen value is $t \ (\lambda_1, \dots, \lambda_t = 1)$ and λ_{t+1} is largest eigen value which is not 1. So if $\{v_1, \dots, v_{n-1}\}$ are the basis of W and $\{u_1, \dots, u_{t-1}, u_t\}$ be the eigenvectors corresponding to the eigen values $\lambda_1 = 1, \lambda_2$ of M, then all of them cannot be linearly independent together else the dimension of \mathbb{R}^n will be n - 1 + t + 1 = n + t which is not possible. so $\exists k_0, \dots, k_t, a_1, \dots, a_{n-1}$ s.t. $\sum k_i^2 = 1$ and not all a_i s are zero, $v := k_0 u_0 + \dots + k_t u_t = a_1 v_1 + \dots + a_{n-1} v_{n-1}$

Note ||v|| = 1, now

$$1 - \min_{x,x \in W, ||x||=1} \frac{1}{d} \sum_{(i,j) \in E} d_{ij} (x_i - x_j)^2 = \max_{x,x \in W, ||x||=1} \langle x, Mx \rangle$$

$$\geq \langle v, Mv \rangle$$

$$= \langle v, \sum \lambda_i k_{i-1} u_{i-1} \rangle$$

$$= \sum \lambda_i k_{i-1}^2 +$$

$$\geq \lambda_{t+1} \sum k_i^2 = \lambda_{t+1}$$

Now assume G be the graph whoose all eigenvalues are non-negative. Now if we can prove that $\sum_{(i,j)\in E} (x_i - x_j)^2 \ge 1/poly(n,d)$ then it will essentially imply

$$1 - \min_{x, x \in W, ||x|| = 1} \sum_{(i,j) \in E} d_{ij} (x_i - x_j)^2 \le 1 - poly(n, d)$$

as $d_{ij} \ge 1$ if $(i, j) \in E$. Hence largest eigen value (in terms of absolute value) after 1 is at most 1 - 1/poly(n, d). Following claim will prove the remaining part.

Claim.
$$\sum_{(i,j)\in E} (x_i - x_j)^2 \ge 1/poly(n,d)$$

We know that $\sum |x_i^2| = 1$, hence there exists a x_i s.t. $|x_i| \ge \frac{1}{\sqrt{n}}$. Now there must be one x_j s.t. $x_i \cdot x_j < 0$ and since G is connected, i and j is also connected, say via the path $i = i_0, i_1, \ldots, i_k = j$. So

$$\sum_{r=0}^{k-1} (x_{i_r} - x_{i_{r+1}})^2 \ge \frac{\left(\sum_{r=0}^{k-1} (x_{i_r} - x_{i_{r+1}})\right)^2}{k+1}$$
$$= \frac{(x_i - x_j)^2}{k+1} \ge \frac{1}{nD} \qquad (D \text{ is the diameter})$$
$$\implies \sum_{(i,j)\in E} (x_i - x_j)^2 \ge \frac{1}{nD}$$

So the overall bound will be $1 - \frac{1}{ndD}$ if all the eigen values are non-negative. Now

if not all eigen values are nonnegative then G^2 will have all the eigen values nonnegative, and then we can apply the previous part to get largest eigen value (in terms of absolute value) after 1

$$\lambda_2 \ge (1 - 1/ndD)^{\frac{1}{2}} \ge (1 - \frac{1}{2ndD})$$

5. *G* is connected means multiplicity of 1 as an eigen value is exactly one and non bipartite means -1 is not an eigen value. Hence the second largest eigen value in terms of absolute value $\lambda_2 \leq 1 - 1/poly(n, d)$, or the spectral gap $\gamma(G) \geq 1/poly(n, d)$

6. Consider G as 2k cycle. Clearly here n = 2k, d = 2, D = 2k - 1, so $\lambda_2 \leq 1 - \frac{1}{\Omega(k^2)}$ from the above calculations.

