CPTH II 1

Saswata Mukherjee
Somnath Bhattacharjee

January 8, 2023

Question 1. Exercise 2.5

a. Let f be a D degree polynomial over a finite field \mathbb{F} with $|\mathbb{F}|=q$, now for some $d \leq D$, the number of distinct irreducible factors of f of degree D polynomials will be atmost $\frac{D}{d}$. This is because if there are l such factors then $l d \leq D$.
Now we know that for some constant c there are atleast $c \frac{q^{d+1}}{d}$ many ireeducible polynomials of degree d. (As we know that number of irreducible degree d monic polynomial N_{d} is nearly $\frac{q^{d}}{d}+O\left(\frac{q^{\frac{d}{2}}}{d}\right)$). Also there are q^{d+1} many polynomials of degree d (as there can be $d+1$ many coefficients and each has q many choices). Now

$$
\begin{aligned}
\operatorname{Pr}[g(x) \not X f(x)] & \geq \operatorname{Pr}[g(x) \not X f(x) \text { and } g(x) \text { is irreducible }] \\
& =\operatorname{Pr}[g(x) \not X f(x) \mid g(x) \text { is irreducible }] \times \operatorname{Pr}[g(x) \text { is irreducible }] \\
& \geq\left[1-\frac{D / d}{c q^{d+1} / d}\right] \times \frac{c q^{d+1} / d}{q^{d+1}} \\
& =\frac{1}{d}-\frac{D}{d q^{d+1}}
\end{aligned}
$$

Now if we set $d=\log _{q}(2 D)-1$, we will have $\operatorname{Pr}[g(x) \not X f(x)] \geq \frac{1}{2 d}=\frac{1}{\Omega(\log D)}$ So we are done

Say our input is a s size circuit C computing $f(x)$. Assume k is the maximum number of bits of the exponents in C.
Now our algorithm is :

- Pick $t s \log k$ many random $d:=c s \log k$ degree univariate polynomials $\left\{g_{i}(x)\right\}$ independently
- For each $i=1(1) t \log D$ check whether $g_{i}(x)$ divides $f(x)$ or not.
- If all the $g_{i}(x)$ divides $f(x)$ return $f(x) \equiv 0$, else $f(x)$ is non zero.

To check whether $g(x)$ divides $f(x)$ or not, we can simply do a BFS from bottom in the circuit of f, for each node v we will divide v by g, note $v \bmod g$ is univariate d degree polynomial, so sparsity will be $d+1$, so entire checking can be done in $\operatorname{poly}(d)=O(\operatorname{poly}(s))$ time .

So the running time is surely poly(ts), we will take $t=\operatorname{poly}(s)$ to adjust the error value.

Note the maximum degree computed by the circuit C is $k^{s}=: D$, so degree of $f \leq D$ Now if $f(x) \equiv 0$ then the algorithm will not give any error, but if $f(x) \neq 0$ then the error probability is less than $\left(1-\frac{1}{c^{\prime} \log D}\right)^{t s} \leq e^{-t c^{\prime}}$.
Now we can adjust t s.t. the error probability becomes less than $\frac{1}{2}$.
b. Let C be a multivariate s size circuit computing $f\left(x_{0}, \ldots, x_{n}\right)$ od degree d we will apply Kronecker map on f to make it univariate. Let say $q(y)$ be the polynomial after setting $x_{i}=y^{d^{i}}$ in f, we have proved in the class that this map preserves the non-zeroness , ie, $f=0$ iff $q=0$. To compute $y^{d^{i}}$ we need $i \log d$ size univariate exponentiation circuit. To create the circuit that computes q, we can construct the circuit for $y^{d^{i}}$ individually and then connect the output gate with the x_{i} input gate of C. So total size of the final circuit computing q will be $n^{2} \log d$ and since $n, s=O\left(s^{c}\right)$ the circuit size will be poly of s.

Question 2. Exercise 2.7

1. Let λ be an eigen value of M with eigen vector v, then

$$
\begin{aligned}
\|\lambda v\| & =\|M v\| \\
& \leq\|M\| \cdot\|v\| \\
\Longrightarrow|\lambda| & \leq\|M\|
\end{aligned}
$$

Now from birkhoff von newmann theorem we know M is in convex span of the permutation matrices, ie, there exists $0 \leq \lambda_{1}, \ldots, \lambda_{k} \leq 1$ with $\sum \lambda_{i}=1$ s.t. if P_{i} s are the permutation matrices

$$
\begin{aligned}
M & =\sum \lambda_{i} P_{i} \\
\Longrightarrow\|M\| & \leq\left\|\sum \lambda_{i} P_{i}\right\| \\
& \leq \sum \lambda_{i}\left\|P_{i}\right\| \\
& \leq \sum \lambda_{i}=1 \quad \text { (norm of permutation matrices is 1) }
\end{aligned}
$$

