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Abstract. Let f be an algebraic valued periodic arithmetical function and L(s, f), defined as
L(s, f) :=

∑∞
n=1 f(n)/ns for <(s) > 1, be the associated Dirichlet series. In this paper, we

study the vanishing and arithmetic nature of the special values L(k, f) when k > 1 is a positive
integer. We prove a generalization of the Baker-Birch-Wirsing theorem conditional on the Polylog
conjecture. Adopting a new approach, we define an induction operator on the space of periodic
arithmetic functions, which makes precise the notion of an “imprimitive” arithmetic function.
This enables us to obtain an analog of Okada’s criterion for L(1, f) = 0 and derive a natural
decomposition of the vector space

Ok(N) = {f : Z → Q | f(n+N) = f(n) for all n ∈ Z, L(k, f) = 0}.

1. Introduction

Let f be an arithmetical function, periodic with period N ≥ 2. The L-series attached to f is
defined as

L(s, f) :=
∞∑
n=1

f(n)

ns
=

1

N s

N∑
a=1

f(a) ζ
(
s,
a

N

)
,

which converges absolutely for <(s) > 1. Here ζ(s, x) :=
∑∞

n=0 (n+ x)−s denotes the Hurwitz
zeta-function. Using properties of the Hurwitz zeta-function, one can see that L(s, f) has an-
alytic continuation to the entire complex plane except for a simple pole at s = 1 with residue
1
N

∑N
a=1 f(a). Thus, L(s, f) is entire if and only if

∑N
a=1 f(a) = 0, in which case, L(1, f) exists.

Motivated by Dirichlet’s theorem of non-vanishing of L(1, χ), S. Chowla [6] initiated the study
of non-vanishing of L(1, f) in 1964. In an answer to a question proposed by Chowla, A. Baker, B.
Birch and E. Wirsing [2] applied Baker’s theory of linear forms in logarithm of algebraic numbers
and proved the following general theorem.

Theorem (Baker, Birch, Wirsing). If f is a non-vanishing function defined on the integers with
algebraic values and period N such that (i) f(n) = 0 whenever 1 < (n,N) < N and (ii) the N th

cyclotomic polynomial ΦN is irreducible over Q(f(1), f(2), · · · , f(N)), then

L(1, f) 6= 0,

when the series converges.

If either of the two conditions (i) or (ii) on the function f are relaxed, then there exist a
plethora of examples such that L(1, f) = 0. For instance, let f be the arithmetical function
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periodic modulo p2 defined such that

L(s, f) =

(
1− p

ps

)2

ζ(s). (1)

Then f is Q-valued, periodic modulo p2, does not satisfy (i) and L(1, f) = 0.

A natural question then is to classify all Q-valued periodic functions f such that L(1, f) = 0.
In 1982, Okada [21] translated this problem into a linear algebraic setting and obtained a criterion
for the vanishing of L(1, f). Going further, in [16], R. Murty and the second author introduced
the Okada space, namely,

O(N) :=
{
f : Z→ Q | f(n+N) = f(n) for all n ∈ Z, L(1, f) = 0

}
and constructed an explicit basis for O(N) using Okada’s criterion. As a consequence, they ob-
tained generalizations of the Baker-Birch-Wirsing theorem and connected this problem to the
arithmetic nature of Euler’s constant γ.

The aim of this paper is to study the values L(k, f) for k > 1 in a similar spirit as above. For
a positive integer N ≥ 2, and a number field K, we define

F (N ;K) =
{
f : Z→ K | f(N + n) = f(n), for all n ∈ Z

}
,

F0(N ;K) =

{
f ∈ F (N ;K)

∣∣ N∑
a=1

f(a) = 0

}
,

FD(N ;K) =
{
f ∈ F (N ;K) | f(a) = 0 for (a,N) 6= 1

}
,

Ok(N ;K) = {f ∈ F (N ;K) |L(k, f) = 0} .

If f ∈ FD(N ;K), we will say that f is of Dirichlet type. As we will mostly focus on rational
valued periodic functions, we let F (N) := F (N ;Q), F0(N) := F0(N ;Q), FD(N) := FD(N ;Q)
and Ok(N) := Ok(N ;Q) for brevity.