Now consider

$$J_{2k \times 2k} = \frac{1}{2} \begin{bmatrix} 0 & \dots & 0 & 1 \\ & I_{2k-1 \times 2k-1} & & 0 \end{bmatrix}$$

It can be seen that the normalised adjacency matrix of G is just $J + J^T$ and the eigen values of J are $\frac{1}{2} \times 2k$ th roots of unity. Now let M, M^T diagonalise J, ie, $MJM^T =$ some diagonal matrix D then

$$M(J + J^{T})M = MJM^{T} + MJ^{T}M^{T}$$
$$= D + M(MJ)^{T}$$
$$= D + (MJM^{T})^{T}$$
$$= D + D^{T}$$

Hence M, M^T can diagonalize $J + J^T$ as well. So the eigen values of $J + J^T$ is $\frac{1}{2}(e_i + \overline{e_i})$ where e_i s are the 2kth roots of unity. Hence the second largest eigen value will be

$$\cos\frac{\pi}{k} \ge 1 - \frac{1}{k^2 \pi^2/2} = 1 - \frac{1}{O(k^2)}$$

Hence the bound is tight.

Now we know $\gamma(G) \geq \frac{1}{\Omega(ndD)}$ and D can be atmax n, so

$$\gamma(G) \ge \frac{1}{\Omega(n^2 d)} \ge \frac{1}{\Omega(n^2 d^2)}$$

Question 3. Exercise 3.2

1. Say, we have S_1, \ldots, S_{i-1} fixed such that $\forall j \in [i-1], |S_j| = l$ and $|S_j \cap S_k| < a$ for $j \neq k$. Now we are randomly choosing S_i . Say, X_j is the event of $|S_i \cap S_j| \ge a$. i.e.,

$$X_j = \begin{cases} 1 & \text{if } |S_i \cap S_j| \ge a \\ 0 & \text{otherwise} \end{cases}$$

for $j \leq i - 1$. Now,

$$E_{S_{i}}[\#\{j < i : |S_{i} \cap S_{j}| \ge a\}] = E_{S_{i}}[\sum_{j=1}^{i-1} X_{j}]$$

$$= \sum_{j} E_{S_{i}}[X_{j}]$$

$$= \sum_{j} \Pr_{S_{i}}[|S_{i} \cap S_{j}| \ge a]$$

$$= \sum_{j=1}^{i-1} \frac{\binom{l}{a}\binom{d-a}{l-a}}{\binom{d}{l}}$$

$$< m \frac{\binom{l}{a}\binom{d-a}{l-a}}{\binom{d}{l}}$$

$$= m \frac{\binom{l}{a}^{2}}{\binom{d}{l}} < 1$$

That means, if we randomly choose S_i , with probability < 1, it will intersect with some $S_j, j \in [i-1]$ in at least a elements.

$$\Rightarrow \exists S_i \text{ so that } |S_j \cap S_i| < a \text{ for all } j \in [i-1].$$

$$\Rightarrow \exists S_1, \dots, S_m \text{ where } m \leq \frac{\binom{d}{l}}{\binom{d}{l}^2} \text{ and } |S_i| = l, |S_i \cap S_j| < a.$$

$$2. \ m \leq \frac{\binom{d}{l}}{\binom{d}{a}^2}.$$

$$we \text{ know } \frac{(d/a)^a}{(le/a)^{2a}} \leq \frac{\binom{d}{l}}{\binom{l}{a}^2}.$$

$$Now, \text{ if } d = O(\frac{l^2}{a}) \Rightarrow d \approx cl^2/a \text{ for some } c.$$

$$\Rightarrow \frac{(\frac{cl^2}{a^2})^a}{e^{2a}(\frac{l^2}{a^2})^a} = \frac{c^a}{e^{2a}} \leq \frac{\binom{d}{l}}{\binom{l}{a}^2}.$$