(We can prove it directly as well by taking a λ eigen value with $|\lambda|>1$, Now say $M v=\lambda v$, say v_{i} is the highest entry of v in absolute value, WLOG $v_{i}>0$, Now $|\lambda| v_{i}$ can be written as convex sum of all the v_{j} s which contradicts $|\lambda|>1$. But we need the operator norm upper bound in the next problem.)
2. (\Longrightarrow) Let the graph G is not connected and WLOG it has two connected components, then we can say the normalised matrix M for G is a diagonal block matrix with two blocks $A_{n_{1} \times n_{1}}, B_{n_{2} \times n_{2}}$ (where $n_{1}+n_{2}=N$) each is normalised adjacency matrix for the connected components ,ie,

$$
M=\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

And each A and B are doubly stochastic matrix, hence each have eigen value 1 with multiplicity atleast 1 , so M has eigen value 1 with multiplicity atleast 2 .
(\Longleftarrow) We will prove a lemma first, which says for a set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$, if x_{i} can be written as convex combination of all the x_{j} s then $x_{i}=x_{j}$.

Lemma 1. For any k, for any $0<\lambda_{1}, \ldots, \lambda_{k}<1$, and $\sum \lambda_{i}=1$, if $x_{1}=\sum \lambda_{i} x_{i}$ has some real solution, then $x_{i}=x_{1}$ for all i

We will induct strongly on k.
When $k=2$

$$
x_{1}=\lambda x_{1}+(1-\lambda) x_{2} \Longrightarrow x_{1}=x_{2}
$$

Assume it is true for all $k \leq t$ for some $t \geq 2$. Now for $t+1$, since $\lambda_{1} \neq 0$ we can say $\lambda_{t+1} \neq 1$

$$
\begin{aligned}
x_{1} & =\sum \lambda_{i} x_{i}+\lambda_{t+1} x_{t+1} \\
& =\left(1-\lambda_{t+1}\right) \frac{\sum \lambda_{i} x_{i}}{1-\lambda_{t+1}}+\lambda_{t+1} x_{t+1}
\end{aligned}
$$

Hence from induction hypothesis, $x_{t+1}=x_{1}$ and $\frac{\sum_{i=1}^{t} \lambda_{i} x_{i}}{1-\lambda_{t+1}}=x_{1}$
Now as

$$
\sum_{i=1}^{t} \frac{\lambda_{i}}{1-\lambda_{t+1}}=\frac{1-\lambda_{t+1}}{1-\lambda_{t+1}}=1
$$

So again from induction hypothesis $x_{i}=x_{1} \forall i=1(1) t$
Now say $M v=v$ for some v then any v_{i} can be written as convex combination of $v_{r} \mathrm{~s}$ where $r \mathrm{~s}$ are the neighbours of i. So from the lemma $v_{i}=v_{r}$. Now the graph is connected, so v_{1} will be same with all the neighbours of 1 , and they will be same as their neighbours and so on, and this way all the v_{i} will be same. So $v=\mathbf{1}_{v}$.
3. (\Longrightarrow) Say the vertex sets are A, B. It can also be seen that M has two diagonal 0 blocks of order $|A| \times|A|$ and $|B| \times|B|$. So

$$
M=\left[\begin{array}{cc}
0_{A} & P_{|A| \times|B|} \\
Q_{|B| \times|A|} & 0_{B}
\end{array}\right]
$$

Also P, Q are doubly stochastic.
Consider the vector $v=(\underbrace{1, \ldots, 1}_{|A| \text { many }}, \underbrace{-1, \ldots,-1}_{|B| \text { many }})$
So $M v=-v$ as P, Q are doubly stochastic.
(\Longleftarrow) Let v be an eigen vector of M with eigen value -1 . Let u be the vector
with $u_{i}=\left|v_{i}\right|$. Now

$$
\begin{align*}
\|v\|^{2} & =-\langle v, M v\rangle \\
& =-v^{T} M v \\
& =-\sum_{i, j} v_{i} M_{i j} v_{j} \\
& =-\sum_{i} v_{i}^{2} M_{i i}-2 \sum_{(i, j) \in E, i \neq j} v_{i} M_{i j} v_{j} \\
& \leq\left|\sum_{i} v_{i}^{2} M_{i i}+2 \sum_{(i, j) \in E, i \neq j} v_{i} M_{i j} v_{j}\right| \tag{i}\\
& \leq \sum_{i}\left|v_{i}^{2} M_{i i}\right|+2 \sum_{(i, j) \in E, i \neq j}\left|-v_{i} M_{i j} v_{j}\right| \\
& =\sum_{i} u_{i}^{2} M_{i i}+2 \sum_{(i, j) \in E, i \neq j} u_{i} M_{i j} u_{j} \\
& =\sum_{i, j} u_{i} M_{i j} u_{j} \\
& =\langle u, M u\rangle \\
& \leq\|u\| \cdot\|M u\| \\
& \leq\|u\|^{2} \cdot\|M\| \leq\|u\|^{2}
\end{align*}
$$