One can express the special value L(k, f) as

L(k, f) =
1

Nk

N∑
a=1

f(a) ζ
(
k,
a

N

)
=

(−1)k

(k − 1)!Nk

N∑
a=1

f(a)ψk−1

( a
N

)
,

where

ψm(z) =
dm

dzm
Γ′(z)

Γ(z)

is the m-th polygamma function. Furthermore, if f̂(b) := N−1
N∑
a=1

f(a) e−2πiab/N , then

L(k, f) =
N∑
b=1

f̂(b) Lik

(
e2πib/N

)
, (2)
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with Lim(z) :=
∑∞

n=1 z
n n−m being the m-th polylog function. For details, we refer the reader to

[18, Section 2].

Therefore, the non-vanishing of L(k, f) entails the understanding of Q-linear relations among
values of the polylog functions at roots of unity. However, even the irrationality of these polylog
values remains unknown. Towards this goal, the following conjecture was proposed by S. Gun,
M. R. Murty and P. Rath [9].

Conjecture 1 (Polylog Conjecture). Let α1, α2, · · · , αn be algebraic numbers with |αi| ≤ 1
such that Lik(α1), Lik(α2), · · · , Lik(αn) are Q-linearly independent. Then, Lik(α1), Lik(α2), · · · ,
Lik(αn) are Q-linearly independent.

In [10, Theorem 1.9], the authors showed that under the assumption of the Polylog conjecture,
an analog of the Baker-Birch-Wirsing theorem holds. We record below a generalization of [10,
Theorem 1.9], which will be proved in Section 2.

Theorem 1.1. Let N > 1 be an integer, F be a number field and f ∈ FD(N ;F). Let K :=

F ∩ Q(e2πi/N ) and H := Gal(Q(e2πi/N )/K) ⊆ (Z/NZ)∗. Assume that supp(f), the support of f
in (Z/NZ)∗, is contained in H. Then

L(k, f) 6= 0

unless f is identically 0, conditional on the Polylog conjecture (Conjecture 1).

In the above theorem, Polylog conjecture plays the crucial role of reducing a problem involving
values of transcendental functions to relations among algebraic numbers. This is similar to that of
Baker’s theorem in the Baker-Birch-Wirsing result. Therefore, proving Theorem 1.1 uncondition-
ally would necessarily require one to establish the Polylog conjecture with αi’s being roots of unity.

It is evident from Theorem 1.1 that the two crucial conditions required to obtain the non-
vanishing of L(k, f) rely on (i) the support of the function f and (ii) the number field generated
by values of f . Theorem 1.1 presents the most general situation in which the non-vanishing of
L(k, f) can be established.

Proceeding analogously as in the case of L(1, f), our next aim is to characterize periodic
functions f such that L(k, f) = 0 for a fixed integer k > 1. In this paper, we present a com-
prehensive study of this problem, by focusing on relaxing the condition on the support of the
function f in Theorem 1.1. More specifically, we consider functions f ∈ Ok(N ;K) such that

K ∩ Q(e2πi/N ) = Q. For simplicity, we restrict to the case K = Q. However, the theorems hold
for all number fields K disjoint from the N -th cyclotomic field.

A special case of Theorem 1.1, namely when f ∈ FD(N ;Q), was formulated as a conjecture
independently by Milnor [12] regarding the Q-linear independence of Hurwitz zeta-values. Since
this conjecture was inspired by earlier work of S. Chowla and P. Chowla [7], we refer to it as the
Chowla-Milnor conjecture, following the convention in [9].

Conjecture 2 (Chowla-Milnor Conjecture). If f ∈ FD(N), then L(k, f) = 0 ⇐⇒ f ≡ 0.

Thus, as a consequence of Theorem 1.1, we derive the Chowla-Milnor conjecture assuming the
Polylog conjecture. This is also proved in [9, Theorem 4].

For any positive integer r, define the dilation operator, Dr : F (N ;K)→ F (rN ;K) as

Dr(f)(n) =

{
f
(n
r

)
if r | n,

0 otherwise,
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and for a fixed positive integer k ≥ 1, let

Annr(f) := f − rk Dr(f)

denote the annihilation operator. Thus, we have

L(s,Annr(f)) =

(
1− rk

rs

)
L(s, f),

that is, Annr defines a linear map from F (N) to Ok(N).

