
CPTH II 1

Saswata Mukherjee
Somnath Bhattacharjee

January 8, 2023

Question 1. Exercise 2.5

a. Let f be a D degree polynomial over a finite field F with |F| = q, now for some
d ≤ D, the number of distinct irreducible factors of f of degree D polynomials will

be atmost
D

d
. This is because if there are l such factors then ld ≤ D.

Now we know that for some constant c there are atleast c
qd+1

d
many ireeducible

polynomials of degree d. (As we know that number of irreducible degree d monic

polynomial Nd is nearly
qd

d
+ O(

q
d
2

d
)). Also there are qd+1 many polynomials of

degree d (as there can be d+1 many coefficients and each has q many choices). Now

Pr[g(x) ̸ |f(x)] ≥ Pr[g(x) ̸ |f(x) and g(x) is irreducible]

= Pr[g(x) ̸ |f(x)
∣∣∣g(x) is irreducible]× Pr[g(x) is irreducible]

≥
[
1− D/d

cqd+1/d

]
× cqd+1/d

qd+1

=
1

d
− D

dqd+1

Now if we set d = logq(2D)− 1, we will have Pr[g(x) ̸ |f(x)] ≥ 1

2d
=

1

Ω(logD)
So we are done □

Say our input is a s size circuit C computing f(x). Assume k is the maximum
number of bits of the exponents in C.
Now our algorithm is :

- Pick ts log k many random d := cs log k degree univariate polynomials {gi(x)}
independently

- For each i = 1(1)t logD check whether gi(x) divides f(x) or not.
- If all the gi(x) divides f(x) return f(x) ≡ 0, else f(x) is non zero.

To check whether g(x) divides f(x) or not, we can simply do a BFS from bottom in
the circuit of f , for each node v we will divide v by g, note v mod g is univariate
d degree polynomial, so sparsity will be d + 1, so entire checking can be done in
poly(d) = O(poly(s)) time.

1

So the running time is surely poly(ts), we will take t = poly(s) to adjust the error
value.

Note the maximum degree computed by the circuit C is ks =: D, so degree of f ≤ D
Now if f(x) ≡ 0 then the algorithm will not give any error, but if f(x) ̸= 0 then the

error probability is less than (1− 1

c′ logD
)ts ≤ e−tc′ .

Now we can adjust t s.t. the error probability becomes less than 1
2
. □

b. Let C be a multivariate s size circuit computing f(x0, . . . , xn) od degree d
we will apply Kronecker map on f to make it univariate. Let say q(y) be the polyno-
mial after setting xi = yd

i
in f , we have proved in the class that this map preserves

the non-zeroness ,ie, f = 0 iff q = 0. To compute yd
i
we need i log d size univariate

exponentiation circuit. To create the circuit that computes q, we can construct the
circuit for yd

i
individually and then connect the output gate with the xi input gate of

C. So total size of the final circuit computing q will be n2 log d and since n, s = O(sc)
the circuit size will be poly of s.

Question 2. Exercise 2.7

1. Let λ be an eigen value of M with eigen vector v, then

||λv|| = ||Mv||
≤ ||M ||.||v||

=⇒ |λ| ≤ ||M ||

Now from birkhoff von newmann theorem we know M is in convex span of the per-
mutation matrices ,ie, there exists 0 ≤ λ1, . . . , λk ≤ 1 with

∑
λi = 1 s.t. if Pis are

the permutation matrices

M =
∑

λiPi

=⇒ ||M || ≤ ||
∑

λiPi||

≤
∑

λi||Pi||

≤
∑

λi = 1 (norm of permutation matrices is 1)

(We can prove it directly as well by taking a λ eigen value with |λ| > 1, Now say
Mv = λv, say vi is the highest entry of v in absolute value, WLOG vi > 0, Now |λ|vi
can be written as convex sum of all the vjs which contradicts |λ| > 1. But we need
the operator norm upper bound in the next problem.) □

2. (=⇒) Let the graph G is not connected and WLOG it has two connected
components, then we can say the normalised matrix M for G is a diagonal block ma-
trix with two blocks An1×n1 , Bn2×n2 (where n1+n2 = N) each is normalised adjacency
matrix for the connected components ,ie,

M =

[
A 0
0 B

]
And each A and B are doubly stochastic matrix, hence each have eigen value 1 with
multiplicity atleast 1, so M has eigen value 1 with multiplicity atleast 2.

2

(⇐=) We will prove a lemma first, which says for a set of variables {x1, . . . , xn},
if xi can be written as convex combination of all the xjs then xi = xj.