(From the first problem)
Now since $\|u\|=\|v\|$, we can say all the inequalities will convert to equality. From the (i) step $v_{i} v_{j} \leq 0$ and $M_{i i}=0$. So for all $(i, j) \in E$ we have $i \neq j$ and one $v_{i}>0$ and another $v_{j}<0$. So the vertex decomposition is $A=\left\{i \mid v_{i} \geq 0\right\}, B=\left\{j \mid v_{j}<0\right\}$. We can say there are no internal edges in A or B, hence G is bipartite.
4. We will prove the hint first. Say the $n \times n$ matrix $D=d M$, so $D_{i j}$ is the number of edges between v_{i} and v_{j}. So $\sum_{i,(i, j) \in E} D_{i j}=\sum_{j,(i, j) \in E} D_{i j}=d$

$$
\begin{aligned}
\langle v, M v\rangle=\sum_{i, j} v_{i} M_{i j} v_{j} & =\sum_{i} v_{i}^{2} M_{i i}+2 \sum_{(i, j) \in E, i \neq j} v_{i} M_{i j} v_{j} \\
& =\frac{1}{d} \sum_{i} v_{i}^{2} D_{i i}+\frac{1}{d} \sum_{(i, j) \in E, i \neq j} D_{i j}\left(2 v_{i} v_{j}\right) \\
& =\frac{1}{d} \sum_{i} v_{i}^{2}\left(d-\sum_{j,(i, j) \in E, i \neq j} D_{i j}\right)+\frac{1}{d} \sum_{(i, j) \in E, i \neq j} D_{i j}\left(2 v_{i} v_{j}\right) \\
& =\sum_{i} v_{i}^{2}+\frac{1}{d} \sum_{(i, j) \in E, i \neq j} D_{i j}\left(2 v_{i} v_{j}-v_{i}^{2}-v_{j}^{2}\right) \\
& =\left\|v_{i}\right\|^{2}-\frac{1}{d} \sum_{(i, j) \in E, i \neq j} D_{i j}\left(v_{i}-v_{j}\right)^{2} \\
& =1-\frac{1}{d} \sum_{(i, j) \in E} D_{i j}\left(v_{i}-v_{j}\right)^{2} \\
\Longrightarrow \min _{v \text { with the conditions }}^{\max }\langle v, M v\rangle & =1-\sum_{v \text { with the conditions }} D_{i, j) \in E}\left(v_{i}-v_{j}\right)^{2}
\end{aligned}
$$

Now note $W:=\left\{x \mid \sum x_{i}=0\right\}=\{x \mid\langle x, \mathbf{1}\rangle=0\}=\mathbf{1}^{\perp}$
Hence $\operatorname{dim}(W)=n-1$
Now say multiplicity of 1 eigen value is $t\left(\lambda_{1}, \ldots, \lambda_{t}=1\right)$ and λ_{t+1} is largest eigen value which is not 1 .
So if $\left\{v_{1}, \ldots, v_{n-1}\right\}$ are the basis of W and $\left\{u_{1}, \ldots, u_{t-1}, u_{t}\right\}$ be the eigenvectors corresponding to the eigen values $\lambda_{1}=1, \lambda_{2}$ of M, then all of them cannot be linearly independent together else the dimension of \mathbb{R}^{n} will be $n-1+t+1=n+t$ which is not possible. so $\exists k_{o}, \ldots, k_{t}, a_{1}, \ldots, a_{n-1}$ s.t. $\sum k_{i}^{2}=1$ and not all a_{i} s are zero, $v:=k_{0} u_{0}+\cdots+k_{t} u_{t}=a_{1} v_{1}+\cdots+a_{n-1} v_{n-1}$

Note $\|v\|=1$, now

$$
\begin{aligned}
1-\min _{x, x \in W,\|x\|=1} \frac{1}{d} \sum_{(i, j) \in E} d_{i j}\left(x_{i}-x_{j}\right)^{2} & =\max _{x, x \in W,\|x\|=1}\langle x, M x\rangle \\
& \geq\langle v, M v\rangle \\
& =\left\langle v, \sum \lambda_{i} k_{i-1} u_{i-1}\right\rangle \\
& =\sum \lambda_{i} k_{i-1}^{2}+ \\
& \geq \lambda_{t+1} \sum k_{i}^{2}=\lambda_{t+1}
\end{aligned}
$$

Now assume G be the graph whoose all eigenvalues are non-negative. Now if we can prove that $\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \geq 1 / \operatorname{poly}(n, d)$ then it will essentially imply

$$
1-\min _{x, x \in W,\|x\|=1} \sum_{(i, j) \in E} d_{i j}\left(x_{i}-x_{j}\right)^{2} \leq 1-\operatorname{poly}(n, d)
$$

as $d_{i j} \geq 1$ if $(i, j) \in E$. Hence largest eigen value (in terms of absolute value) after 1 is atmost $1-1 / \operatorname{poly}(n, d)$. Following claim will prove the remaining part.