Towards exploring vanishing of the values L(k, f), we prove Theorem 3.3, which is the analog
of Theorems [21, Theorem 10] and [22, Theorem 1] for an integer k > 1 in Section 3. Additionally,
we investigate the structure of the vector space Ok(N) and show that

Theorem 1.2. If k, N > 1 are fixed positive integers, then assuming the Chowla-Milnor conjec-
ture,

Ok(N) =
⊕
d|N,
d>1

Annd

(
FD

(
N

d

))
.

Equivalently, for every f ∈ Ok(N), there exist unique functions gd ∈ FD(N/d) such that

L(s, f) =
∑
d|N,
d>1

(
1− dk

ds

)
L(s, gd),

conditional on the Chowla-Milnor conjecture (Conjecture 2).

Obtaining an explicit expression for the functions gd in terms of the function f appears to be
a herculean task. However, when N is a product of two or three distinct primes, this can be
done using the operators defined in Section 3. We include these computations in Section 5 and
underline the difficulties that arise in the general case.

The Chowla-Milnor conjecture remains open. However, we prove that it enjoys the following
anatomical property. We say that the Chowla-Milnor conjecture is true modulo N if Conjecture
2 holds for all f ∈ FD(N). In Section 4, we prove that

Theorem 1.3. If Conjecture 2 is true modulo N for some integer N ≥ 2, then it is true mod d,
for all divisors d > 1 of N .

Using the tools developed in Section 4, we show that the functions appearing in Theorem 3.3
are intimately connected to the imprimitivity of Dirichlet characters.

Focusing on the classical theory of values of Dirichlet L-series, we recall here that

L(k, χ) ∈ πkQ∗,
that is, L(k, χ) is a non-zero algebraic multiple of πk, when k and χ are either both even or
both odd (see [13, Section 5]). However, when k and χ have opposite parity, the transcendental
nature of L(k, χ) is still unproved. Using (2), it is clear that L(k, χ) is a linear combination
of polylogarithms evaluated at roots of unity. Naturally, the Polylog conjecture is relevant in
this study. Although Conjecture 1 is compelling, it is insufficient to imply the transcendence (or
even irrationality) of the values L(k, χ) when k and χ have opposite parity. For this purpose,
one requires the Strong Polylog conjecture (see [3]), which predicts that a non-vanishing linear
form in polylogarithm of algebraic numbers is transcendental. In the penultimate section, we
adopt a complementary approach and study the consequences of the Polylog conjecture on the



SPECIAL VALUES OF DIRICHLET SERIES WITH PERIODIC COEFFICIENTS 5

algebraicity of the special values L(k, χ).

Let Sk := {χ mod N | L(k, χ) ∈ Q, N ≥ 2 squarefree} consist of the set of all distinct characters
with squarefree period such that L(k, χ) is algebraic. Then the elements of Sk are necessarily

characters that satisfy χ(−1) 6= (−1)k. For σ ∈ Gal(Q/Q), we define χσ(n) := σ(χ(n)) for all
n ∈ Z. It is not evident that if χ ∈ Sk, then χσ ∈ Sk, even if one assumes the Polylog conjecture.
We show that this holds under an additional mild hypothesis.

Theorem 1.4. Suppose that there exists a squarefree integer N > 1, and two distinct characters
χ and Ψ mod N such that

χ,Ψ ∈ Sk and Q(χ) ∩Q(Ψ) = Q.
Then conditional on the Polylog conjecture (Conjecture 1), Sk is closed under the action of
Gal(Q/Q), that is, if η ∈ Sk, then ησ is also in Sk for all σ ∈ Gal(Q/Q).

The condition restricting the characters of Sk to have squarefree period is of technical nature,
and can probably be relaxed. The absence of the disjointness hypothesis implies that a positive
proportion of characters χ of squarefree period (including the trivial and quadratic characters)
do not belong to Sk.

2. A general Baker-Birch-Wirsing type theorem

In this section, we prove Theorem 1.1, which is a general version of the Baker-Birch-Wirsing
theorem. Our proof follows along the lines of [10, Theorem 1.9]. However, we highlight that the
structure of the proof indicates the validity of the statement in a broader setup.

We first prove the lemma below which forms one of the two fundamental ideas in the proof of
Baker-Birch-Wirsing type theorems.