$$Take \ c_0 = (\frac{c}{e^2})^{\gamma} \text{ where } a = \gamma \log m.$$

$$If we assume \ c_0 \geq 2, \text{ then, } m = 2^{\log m} \leq (c_0)^{\log m} \leq \frac{\binom{d}{l}}{\binom{l}{a}^2}.$$

$$So, we \ can \ find \ S_1, \dots, S_m \subset [d] \ with \ d = O(\frac{l^2}{a}) \ and \ a = \gamma \log m.$$

$$3. \ Initially \ take \ A = \{S_1\} \ where \ S_1 \subset [d] \ be \ any \ of \ size \ l.$$

$$While \ |A| < m:$$

$$for \ all \ S_0 \subset [d] \ so \ that \ |S_0| = l:$$

$$if \ |S \cap S_0| < a, \ \forall S \in A, \ add \ S_0 \ to \ A.$$

$$end \ for.$$

end while.

Part 1,2 shows that the algorithm will not stop at any intermediate step for some specific choice of d, l, a. And the algorithm runs in $poly(m, d)2^d$ time. Now, $d = O(l) \approx cl$ for some c and $m = 2^l$. So, $2^d \approx (2^l)^c = poly(m)$. Hence, algorithm runs in poly(m, d) time.

Question 4. Problem 4.9

1. As given as a hint, we can prove that $(G_1(\widehat{\mathbf{r}})G_2)^3$ has $G_1(\widehat{\mathbf{z}})G_2$ as subgraph via some calculations. Let $H = G_1(\widehat{\mathbf{r}})G_2$ and M be the normalised adjacency matrix of H, clearly H is $D_2 + 1$ regular, hence H^3 is $(D_2 + 1)^3$ regular. Let for $u \in [N_1]$ A_u be the permutation matrix corresponds to the bijection on $[D_2]$ which is i is mapped to j iff i th neighbour of u is v and jth neighbour of v is u. Now let \tilde{A} be the $N_1D_1 \times N_1D_1$ matrix whoose uth $D_1 \times D_1$ diagonal block is A_u , (basically \tilde{A} is the permutation matrix or G_2 and $\tilde{B} = B \otimes I_{N_1 \times N_1}$. So the normalized adjacency matrix of G_2 and $\tilde{B} = B \otimes I_{N_1 \times N_1}$. Now the adjacency matrix of M^3

$$(D_2 + 1)^3 M = (\tilde{A} + D_2 \tilde{B})^3$$
$$= D_2^2 (\tilde{B} \tilde{A} \tilde{B}) + (\dots)$$

Now note if we remove the subgraph H' from H, the graph will be $(D_2 + 1)^3 - D_2^2$ regular. Let the normalised adjacency matrix of it be D and $x = \frac{D_2^2}{(D_2 + 1)^3}$ then

$$M = xC + (1 - x)D$$

$$\implies \max_{v,v\perp 1} \leq \max_{v,v\perp 1} C + (1 - x) \max_{v,v\perp 1} D$$

$$\implies (1 - g)^3 \leq x(1 - \gamma_1\gamma_2^2) + (1 - x)$$

$$= 1 - x\gamma_1\gamma_2^2 < 1$$

$$\implies g(\gamma_1, \gamma_2, D_2) > 0$$

_	-	-	

2. Now the idea is simple, for $G = (N, D, \gamma)$ (where D is constant) we will take G' as a D cycle, in the 2nd problem we have proved that $\gamma(G')$ is $\Theta(1 - \frac{1}{D^2})$, Now $G(\mathbf{\hat{r}})G'$ is $(ND, 3, \gamma')$ expander (since D is constant, there is no big blow up in vertex size), so we have converted the degree into the constant 3.