Claim. $\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \geq 1 / \operatorname{poly}(n, d)$
We know that $\sum\left|x_{i}^{2}\right|=1$, hence there exists a x_{i} s.t. $\left|x_{i}\right| \geq \frac{1}{\sqrt{n}}$.
Now there must be one x_{j} s.t. $x_{i} . x_{j}<0$ and since G is connected, i and j is also connected, say via the path $i=i_{0}, i_{1}, \ldots, i_{k}=j$.
So

$$
\begin{array}{rlr}
\sum_{r=0}^{k-1}\left(x_{i_{r}}-x_{i_{r+1}}\right)^{2} & \geq \frac{\left(\sum_{r=0}^{k-1}\left(x_{i_{r}}-x_{i_{r+1}}\right)\right)^{2}}{k+1} \\
& =\frac{\left(x_{i}-x_{j}\right)^{2}}{k+1} \geq \frac{1}{n D} \quad(D \text { is the diameter }) \\
\Longrightarrow \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} & \geq \frac{1}{n D} &
\end{array}
$$

So the overall bound will be $1-\frac{1}{n d D}$ if all the eigen values are non-negative. Now
if not all eigen values are nonnegative then G^{2} will have all the eigen values nonnegative, and then we can apply the previous part to get largest eigen value (in terms of absolute value) after 1

$$
\lambda_{2} \geq(1-1 / n d D)^{\frac{1}{2}} \geq\left(1-\frac{1}{2 n d D}\right)
$$

5. G is connected means multiplicity of 1 as an eigen value is exactly one and non bipartite means -1 is not an eigen value. Hence the second largest eigen value in terms of absolute value $\lambda_{2} \leq 1-1 / \operatorname{poly}(n, d)$, or the spectral gap $\gamma(G) \geq 1 / \operatorname{poly}(n, d)$
6. Consider G as $2 k$ cycle. Clearly here $n=2 k, d=2, D=2 k-1$, so $\lambda_{2} \leq 1-\frac{1}{\Omega\left(k^{2}\right)}$ from the above calculations.
Now consider

$$
J_{2 k \times 2 k}=\frac{1}{2}\left[\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
& I_{2 k-1 \times 2 k-1} & 0
\end{array}\right]
$$

It can be seen that the normalised adjacency matrix of G is just $J+J^{T}$ and the eigen values of J are $\frac{1}{2} \times 2 k$ th roots of unity. Now let M, M^{T} diagonalise J, ie, $M J M^{T}=$ some diagonal matrix D then

$$
\begin{aligned}
M\left(J+J^{T}\right) M & =M J M^{T}+M J^{T} M^{T} \\
& =D+M(M J)^{T} \\
& =D+\left(M J M^{T}\right)^{T} \\
& =D+D^{T}
\end{aligned}
$$

Hence M, M^{T} can diagonalize $J+J^{T}$ as well. So the eigen values of $J+J^{T}$ is $\frac{1}{2}\left(e_{i}+\overline{e_{i}}\right)$ where $e_{i} \mathrm{~S}$ are the $2 k \mathrm{th}$ roots of unity. Hence the second largest eigen value will be

$$
\cos \frac{\pi}{k} \geq 1-\frac{1}{k^{2} \pi^{2} / 2}=1-\frac{1}{O\left(k^{2}\right)}
$$

Hence the bound is tight.
Now we know $\gamma(G) \geq \frac{1}{\Omega(n d D)}$ and D can be atmax n, so

$$
\gamma(G) \geq \frac{1}{\Omega\left(n^{2} d\right)} \geq \frac{1}{\Omega\left(n^{2} d^{2}\right)}
$$

Question 3. Exercise 3.2

1. Say, we have S_{1}, \ldots, S_{i-1} fixed such that $\forall j \in[i-1],\left|S_{j}\right|=l$ and $\left|S_{j} \cap S_{k}\right|<a$ for $j \neq k$. Now we are randomly choosing S_{i}.
Say, X_{j} is the event of $\left|S_{i} \cap S_{j}\right| \geq a$.
i.e.,

$$
X_{j}= \begin{cases}1 & \text { if }\left|S_{i} \cap S_{j}\right| \geq a \\ 0 & \text { otherwise }\end{cases}
$$

for $j \leq i-1$.
Now,

$$
\begin{aligned}
E_{S_{i}}\left[\#\left\{j<i:\left|S_{i} \cap S_{j}\right| \geq a\right\}\right] & =E_{S_{i}}\left[\sum_{j=1}^{i-1} X_{j}\right] \\
& =\sum_{j} E_{S_{i}}\left[X_{j}\right] \\
& =\sum_{j} \operatorname{Pr}_{S_{i}}\left[\left|S_{i} \cap S_{j}\right| \geq a\right] \\
& =\sum_{j=1}^{i-1} \frac{\binom{l}{a}\binom{d-a}{l-a}}{\binom{d}{l}} \\
& <m \frac{\binom{l}{a}\binom{d-a}{l-a}}{\binom{d}{l}} \\
& =m \frac{\binom{l}{a}}{\binom{d}{l}}<1
\end{aligned}
$$