Lemma 2.1. Fix a positive integer k > 1. Let f ∈ F (N ;F) for a number field F with K :=

F ∩ Q(e2πi/N ). Let H := Gal(Q(e2πi/N )/K) ⊆ (Z/NZ)∗. For h ∈ H, let σh(f)(n) := f(h−1n).
Then

L(k, f) = 0 ⇐⇒ L(k, σa(f)) = 0,

for all a ∈ H, conditional upon the Polylog conjecture.

Proof. Suppose that L(k, f) = 0. Let α1, α2, · · · , αr ∈ {e2πia/N : 1 ≤ a ≤ N} be such that

{Lik(αb) : 1 ≤ b ≤ r} is a maximal Q-linearly independent subset of {Lik(e
2πia/N ) : 1 ≤ a ≤ N}.

Thus, we can write

Lik(e
2πia/N ) =

r∑
b=1

Aab Lik(αb), 1 ≤ a ≤ N.

Substituting this in (2), the value L(k, f) becomes

L(k, f) =

N∑
a=1

f̂(a)

r∑
b=1

Aab Lik(αb) =
r∑
b=1

Lik(αb)
N∑
a=1

Aab f̂(a). (3)

By the choice of αb’s we get that under the Polylog conjecture

r∑
b=1

Lik(αb)
N∑
a=1

Aab f̂(a) = 0 =⇒
N∑
a=1

Aab f̂(a) = 0, for all 1 ≤ b ≤ r.
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Since f̂(a) ∈ F(e2πi/N ), we obtain that for σ ∈ Gal(F(e2πi/N )/F),

N∑
a=1

Aab σ
(
f̂(a)

)
= 0.

We can identify Gal(F(e2πi/N )/F) with H via the restriction map and thus, σ = σh for some

h ∈ H such that σh(e2πi/N ) := e2πih/N . Then from the definition of the Fourier transform, we
have that

σh

(
f̂(a)

)
=

N∑
n=1,

(n,N)=1

f(n) e−2πianh/N =
N∑

m=1,
(m,N)=1

f(h−1m) e−2πiam/N = σ̂h(f)(a). (4)

Thus, we have the relation
N∑
a=1

Aab σ̂h(f)(a) = 0,

which together with (3) gives L(k, σh(f)) = 0 for all h ∈ H. �

Remark. Theorem 1.1 holds under the weaker assumption of an analog of the Polylog conjecture
for roots of unity instead of all algebraic numbers. Moreover, note that the above proof holds
more generally. Indeed, let f ∈ F (N ;F), and let σ be an automorphism of F(e2πi/N )/Q such that

σc := σ
∣∣
Q(e2πi/N )

with c ∈ (Z/NZ)∗ and σc(e
2πi/N ) = e2πic/N . Then equation (4) can be replaced

with

σ
(
f̂(a)

)
=

N∑
n=1,

(n,N)=1

σ (f(n)) e−2πianc/N =
N∑

m=1,
(m,N)=1

σ
(
f(c−1m)

)
e−2πiam/N = σ̂c (fσ)(a),

where σc (fσ) (m) := σ(f(c−1m)). Hence we deduce that L(k, f) = 0 implies that L(k, σc(f
σ)) = 0.

The second input integral to the proof of Baker-Birch-Wirsing type theorems is the evaluation
of a Dedekind determinant.

Lemma 2.2. Let G be a finite abelian group and f : G→ C be a complex-values function on G.
Suppose that M =

[
f(xy−1)

]
x,y∈G is the corresponding Dedekind matrix. Then

detM =
∏
χ

(∑
x∈G

f(x)χ(x)

)
, (5)

where the product is over all characters χ of G.

For a proof of this fact, we refer the reader to [20].

Proof of Theorem 1.1. Suppose that L(k, f) = 0. Lemma 2.1 implies that L(k, σh(f)) = 0 for all
h ∈ H. Using the expression for L(k, f) in terms of values of the Hurwitz zeta-functions, we have∑

a∈supp(f)

f(ha) ζ
(
k,
a

N

)
= 0 for all h ∈ H.

Equivalently, we have the relations∑
a∈H

f(a) ζ

(
k,
ah−1

N

)
= 0 for all h ∈ H (6)

as supp(f) ⊆ H. This can be interpreted as M~v = ~0 with

M =

[
ζ

(
k,
ah−1

N

)]
a,h∈H

and ~v = [f(a)]a∈H .
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The theorem would be proved if we show that M is invertible, that is, det(M) 6= 0. It is evident
that M is a Dedekind matrix. Therefore by Lemma 2.2,

detM =
∏
χ∈Ĥ

(∑
a∈H

χ(a) ζ
(
k,
a

N

))
,

where Ĥ is the group of characters of H. By Pontryagin duality, there is a unique subgroup
V ⊆ (Z/NZ)∗ such that

Ĥ ' (Z/NZ)∗
/
V.