Lemma 1. For any k, for any 0 < λ1, . . . , λk < 1, and
∑

λi = 1, if x1 =
∑

λixi

has some real solution, then xi = x1 for all i

We will induct strongly on k.
When k = 2

x1 = λx1 + (1− λ)x2 =⇒ x1 = x2

Assume it is true for all k ≤ t for some t ≥ 2. Now for t+ 1, since λ1 ̸= 0 we can say
λt+1 ̸= 1

x1 =
∑

λixi + λt+1xt+1

= (1− λt+1)

∑
λixi

1− λt+1

+ λt+1xt+1

Hence from induction hypothesis, xt+1 = x1 and

∑t
i=1 λixi

1− λt+1

= x1

Now as

t∑
i=1

λi

1− λt+1

=
1− λt+1

1− λt+1

= 1

So again from induction hypothesis xi = x1 ∀i = 1(1)t □

Now say Mv = v for some v then any vi can be written as convex combination
of vrs where rs are the neighbours of i. So from the lemma vi = vr. Now the
graph is connected, so v1 will be same with all the neighbours of 1, and they will be
same as their neighbours and so on , and this way all the vi will be same. So v = 1v. □

3. (=⇒) Say the vertex sets are A,B. It can also be seen that M has two
diagonal 0 blocks of order |A| × |A| and |B| × |B|. So

M =

[
0A P|A|×|B|

Q|B|×|A| 0B

]
Also P,Q are doubly stochastic.
Consider the vector v = (1, . . . , 1︸ ︷︷ ︸

|A| many

,−1, . . . ,−1︸ ︷︷ ︸
|B| many

)

So Mv = −v as P,Q are doubly stochastic.

(⇐=) Let v be an eigen vector of M with eigen value −1. Let u be the vector

3

with ui = |vi|. Now

||v||2 = −⟨v,Mv⟩
= −vTMv

= −
∑
i,j

viMijvj

= −
∑
i

v2iMii − 2
∑

(i,j)∈E,i ̸=j

viMijvj

≤ |
∑
i

v2iMii + 2
∑

(i,j)∈E,i ̸=j

viMijvj| (.......................(i))

≤
∑
i

|v2iMii|+ 2
∑

(i,j)∈E,i ̸=j

| − viMijvj|

=
∑
i

u2
iMii + 2

∑
(i,j)∈E,i ̸=j

uiMijuj

=
∑
i,j

uiMijuj

= ⟨u,Mu⟩
≤ ||u||.||Mu||
≤ ||u||2.||M || ≤ ||u||2 (From the first problem)

Now since ||u|| = ||v||, we can say all the inequalities will convert to equality. From
the (i) step vivj ≤ 0 and Mii = 0. So for all (i, j) ∈ E we have i ̸= j and one vi > 0
and another vj < 0. So the vertex decomposition is A = {i

∣∣vi ≥ 0}, B = {j
∣∣vj < 0}.

We can say there are no internal edges in A or B, hence G is bipartite. □

4. We will prove the hint first. Say the n × n matrix D = dM , so Dij is the

number of edges between vi and vj. So
∑

i,(i,j)∈E

Dij =
∑

j,(i,j)∈E

Dij = d

⟨v,Mv⟩ =
∑
i,j

viMijvj =
∑
i

v2iMii + 2
∑

(i,j)∈E,i ̸=j

viMijvj

=
1

d

∑
i

v2iDii +
1

d

∑
(i,j)∈E,i ̸=j

Dij(2vivj)

=
1

d

∑
i

v2i
(
d−

∑
j,(i,j)∈E,i ̸=j

Dij

)
+

1

d

∑
(i,j)∈E,i ̸=j

Dij(2vivj)

=
∑
i

v2i +
1

d

∑
(i,j)∈E,i ̸=j

Dij(2vivj − v2i − v2j)

= ||vi||2 −
1

d

∑
(i,j)∈E,i ̸=j

Dij(vi − vj)
2

= 1− 1

d

∑
(i,j)∈E

Dij(vi − vj)
2

=⇒ max
v with the conditions

⟨v,Mv⟩ = 1− min
v with the conditions

∑
(i,j)∈E

Dij(vi − vj)
2

4

Now note W := {x
∣∣∑xi = 0} = {x

∣∣⟨x,1⟩ = 0} = 1⊥

Hence dim(W) = n− 1
Now say multiplicity of 1 eigen value is t (λ1, . . . , λt = 1) and λt+1 is largest eigen
value which is not 1.
So if {v1, . . . , vn−1} are the basis of W and {u1, . . . , ut−1, ut} be the eigenvectors cor-
responding to the eigen values λ1 = 1, λ2 of M , then all of them cannot be linearly
independent together else the dimension of Rn will be n − 1 + t + 1 = n + t which
is not possible. so ∃ ko, . . . , kt, a1, . . . , an−1 s.t.