That means, if we randomly choose S_{i}, with probability <1, it will intersect with some $S_{j}, j \in[i-1]$ in at least a elements.
$\Longrightarrow \exists S_{i}$ so that $\left|S_{j} \cap S_{i}\right|<a$ for all $j \in[i-1]$.
$\Longrightarrow \exists S_{1}, \ldots, S_{m}$ where $m \leq \frac{\binom{d}{l}}{\binom{l}{a}^{2}}$ and $\left|S_{i}\right|=l,\left|S_{i} \cap S_{j}\right|<a$.
2. $m \leq \frac{\binom{d}{l}}{\binom{l}{a}^{2}}$.
we know $\frac{(d / a)^{a}}{(l e / a)^{2 a}} \leq \frac{\binom{d}{l}}{\binom{l}{a}^{2}}$.
Now, if $d=O\left(\frac{l^{2}}{a}\right) \Longrightarrow d \approx c l^{2} / a$ for some c.
$\Longrightarrow \frac{\left(\frac{c^{2}}{a^{2}}\right)^{a}}{e^{2 a}\left(\frac{l^{2}}{a^{2}}\right)^{a}}=\frac{c^{a}}{e^{2 a}} \leq \frac{\binom{d}{l}}{\binom{l}{a}^{2}}$.
Take $c_{0}=\left(\frac{c}{e^{2}}\right)^{\gamma}$ where $a=\gamma \log m$.
If we assume $c_{0} \geq 2$, then, $m=2^{\log m} \leq\left(c_{0}\right)^{\log m} \leq \frac{\binom{d}{l}}{\binom{l}{a}^{2}}$.
So, we can find $S_{1}, \ldots, S_{m} \subset[d]$ with $d=O\left(\frac{l^{2}}{a}\right)$ and $a=\gamma \log m$.
3. Initially take $A=\left\{S_{1}\right\}$ where $S_{1} \subset[d]$ be any of size l.

While $|A|<m$:
for all $S_{0} \subset[d]$ so that $\left|S_{0}\right|=l$:
if $\left|S \cap S_{0}\right|<a, \quad \forall S \in A$, add S_{0} to A.
end for.
end while.
Part 1,2 shows that the algorithm will not stop at any intermediate step for some specific choice of d, l, a. And the algorithm runs in $\operatorname{poly}(m, d) 2^{d}$ time.
Now, $d=O(l) \approx c l$ for some c and $m=2^{l}$. So, $2^{d} \approx\left(2^{l}\right)^{c}=\operatorname{poly}(m)$.

Hence, algorithm runs in $\operatorname{poly}(m, d)$ time.

Question 4. Problem 4.9

1. As given as a hint, we can prove that $\left(G_{1}\left\ulcorner G_{2}\right)^{3}\right.$ has $G_{1}(\mathrm{Z}) G_{2}$ as subgraph via some calculations. Let $\left.H=G_{1} \mathrm{\Gamma}\right) G_{2}$ and M be the normalised adjacency matrix of H, clearly H is $D_{2}+1$ regular, hence H^{3} is $\left(D_{2}+1\right)^{3}$ regular. Let for $u \in\left[N_{1}\right]$ A_{u} be the permutation matrix corresponds to the bijection on $\left[D_{2}\right]$ which is i is mapped to j iff i th neighbour of u is v and j th neighbour of v is u. Now let \tilde{A} be the $N_{1} D_{1} \times N_{1} D_{1}$ matrix whoose u th $D_{1} \times D_{1}$ diagonal block is A_{u}, (basically \tilde{A} is the permutation matrix we will use to construct the zigzag product). Let B be the normalized adjacency matrix of G_{2} and $\tilde{B}=B \otimes I_{N_{1} \times N_{1}}$.
So the normalized adjaceny matrix of $H^{\prime}:=G_{1}(\mathrm{Z}) G_{2}$ is $\tilde{B} \tilde{A} \tilde{B}=: C$
Now the adjacency matrix of M^{3}

$$
\begin{aligned}
\left(D_{2}+1\right)^{3} M & =\left(\tilde{A}+D_{2} \tilde{B}\right)^{3} \\
& =D_{2}^{2}(\tilde{B} \tilde{A} \tilde{B})+(\ldots)
\end{aligned}
$$

Now note if we remove the subgraph H^{\prime} from H, the graph will be $\left(D_{2}+1\right)^{3}-D_{2}^{2}$ regular. Let the normalised adjacency matrix of it be D and $x=\frac{D_{2}^{2}}{\left(D_{2}+1\right)^{3}}$ then

$$
\begin{aligned}
M & =x C+(1-x) D \\
\Longrightarrow \max _{v, v \perp \mathbf{1}} & \leq \max _{v, v \perp \mathbf{1}} C+(1-x) \max _{v, v \perp \mathbf{1}} D \\
\Longrightarrow(1-g)^{3} & \leq x\left(1-\gamma_{1} \gamma_{2}^{2}\right)+(1-x) \\
& =1-x \gamma_{1} \gamma_{2}^{2}<1 \\
\Longrightarrow g\left(\gamma_{1}, \gamma_{2}, D_{2}\right) & >0
\end{aligned}
$$