3. Let
$$h := \min\{\frac{D_2\varepsilon_1\varepsilon_2}{(D_2+1)(\varepsilon_1+6)}, \frac{\varepsilon_1}{(D_2+1)(\varepsilon_1+6)}, \frac{D_2\varepsilon_2}{2(D_2+1)}\}$$

We will prove that $H := G_1(\widehat{\mathbf{r}})G_2$ is h edge expander.(clearly $h \ge 0$)

Let S be a vertex subset of H with $|S| \leq N_1 D_1/2$

As given in the hint, we will make two partitions on S: A and B, where A is the set of all half full clouds (ie, $(u, v) \in A$ if there is at least $\frac{D_1}{2}$ many v_i s in $V(G_2)$ s.t. $(u, v_i) \in S$), B is set of half empty clouds defined by S - A.

Define $C = \{u \in V(G_1) | \exists v \in V(G_2) \text{ s.t. } (u, v) \in A\}$. Basically C is the projection of A on $V(G_1)$.

Note that

Now

Case 1: $|B| > \frac{\varepsilon_1}{\varepsilon_1 + 6}|S|$

We will have at least $D_2\varepsilon_2|B| \ge \frac{D_2\varepsilon_1\varepsilon_2}{\varepsilon_1+6}|S|$ many edges from S to S^c (that is because we are applying G_2 edge expansion in each clouds of B). Hence edge expansion is

$$\frac{\frac{D_2\varepsilon_1\varepsilon_2}{\varepsilon_1+6}|S|}{(D_2+1)|S|} \ge h$$

Case 2: $|B| \le \frac{\varepsilon_1}{\varepsilon_1 + 6} |S|$ and $|C| \le \frac{N_1}{2}$

Note if E is the set of edges between C and C^c in G_1 , then there will be atleast |E| - |B| many edges between S and S^c in H, as any vertex in H will have exactly one G_1 neighbour. So there can be at most |B| many edges corresponds to E in H which are from half full clouds to half empty clouds in S, and remaining edges are going outside of S.

Now there are at least $|C|\varepsilon_1 D_1$ many edges from C to C^c in G_1 (edge expansion on G_1),

Hence edges in H between S and S^c is at least

$$|C|\varepsilon_1 D_1 - |B| \ge \frac{|C|\varepsilon_1 D_1}{2}$$

$$\ge 3|S|\frac{\varepsilon_1}{\varepsilon_1 + 6}$$
 (from (ii))

Hence the edge expansion is $\frac{3\varepsilon_1}{(\varepsilon_1+6)(D_2+1)} \ge h.$

Case 3: $|B| \le \frac{\varepsilon_1}{\varepsilon_1 + 6} |S|$ and $\frac{3N_1}{4} \ge |C| \ge \frac{N_1}{2}$

In this case we know $|C^c| \leq \frac{N_1}{2}$ hence number of edges between T and T^c is at least

$$C^{c}|\varepsilon_{1}D_{1} \geq \frac{N_{1}\varepsilon_{1}D_{1}}{4}$$

$$\geq \frac{|C|\varepsilon_{1}D_{1}}{3}$$

$$\geq \frac{(|S| - |B|)\varepsilon_{1}}{3}$$

$$\geq 2|S|\frac{\varepsilon_{1}}{\varepsilon_{1} + 6} \qquad (\dots\dots\dots(iii))$$

$$\geq 2|B|$$

Similarly from the fact we used in the previous case, the edges between S and S^c in H is atleast

$$|C^{c}|\varepsilon_{1}D_{1} - |B| \geq \frac{|C^{c}|\varepsilon_{1}D_{1}}{2}$$

$$\geq |S|\frac{\varepsilon_{1}}{\varepsilon_{1} + 6} \qquad (\text{from (iii)})$$

Hence the edge expansion is $\frac{\varepsilon_1}{(\varepsilon_1+6)(D_2+1)} \ge h$

Case 4: $|B| \le \frac{\varepsilon_1}{\varepsilon_1 + 6} |S|$ and $|C| \ge \frac{3N_1}{4}$

Claim. there are atleast $\frac{N_1}{4}$ many clouds in C who have paired with atmost $\frac{3D_1}{4}$ many vertices from $V(G_2)$ and are contained in S