∑
k2
i = 1 and not all ais are zero,

v := k0u0 + · · ·+ ktut = a1v1 + · · ·+ an−1vn−1

Note ||v|| = 1, now

1− min
x,x∈W,||x||=1

1

d

∑
(i,j)∈E

dij(xi − xj)
2 = max

x,x∈W,||x||=1
⟨x,Mx⟩

≥ ⟨v,Mv⟩

= ⟨v,
∑

λiki−1ui−1⟩

=
∑

λik
2
i−1+

≥ λt+1

∑
k2
i = λt+1

Now assume G be the graph whoose all eigenvalues are non-negative. Now if we can

prove that
∑

(i,j)∈E

(xi − xj)
2 ≥ 1/poly(n, d) then it will essentially imply

1− min
x,x∈W,||x||=1

∑
(i,j)∈E

dij(xi − xj)
2 ≤ 1− poly(n, d)

as dij ≥ 1 if (i, j) ∈ E. Hence largest eigen value (in terms of absolute value) after 1
is atmost 1− 1/poly(n, d). Following claim will prove the remaining part.

Claim.
∑

(i,j)∈E

(xi − xj)
2 ≥ 1/poly(n, d)

We know that
∑

|x2
i | = 1, hence there exists a xi s.t. |xi| ≥

1√
n
.

Now there must be one xj s.t. xi.xj < 0 and since G is connected, i and j is also
connected, say via the path i = i0, i1, . . . , ik = j.
So

k−1∑
r=0

(xir − xir+1)
2 ≥

(k−1∑
r=0

(xir − xir+1)
)2

k + 1

=
(xi − xj)

2

k + 1
≥ 1

nD
(D is the diameter)

=⇒
∑

(i,j)∈E

(xi − xj)
2 ≥ 1

nD

□
So the overall bound will be 1 − 1

ndD
if all the eigen values are non-negative. Now

5

if not all eigen values are nonnegative then G2 will have all the eigen values non-
negative, and then we can apply the previous part to get largest eigen value (in terms
of absolute value) after 1

λ2 ≥ (1− 1/ndD)
1
2 ≥ (1− 1

2ndD
)

□

5. G is connected means multiplicity of 1 as an eigen value is exactly one and
non bipartite means −1 is not an eigen value. Hence the second largest eigen value in
terms of absolute value λ2 ≤ 1−1/poly(n, d), or the spectral gap γ(G) ≥ 1/poly(n, d)

6. Consider G as 2k cycle. Clearly here n = 2k, d = 2, D = 2k−1, so λ2 ≤ 1− 1
Ω(k2)

from the above calculations.
Now consider

J2k×2k =
1

2

[
0 . . . 0 1

I2k−1×2k−1 0

]
It can be seen that the normalised adjacency matrix of G is just J+JT and the eigen
values of J are 1

2
× 2kth roots of unity. Now let M,MT diagonalise J , ie, MJMT =

some diagonal matrix D then

M(J + JT)M = MJMT +MJTMT

= D +M(MJ)T

= D + (MJMT)T

= D +DT

Hence M,MT can diagonalize J+JT as well. So the eigen values of J+JT is 1
2
(ei+ei)

where eis are the 2kth roots of unity. Hence the second largest eigen value will be

cos
π

k
≥ 1− 1

k2π2/2
= 1− 1

O(k2)

Hence the bound is tight.

Now we know γ(G) ≥ 1
Ω(ndD)

and D can be atmax n, so

γ(G) ≥ 1

Ω(n2d)
≥ 1

Ω(n2d2)

Question 3. Exercise 3.2

1. Say, we have S1, . . . , Si−1 fixed such that ∀j ∈ [i − 1], |Sj| = l and |Sj ∩ Sk| < a
for j ̸= k. Now we are randomly choosing Si.
Say, Xj is the event of |Si ∩ Sj| ≥ a.
i.e.,

Xj =

{
1 if |Si ∩ Sj| ≥ a

0 otherwise

6

for j ≤ i− 1.
Now,

ESi
[#{j < i : |Si ∩ Sj| ≥ a}] = ESi

[
i−1∑
j=1

Xj]

=
∑
j

ESi
[Xj]

=
∑
j

PrSi
[|Si ∩ Sj| ≥ a]

=
i−1∑
j=1

(
l
a

)(
d−a
l−a

)(
d
l

)
< m

(
l
a

)(
d−a
l−a

)(
d
l

)
= m

(
l
a

)2(
d
l

) < 1

That means, if we randomly choose Si, with probability < 1, it will intersect with
some Sj, j ∈ [i− 1] in at least a elements.
=⇒ ∃Si so that |Sj ∩ Si| < a for all j ∈ [i− 1].