2. Now the idea is simple, for $G=(N, D, \gamma)$ (where D is constant) we will take G^{\prime} as a D cycle, in the 2 nd problem we have proved that $\gamma\left(G^{\prime}\right)$ is $\Theta\left(1-\frac{1}{D^{2}}\right)$,
Now $G \subset G^{\prime}$ is $\left(N D, 3, \gamma^{\prime}\right)$ expander (since D is constant, there is no big blow up in vertex size), so we have converted the degree into the constant 3 .
3. Let $h:=\min \left\{\frac{D_{2} \varepsilon_{1} \varepsilon_{2}}{\left(D_{2}+1\right)\left(\varepsilon_{1}+6\right)}, \quad \frac{\varepsilon_{1}}{\left(D_{2}+1\right)\left(\varepsilon_{1}+6\right)}, \quad \frac{D_{2} \varepsilon_{2}}{2\left(D_{2}+1\right)}\right\}$

We will prove that $H:=G_{1} \odot G_{2}$ is h edge expander.(clearly $h \geq 0$)
Let S be a vertex subset of H with $|S| \leq N_{1} D_{1} / 2$
As given in the hint, we will make two partitions on $S: A$ and B, where A is the set of all half full clouds (ie, $(u, v) \in A$ if there is atleast $\frac{D_{1}}{2}$ many v_{i} s in $V\left(G_{2}\right)$ s.t. $\left.\left(u, v_{i}\right) \in S\right), B$ is set of half empty clouds defined by $S-A$.
Define $C=\left\{u \in V\left(G_{1}\right) \mid \exists v \in V\left(G_{2}\right)\right.$ s.t. $\left.(u, v) \in A\right\}$. Basically C is the projection of A on $V\left(G_{1}\right)$.

Note that

$$
\begin{align*}
& |S| \leq|B|+|C| D_{1} \\
\Longrightarrow & |C| \geq \frac{|S|-|B|}{D} \tag{i}
\end{align*}
$$

Now
Case 1: $|B|>\frac{\varepsilon_{1}}{\varepsilon_{1}+6}|S|$
We will have atleast $D_{2} \varepsilon_{2}|B| \geq \frac{D_{2} \varepsilon_{1} \varepsilon_{2}}{\varepsilon_{1}+6}|S|$ many edges from S to S^{c} (that is because we are applying G_{2} edge expansion in each clouds of B). Hence edge expansion is

$$
\frac{\frac{D_{2} \varepsilon_{1} \varepsilon_{2}}{\varepsilon_{1}+6}|S|}{\left(D_{2}+1\right)|S|} \geq h
$$

Case 2: $|B| \leq \frac{\varepsilon_{1}}{\varepsilon_{1}+6}|S|$ and $|C| \leq \frac{N_{1}}{2}$
Note if E is the set of edges between C and C^{c} in G_{1}, then there will be atleast $|E|-|B|$ many edges between S and S^{c} in H, as any vertex in H will have exactly one G_{1} neighbour. So there can be atmost $|B|$ many edges corresponds to E in H which are from half full clouds to half empty clouds in S, and remaining edges are going outside of S.

Now there are atleast $|C| \varepsilon_{1} D_{1}$ many edges from C to C^{c} in G_{1} (edge expansion on G_{1}),

$$
\begin{align*}
|C| \varepsilon_{1} D_{1} & \geq \frac{|S|-|B|}{D_{1}} \varepsilon_{1} \tag{i}\\
& \geq|S|\left(1-\frac{\varepsilon_{1}}{\varepsilon_{1}+6}\right) \varepsilon_{1} \\
& =2 \times 3|S| \frac{\varepsilon_{1}}{\varepsilon_{1}+6} \tag{ii}\\
& >2|B|
\end{align*}
$$

Hence edges in H between S and S^{c} is atleast

$$
\begin{align*}
|C| \varepsilon_{1} D_{1}-|B| & \geq \frac{|C| \varepsilon_{1} D_{1}}{2} \\
& \geq 3|S| \frac{\varepsilon_{1}}{\varepsilon_{1}+6} \tag{ii}
\end{align*}
$$

Hence the edge expansion is $\frac{3 \varepsilon_{1}}{\left(\varepsilon_{1}+6\right)\left(D_{2}+1\right)} \geq h$.