Let x be the number of clouds who have at most $\frac{3D_1}{4}$ many pairs from $V(G_2)$ inside S. Then

$$x\frac{D_{1}}{2} + (|C| - x)\frac{3D_{1}}{4} \le |S| \le \frac{N_{1}D_{1}}{2}$$
$$\implies \frac{N_{1}D_{1}}{2} + x\frac{D_{1}}{4} \ge |C|\frac{3D_{1}}{4} \ge \frac{9N_{1}D_{1}}{16}$$
$$\implies x \ge \frac{N_{1}}{4}$$

Now let $W \subseteq V(G_2)$ be the pairs of any of the above vertices, then $|W| \leq \frac{3D_1}{4}$, so number of edges between W and W^c is at least $\varepsilon_2 D_2 |W^c| \geq \varepsilon_2 D_2 \frac{D_1}{4}$ and all such edges will be present in H as edges between S and S^c . So number of edges between S and S^c in H is at least $\frac{\varepsilon_2 D_2 N_1}{4} \geq \frac{|S|\varepsilon_2 D_2}{2}$. Hence the edge expansion is $\frac{\varepsilon_2 D_2}{2(D_2+1)} \geq h$ 4. Construct S such a way that every cloud in S is completely full, i.e., if $(u, v) \in S$ then $\forall w \in V(G_2), (u, w) \in S$. Note now any edge corresponds to G_2 can not go outside of S as all the G_2 neighbours of some $(u, v) \in S$ is inside S since the u-cloud in S is completely full. So only G_1 edges can go outside S, and each vertes in H has exactly one G_1 neighbour,

so # edges outgoing from $S \leq$ number of G_1 edges of S = |S|, hence $\varepsilon_2 \leq \frac{1}{D_2 + 1}$

Question 5. Problem 5.5

1. Let $A_{M \times N}$ be the adjacency matrix of the corresponding bipartite graph.

Claim. $x = (x_1, \ldots, x_N) \in \{0, 1\}^N$ is a code word $\iff Ax = 0 \pmod{2}$.

 $\begin{array}{l} Proof: \text{Clearly, ith coordinate of } Ax \text{ is } \sum_{j \in \Gamma(i)} x_j.\\ \text{So, for } i \in [M], \bigoplus_{j \in \Gamma(i)} x_j = 0 \iff \sum_{j \in \Gamma(i)} x_j = 0 \pmod{2}.\\ \Longrightarrow \quad \forall i \in [M], \bigoplus_{j \in \Gamma(i)} x_j = 0 \iff \forall j \in [M], \sum_{j \in \Gamma(i)} x_j = 0 \pmod{2}.\\ \Longrightarrow \quad \forall i \in [M], \bigoplus_{j \in \Gamma(i)} x_j = 0 \iff \forall j \in [M], \bigoplus_{j \in \Gamma(i)} x_j = 0. \end{array}$

Identify $\{0,1\}^N$ as a vector space of \mathbb{F}_2 and $\{0,1\}^M$ as a subspace of $\{0,1\}^N$ over \mathbb{F}_2 . By, rank nullity theorem, $\ker(A) + \operatorname{rank}(A) = N$ and $\operatorname{rank}(A) \leq M$ $\implies \ker(A) \geq N - M \implies |\mathcal{C}| \geq 2^{N-M}$. Therefore, $\log |\mathcal{C}| \geq N - M \implies \operatorname{rate} \geq \frac{N - M}{N} = 1 - \frac{M}{N}$.

2. Say, $c \in C$, take $S_c = \{i \in [N] : c_i = 1\}$ and each $j \in [M]$ has even number of neighbours in S_c .

If $c \in C$ be a codeword, and if possible hamming weight of $c \leq K$. Then, $|S_c| < K \implies |\Gamma(S_c)| > \frac{D}{2}|S_c|$. For $j \in \Gamma(S_c)$, take y_j = number of neighbours of j in S_c = number of edges from j to S_c .