=⇒ ∃S1, . . . , Sm where m ≤
(
d
l

)(
l
a

)2 and |Si| = l, |Si ∩ Sj| < a.

2. m ≤
(
d
l

)(
l
a

)2 .
we know

(d/a)a

(le/a)2a
≤

(
d
l

)(
l
a

)2 .
Now, if d = O(

l2

a
) =⇒ d ≈ cl2/a for some c.

=⇒
(cl

2

a2
)a

e2a(l2

a2
)a

=
ca

e2a
≤

(
d
l

)(
l
a

)2 .
Take c0 = (

c

e2
)γ where a = γ logm.

If we assume c0 ≥ 2, then, m = 2logm ≤ (c0)
logm ≤

(
d
l

)(
l
a

)2 .
So, we can find S1, . . . , Sm ⊂ [d] with d = O(

l2

a
) and a = γ logm.

3. Initially take A = {S1} where S1 ⊂ [d] be any of size l.
While |A| < m:

for all S0 ⊂ [d] so that |S0| = l:
if |S ∩ S0| < a, ∀S ∈ A, add S0 to A.

end for.
end while.

Part 1,2 shows that the algorithm will not stop at any intermediate step for some
specific choice of d, l, a. And the algorithm runs in poly(m, d)2d time.
Now, d = O(l) ≈ cl for some c and m = 2l. So, 2d ≈ (2l)c = poly(m).

7

Hence, algorithm runs in poly(m, d) time.

Question 4. Problem 4.9

1. As given as a hint, we can prove that (G1 r○G2)
3 has G1 z○G2 as subgraph via

some calculations. Let H = G1 r○G2 and M be the normalised adjacency matrix
of H, clearly H is D2 + 1 regular, hence H3 is (D2 + 1)3 regular. Let for u ∈ [N1]
Au be the permutation matrix corresponds to the bijection on [D2] which is i is
mapped to j iff i th neighbour of u is v and jth neighbour of v is u. Now let Ã be
the N1D1 × N1D1 matrix whoose uth D1 ×D1 diagonal block is Au, (basically Ã is
the permutation matrix we will use to construct the zigzag product). Let B be the
normalized adjacency matrix of G2 and B̃ = B ⊗ IN1×N1 .
So the normalized adjaceny matrix of H ′ := G1 z○G2 is B̃ÃB̃ =: C
Now the adjacency matrix of M3

(D2 + 1)3M = (Ã+D2B̃)3

= D2
2(B̃ÃB̃) + (. . .)

Now note if we remove the subgraph H ′ from H, the graph will be (D2 + 1)3 − D2
2

regular. Let the normalised adjacency matrix of it be D and x =
D2

2

(D2 + 1)3
then

M = xC + (1− x)D

=⇒ max
v,v⊥1

≤ max
v,v⊥1

C + (1− x) max
v,v⊥1

D

=⇒ (1− g)3 ≤ x(1− γ1γ
2
2) + (1− x)

= 1− xγ1γ
2
2 < 1

=⇒ g(γ1, γ2, D2) > 0

□

2. Now the idea is simple, for G = (N,D, γ) (where D is constant) we will take G′

as a D cycle, in the 2nd problem we have proved that γ(G′) is Θ(1− 1
D2),

Now G r○G′ is (ND, 3, γ′) expander (since D is constant, there is no big blow up in
vertex size), so we have converted the degree into the constant 3.

3. Let h := min{ D2ε1ε2
(D2 + 1)(ε1 + 6)

,
ε1

(D2 + 1)(ε1 + 6)
,

D2ε2
2(D2 + 1)

}

We will prove that H := G1 r○G2 is h edge expander.(clearly h ≥ 0)

Let S be a vertex subset of H with |S| ≤ N1D1/2
As given in the hint, we will make two partitions on S: A and B, where A is the
set of all half full clouds (ie, (u, v) ∈ A if there is atleast D1

2
many vis in V (G2) s.t.