Case 3: $|B| \leq \frac{\varepsilon_{1}}{\varepsilon_{1}+6}|S|$ and $\frac{3 N_{1}}{4} \geq|C| \geq \frac{N_{1}}{2}$
In this case we know $\left|C^{c}\right| \leq \frac{N_{1}}{2}$ hence number of edges between T and T^{c} is atleast

$$
\begin{align*}
\left|C^{c}\right| \varepsilon_{1} D_{1} & \geq \frac{N_{1} \varepsilon_{1} D_{1}}{4} \\
& \geq \frac{|C| \varepsilon_{1} D_{1}}{3} \\
& \geq \frac{(|S|-|B|) \varepsilon_{1}}{3} \\
& \geq 2|S| \frac{\varepsilon_{1}}{\varepsilon_{1}+6} \tag{iii}\\
& \geq 2|B|
\end{align*}
$$

Similarly from the fact we used in the previous case, the edges between S and S^{c} in H is atleast

$$
\begin{align*}
\left|C^{c}\right| \varepsilon_{1} D_{1}-|B| & \geq \frac{\left|C^{c}\right| \varepsilon_{1} D_{1}}{2} \\
& \geq|S| \frac{\varepsilon_{1}}{\varepsilon_{1}+6} \tag{iii}
\end{align*}
$$

Hence the edge expansion is $\frac{\varepsilon_{1}}{\left(\varepsilon_{1}+6\right)\left(D_{2}+1\right)} \geq h$
Case 4: $|B| \leq \frac{\varepsilon_{1}}{\varepsilon_{1}+6}|S|$ and $|C| \geq \frac{3 N_{1}}{4}$
Claim. there are atleast $\frac{N_{1}}{4}$ many clouds in C who have paired with atmost $\frac{3 D_{1}}{4}$ many vertices from $V\left(G_{2}\right)$ and are contained in S

Let x be the number of clouds who have atmost $\frac{3 D_{1}}{4}$ many pairs from $V\left(G_{2}\right)$ inside S. Then

$$
\begin{aligned}
& x \frac{D_{1}}{2}+(|C|-x) \frac{3 D_{1}}{4} \leq|S| \leq \frac{N_{1} D_{1}}{2} \\
\Longrightarrow & \frac{N_{1} D_{1}}{2}+x \frac{D_{1}}{4} \geq|C| \frac{3 D_{1}}{4} \geq \frac{9 N_{1} D_{1}}{16} \\
\Longrightarrow & x \geq \frac{N_{1}}{4}
\end{aligned}
$$

Now let $W \subseteq V\left(G_{2}\right)$ be the pairs of any of the above vertices, then $|W| \leq \frac{3 D_{1}}{4}$, so number of edges between W and W^{c} is atleast $\varepsilon_{2} D_{2}\left|W^{c}\right| \geq \varepsilon_{2} D_{2} \frac{D_{1}}{4}$ and all such edges will be present in H as edges between S and S^{c}. So number of edges between S and S^{c} in H is atleast $\frac{\varepsilon_{2} D_{2} N_{1}}{4} \geq \frac{|S| \varepsilon_{2} D_{2}}{2}$.
Hence the edge expansion is $\frac{\varepsilon_{2} D_{2}}{2\left(D_{2}+1\right)} \geq h$
4. Construct S such a way that every cloud in S is completely full, ie, if $(u, v) \in S$ then $\forall w \in V\left(G_{2}\right),(u, w) \in S$. Note now any edge corresponds to G_{2} can not go outside of S as all the G_{2} neighbours of some $(u, v) \in S$ is inside S since the u-cloud in S is completely full. So only G_{1} edges can go outside S, and each vertes in H has exactly one G_{1} neighbour,
so \# edges outgoing from $S \leq$ number of G_{1} edges of $S=|S|$, hence $\varepsilon_{2} \leq \frac{1}{D_{2}+1}$