So, $\sum_{j \in \Gamma(S_c)} y_j =$ number of edges from S_c to $\Gamma(S_c) \leq D|S_c|$.

⇒ average number of neighbours of each $j \in \Gamma(S_c) < 2$, as $|\Gamma(S_c)| > \frac{D}{2}|S_c|$. ⇒ $\exists j \in \Gamma(S_c)$ so that there is unique $i \in S_c$, $(i, j) \in E$, Hence contradiction. So, $d_H(c, 0) \ge \frac{K}{N}$ for all $c \in \mathcal{C}$.

 $\begin{aligned} &\text{Take } c,c' \in \mathcal{C}, \text{ then, } d_H(c,c') = |S_c \Delta S_{c'}| = |S|. \\ &\text{If, } d_H(c,c') < \frac{K}{N}, \, |S_c \Delta S_{c'}| < K \implies |\Gamma(S_c \Delta S_{c'})| > \frac{D}{2} |S_c \Delta S_{c'}|. \\ &\text{take } c_0 \in \{0,1\}^N \text{ so that } c_{0i} = 1 \iff i \in S_c \Delta S_{c'}. \\ &\text{Now, } c,c' \in \mathcal{C} \implies Ac - Ac' = A(c-c') = 0 \pmod{2} \implies c_0 \text{ is a codeword.} \\ &\text{Hence, } d_H(c_0,0) \ge \frac{K}{N} \implies d_H(c,c') \ge \frac{K}{N}. \end{aligned}$

3. Decoding:

Definition 0.1. $UNSAT(i) = \{j \in \Gamma(i) : \text{parity check corresponding to } j \text{ is not satisfied } \}.$ For $S \subseteq [N], U(S) = \{j \in \Gamma(S) : j \text{ has a unique neighbour in } S\}.$

Say, received message is $r = (r_1, \ldots, r_N)$. <u>Algorithm</u>: While there is $i \in [N]$ so that number of $|UNSAT(i)| > 2/3|\Gamma(i)|$: flip r_i . return r.

If at some stage number of wrong parity checks are $> k + \frac{2}{3}|\Gamma(i)|$ then after flipping that r_i , wrong parity checks $< k + \frac{1}{3}|\Gamma(i)|$. Initially we can have at most Ncorrupted bits, so this algorithm runs in at most O(N) time as each iteration decreases total number of corrupted bits.

Claim. If G is $(K, (1 - \epsilon)D)$ expander then, for any |S| < K, $|U(S)| > D(1 - 2\epsilon)|S|$.

 $\begin{array}{l} \underline{Proof}: \text{Total number of edges out of } S = D|S| \text{ but we know } |\Gamma(S)| > D(1-\epsilon)|S|.\\ \hline \text{Say, } NU(S) = \Gamma(S) - U(S), \text{ then, } |U(S)| + 2|NU(S)| \leq D|S|.\\ \text{And } |U(S)| + |NU(S)| > (1-\epsilon)D|S|.\\ \hline \text{By this two inequalities, we have } |U(S)| > (1-2\epsilon)D|S|. \end{array}$

Claim. If number of errors $\langle K$, then, there is a node in left vertex set, whose > 2/3 neighbours make wrong parity check. (For sufficiently small ϵ)

<u>Proof</u>: Say, S = set of corrupted vertices. Then after each iteration |S| < K as, error does not increase. So, $|U(S)| > (1 - 2\epsilon)D|S| > 2D|S|/3$ if $\epsilon < 1/6$. As, parity checks for all of $j \in U(S)$ is not satisfied, there is a vertex i in S so that |UNSAT(i)| > 2D/3.

 \implies *i* has > 2/3 neighbours which make wrong parity check.

Therefore, if r be the received message $d_H(r, w) < \frac{K}{N}$ where w is the nearest codeword to r, the algorithm ends up giving the codeword w.