(u, vi) ∈ S), B is set of half empty clouds defined by S − A.
Define C = {u ∈ V (G1)

∣∣∃v ∈ V (G2) s.t. (u, v) ∈ A}. Basically C is the projection of
A on V (G1).

8

Note that

|S| ≤ |B|+ |C|D1

=⇒ |C| ≥ |S| − |B|
D

(..............(i))

Now
Case 1: |B| > ε1

ε1 + 6
|S|

We will have atleast D2ε2|B| ≥ D2ε1ε2
ε1 + 6

|S| many edges from S to Sc (that is because

we are applying G2 edge expansion in each clouds of B). Hence edge expansion is

D2ε1ε2
ε1 + 6

|S|

(D2 + 1)|S|
≥ h

Case 2: |B| ≤ ε1
ε1 + 6

|S| and |C| ≤ N1

2

Note if E is the set of edges between C and Cc in G1, then there will be atleast
|E| − |B| many edges between S and Sc in H, as any vertex in H will have exactly
one G1 neighbour. So there can be atmost |B| many edges corresponds to E in H
which are from half full clouds to half empty clouds in S, and remaining edges are
going outside of S.

Now there are atleast |C|ε1D1 many edges from C to Cc in G1 (edge expansion
on G1),

|C|ε1D1 ≥
|S| − |B|

D1

ε1 (from (i))

≥ |S|(1− ε1
ε1 + 6

)ε1

= 2× 3|S| ε1
ε1 + 6

(.............(ii))

> 2|B|

Hence edges in H between S and Sc is atleast

|C|ε1D1 − |B| ≥ |C|ε1D1

2

≥ 3|S| ε1
ε1 + 6

(from (ii))

Hence the edge expansion is
3ε1

(ε1 + 6)(D2 + 1)
≥ h.

9

Case 3: |B| ≤ ε1
ε1 + 6

|S| and 3N1

4
≥ |C| ≥ N1

2

In this case we know |Cc| ≤ N1

2
hence number of edges between T and T c is atleast

|Cc|ε1D1 ≥
N1ε1D1

4

≥ |C|ε1D1

3

≥ (|S| − |B|)ε1
3

≥ 2|S| ε1
ε1 + 6

(..........(iii))

≥ 2|B|

Similarly from the fact we used in the previous case, the edges between S and Sc in
H is atleast

|Cc|ε1D1 − |B| ≥ |Cc|ε1D1

2

≥ |S| ε1
ε1 + 6

(from (iii))

Hence the edge expansion is
ε1

(ε1 + 6)(D2 + 1)
≥ h

Case 4: |B| ≤ ε1
ε1 + 6

|S| and |C| ≥ 3N1

4

Claim. there are atleast N1

4
many clouds in C who have paired with atmost 3D1

4

many vertices from V (G2) and are contained in S

Let x be the number of clouds who have atmost 3D1

4
many pairs from V (G2) inside

S. Then

x
D1

2
+ (|C| − x)

3D1

4
≤ |S| ≤ N1D1

2

=⇒ N1D1

2
+ x

D1

4
≥ |C|3D1

4
≥ 9N1D1

16

=⇒ x ≥ N1

4

□

Now let W ⊆ V (G2) be the pairs of any of the above vertices, then |W | ≤ 3D1

4
,

so number of edges between W and W c is atleast ε2D2|W c| ≥ ε2D2
D1

4
and all such

edges will be present in H as edges between S and Sc. So number of edges between

S and Sc in H is atleast
ε2D2N1

4
≥ |S|ε2D2

2
.

Hence the edge expansion is
ε2D2

2(D2 + 1)
≥ h

10

4. Construct S such a way that every cloud in S is completely full, ie, if (u, v) ∈ S
then ∀w ∈ V (G2), (u,w) ∈ S. Note now any edge corresponds to G2 can not go
outside of S as all the G2 neighbours of some (u, v) ∈ S is inside S since the u-cloud
in S is completely full. So only G1 edges can go outside S, and each vertes in H has
exactly one G1 neighbour,

so # edges outgoing from S ≤ number of G1 edges of S = |S|, hence ε2 ≤
1

D2 + 1

Question 5. Problem 5.5

1. Let AM×N be the adjacency matrix of the corresponding bipartite graph.

Claim. x = (x1, . . . , xN) ∈ {0, 1}N is a code word ⇐⇒ Ax = 0 (mod 2).

Proof : Clearly, ith coordinate of Ax is
∑

j∈Γ(i) xj.