Question 5. Problem 5.5

1. Let $A_{M \times N}$ be the adjacency matrix of the corresponding bipartite graph.

Claim. $x=\left(x_{1}, \ldots, x_{N}\right) \in\{0,1\}^{N}$ is a code word $\Longleftrightarrow A x=0(\bmod 2)$.
Proof: Clearly, i th coordinate of $A x$ is $\sum_{j \in \Gamma(i)} x_{j}$.
So, for $i \in[M], \bigoplus_{j \in \Gamma(i)} x_{j}=0 \Longleftrightarrow \sum_{j \in \Gamma(i)} x_{j}=0(\bmod 2)$.
$\Longrightarrow \forall i \in[M], \bigoplus_{j \in \Gamma(i)} x_{j}=0 \Longleftrightarrow \forall j \in[M], \sum_{j \in \Gamma(i)} x_{j}=0(\bmod 2)$.
$\Longrightarrow \forall i \in[M], \bigoplus_{j \in \Gamma(i)} x_{j}=0 \Longleftrightarrow \forall j \in[M], \bigoplus_{j \in \Gamma(i)} x_{j}=0$.
Identify $\{0,1\}^{N}$ as a vector space of \mathbb{F}_{2} and $\{0,1\}^{M}$ as a subspace of $\{0,1\}^{N}$ over \mathbb{F}_{2}. By, rank nullity theorem, $\operatorname{ker}(A)+\operatorname{rank}(A)=N$ and $\operatorname{rank}(A) \leq M$
$\Longrightarrow \operatorname{ker}(A) \geq N-M \Longrightarrow|\mathcal{C}| \geq 2^{N-M}$.
Therefore, $\log |\mathcal{C}| \geq N-M \Longrightarrow$ rate $\geq \frac{N-M}{N}=1-\frac{M}{N}$.
2. Say, $c \in \mathcal{C}$, take $S_{c}=\left\{i \in[N]: c_{i}=1\right\}$ and each $j \in[M]$ has even number of neighbours in S_{c}.
If $c \in \mathcal{C}$ be a codeword, and if possible hamming weight of $c \leq K$.
Then, $\left|S_{c}\right|<K \Longrightarrow\left|\Gamma\left(S_{c}\right)\right|>\frac{D}{2}\left|S_{c}\right|$.
For $j \in \Gamma\left(S_{c}\right)$, take $y_{j}=$ number of neighbours of j in $S_{c}=$ number of edges from j to S_{c}.
So, $\sum_{j \in \Gamma\left(S_{c}\right)} y_{j}=$ number of edges from S_{c} to $\Gamma\left(S_{c}\right) \leq D\left|S_{c}\right|$.
\Longrightarrow average number of neighbours of each $j \in \Gamma\left(S_{c}\right)<2$, as $\left|\Gamma\left(S_{c}\right)\right|>\frac{D}{2}\left|S_{c}\right|$.
$\Longrightarrow \exists j \in \Gamma\left(S_{c}\right)$ so that there is unique $i \in S_{c},(i, j) \in E$, Hence contradiction.
So, $d_{H}(c, 0) \geq \frac{K}{N}$ for all $c \in \mathcal{C}$.
Take $c, c^{\prime} \in \mathcal{C}$, then, $d_{H}\left(c, c^{\prime}\right)=\left|S_{c} \Delta S_{c^{\prime}}\right|=|S|$.
If, $d_{H}\left(c, c^{\prime}\right)<\frac{K}{N},\left|S_{c} \Delta S_{c^{\prime}}\right|<K \Longrightarrow\left|\Gamma\left(S_{c} \Delta S_{c^{\prime}}\right)\right|>\frac{D}{2}\left|S_{c} \Delta S_{c^{\prime}}\right|$.
take $c_{0} \in\{0,1\}^{N}$ so that $c_{0 i}=1 \Longleftrightarrow i \in S_{c} \Delta S_{c^{\prime}}$.
Now, $c, c^{\prime} \in \mathcal{C} \Longrightarrow A c-A c^{\prime}=A\left(c-c^{\prime}\right)=0(\bmod 2) \Longrightarrow c_{0}$ is a codeword.
Hence, $d_{H}\left(c_{0}, 0\right) \geq \frac{K}{N} \Longrightarrow d_{H}\left(c, c^{\prime}\right) \geq \frac{K}{N}$.

3. Decoding:

Definition 0.1.

$U N S A T(i)=\{j \in \Gamma(i)$: parity check corresponding to j is not satisfied $\}$.
For $S \subseteq[N], U(S)=\{j \in \Gamma(S): j$ has a unique neighbour in $S\}$.

Say, received message is $r=\left(r_{1}, \ldots, r_{N}\right)$.
Algorithm:
While there is $i \in[N]$ so that number of $|U N S A T(i)|>2 / 3|\Gamma(i)|$:
flip r_{i}.
return r.
If at some stage number of wrong parity checks are $>k+\frac{2}{3}|\Gamma(i)|$ then after flipping that r_{i}, wrong parity checks $<k+\frac{1}{3}|\Gamma(i)|$. Initially we can have at most N corrupted bits, so this algorithm runs in at most $O(N)$ time as each iteration decreases total number of corrupted bits.

Claim. If G is $(K,(1-\epsilon) D)$ expander then, for any $|S|<K, \quad|U(S)|>D(1-2 \epsilon)|S|$.

Proof: Total number of edges out of $S=D|S|$ but we know $|\Gamma(S)|>D(1-\epsilon)|S|$.
$\overline{\text { Say, } N} U(S)=\Gamma(S)-U(S)$, then, $|U(S)|+2|N U(S)| \leq D|S|$.
And $|U(S)|+|N U(S)|>(1-\epsilon) D|S|$.
By this two inequalities, we have $|U(S)|>(1-2 \epsilon) D|S|$.

Claim. If number of errors $<K$, then, there is a node in left vertex set, whose $>2 / 3$ neighbours make wrong parity check. (For sufficiently small ϵ)

Proof : Say, $S=$ set of corrupted vertices. Then after each iteration $|S|<K$ as, error does not increase. So, $|U(S)|>(1-2 \epsilon) D|S|>2 D|S| / 3$ if $\epsilon<1 / 6$.
As, parity checks for all of $j \in U(S)$ is not satisfied, there is a vertex i in S so that $|U N S A T(i)|>2 D / 3$.
$\Longrightarrow i$ has $>2 / 3$ neighbours which make wrong parity check.
Therefore, if r be the received message $d_{H}(r, w)<\frac{K}{N}$ where w is the nearest codeword to r, the algorithm ends up giving the codeword w.