So, for i ∈ [M],
⊕

j∈Γ(i) xj = 0 ⇐⇒
∑

j∈Γ(i) xj = 0 (mod 2).

=⇒ ∀i ∈ [M],
⊕

j∈Γ(i) xj = 0 ⇐⇒ ∀j ∈ [M],
∑

j∈Γ(i) xj = 0 (mod 2).

=⇒ ∀i ∈ [M],
⊕

j∈Γ(i) xj = 0 ⇐⇒ ∀j ∈ [M],
⊕

j∈Γ(i) xj = 0.

Identify {0, 1}N as a vector space of F2 and {0, 1}M as a subspace of {0, 1}N over F2.
By, rank nullity theorem, ker(A) + rank(A) = N and rank(A) ≤ M
=⇒ ker(A) ≥ N −M =⇒ |C| ≥ 2N−M .

Therefore, log |C| ≥ N −M =⇒ rate ≥ N −M

N
= 1− M

N
.

2. Say, c ∈ C, take Sc = {i ∈ [N] : ci = 1} and each j ∈ [M] has even number
of neighbours in Sc.
If c ∈ C be a codeword, and if possible hamming weight of c ≤ K.

Then, |Sc| < K =⇒ |Γ(Sc)| >
D

2
|Sc|.

For j ∈ Γ(Sc), take yj = number of neighbours of j in Sc = number of edges from j
to Sc.
So,

∑
j∈Γ(Sc)

yj = number of edges from Sc to Γ(Sc) ≤ D|Sc|.

=⇒ average number of neighbours of each j ∈ Γ(Sc) < 2, as |Γ(Sc)| >
D

2
|Sc|.

=⇒ ∃j ∈ Γ(Sc) so that there is unique i ∈ Sc, (i, j) ∈ E, Hence contradiction.

So, dH(c, 0) ≥
K

N
for all c ∈ C.

Take c, c′ ∈ C, then, dH(c, c′) = |Sc∆Sc′| = |S|.
If, dH(c, c

′) <
K

N
, |Sc∆Sc′ | < K =⇒ |Γ(Sc∆Sc′)| >

D

2
|Sc∆Sc′|.

take c0 ∈ {0, 1}N so that c0i = 1 ⇐⇒ i ∈ Sc∆Sc′ .
Now, c, c′ ∈ C =⇒ Ac− Ac′ = A(c− c′) = 0 (mod 2) =⇒ c0 is a codeword.

Hence, dH(c0, 0) ≥
K

N
=⇒ dH(c, c

′) ≥ K

N
.

3. Decoding:

11

Definition 0.1.
UNSAT (i) = {j ∈ Γ(i) : parity check corresponding to j is not satisfied }.
For S ⊆ [N], U(S) = {j ∈ Γ(S) : j has a unique neighbour in S}.

Say, received message is r = (r1, . . . , rN).
Algorithm:
While there is i ∈ [N] so that number of |UNSAT (i)| > 2/3|Γ(i)|:

flip ri.
return r.

If at some stage number of wrong parity checks are > k +
2

3
|Γ(i)| then after flip-

ping that ri, wrong parity checks < k +
1

3
|Γ(i)|. Initially we can have at most N

corrupted bits, so this algorithm runs in at most O(N) time as each iteration de-
creases total number of corrupted bits.

Claim. If G is (K, (1− ϵ)D) expander then,
for any |S| < K, |U(S)| > D(1− 2ϵ)|S|.

Proof : Total number of edges out of S = D|S| but we know |Γ(S)| > D(1− ϵ)|S|.
Say, NU(S) = Γ(S)− U(S), then, |U(S)|+ 2|NU(S)| ≤ D|S|.
And |U(S)|+ |NU(S)| > (1− ϵ)D|S|.
By this two inequalities, we have |U(S)| > (1− 2ϵ)D|S|.

Claim. If number of errors < K, then, there is a node in left vertex set, whose
> 2/3 neighbours make wrong parity check. (For sufficiently small ϵ)

Proof : Say, S = set of corrupted vertices. Then after each iteration |S| < K as,
error does not increase. So, |U(S)| > (1− 2ϵ)D|S| > 2D|S|/3 if ϵ < 1/6.
As, parity checks for all of j ∈ U(S) is not satisfied, there is a vertex i in S so that
|UNSAT (i)| > 2D/3.
=⇒ i has > 2/3 neighbours which make wrong parity check.

Therefore, if r be the received message dH(r, w) <
K

N
where w is the nearest codeword

to r, the algorithm ends up giving the codeword w.

12