Thus there is a unique extension KV/Q such that

Q ⊆ KV ⊆ Q(e2πi/N ) and Gal(KV/Q) ' H.

The characters of H can now be identified with characters of Gal(Q(e2πi/N )/Q) ' (Z/NZ)∗ that
are trivial on V. Hence by (2), ∑

a∈H
χ(a) ζ

(
k,
a

N

)
= Nk L(k, χ),

with χ being a Dirichlet character in the classical sense. Since L(k, χ) 6= 0, we see that detM 6= 0,
proving the theorem. �

Remark. The statement of Theorem 1.1 also holds if the support of the function f is contained
in a coset of H in (Z/NZ)∗. Indeed, suppose that bH is a coset of H in (Z/NZ)∗ and that
f ∈ FD(N ;K) with supp(f) ⊆ bH such that L(k, f) = 0. Set g(n) := f(bn). Now g ∈ FD(N ;K)
with supp(g) ⊆ H satisfying L(k, g) = 0. Hence applying Theorem 1.1, we can conclude that
g ≡ 0 =⇒ f ≡ 0.

3. Structure of the Okada space

In [22], T. Okada proved that for arithmetical functions, periodic mod N , taking values in a
field disjoint from the N -th cyclotomic field, L(1, f) = 0 only if f is “induced from lower level
periodic functions”, that is, f is, in a sense, “imprimitive”. In this section, we formulate these
ideas in precise terms and discuss their consequences on the vanishing of the special value L(k, f).

We first prove a generalization of Okada’s result for L(k, f) with k > 1. Using notation that is
considerably simplified, we also deduce Okada’s criterion for vanishing of L(1, f). An alternate
derivation of Okada’s criterion can be found in [4]. We will then use the general Okada’s criterion
to prove Theorem 1.2. In contrast to Okada, our methods will rely on the properties of the
L-function L(s, f) rather than algebraic relations among the special values themselves.

The definition of the annihilator operator in the introduction implies that

L(s,Annr(f)) =

(
1− rk

rs

)
L(s, f).

Thus if L(k, f) < ∞, then L(k,Annr(f)) = 0 for all positive integers r > 1. The natural ques-
tion that this observation leads to is whether all periodic functions f such that L(k, f) = 0 are
generated by Annr(g) for certain periodic function g and positive integers r. We answer this in
the affirmative below.
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Let M(N) be the monoid generated by prime divisors of N , that is, if p1, p2, · · · , pt are all
the distinct primes dividing N , then

M(N) = {pa11 pa22 · · · p
at
t | a1, · · · at are non-negative integers} .

Note that

∑
m∈M(N)

1

ms
=

t∏
j=1

(
1− 1

pjs

)−1

,

which is entire. Thus,
∑

m∈M(N) 1/m is absolutely convergent.

Fix a positive integer k ≥ 1. For f ∈ F (N ;K) and a divisor d of N , let

f
(k)
d (n) =

∑
m∈M(N),

d |m

f(mn)

mk
=

∑
m∈M(N)

f(dmn)

(dm)k
.

Then f
(k)
d is periodic with period N/d, and f

(k)
d (n) = f

(k)
1 (dn)/dk. Moreover, f

(k)
d (n) ∈ K.

Indeed, if a prime p | N , then the sequence {pa}a∈N is eventually periodic mod N . Therefore,

f
(k)
1 (n) can be expressed as a sum of finitely many terms and finitely many geometric progressions,

with values in K. Hence, the value of the series f
(k)
1 (n) (and in turn, f

(k)
d (n)) will lie in K. Thus,

f
(k)
d ∈ F (N/d;K). Furthermore, let

f̃
(k)
1 (n) :=

{
f

(k)
1 (n) if (n,N) = 1,

0 otherwise.

With this notation in place, we prove the following crucial proposition.

Proposition 3.1. Fix an integer k ≥ 1. Let N ≥ 2 be a positive integer and f ∈ F (N ;K). Then

f = f̃
(k)
1 +

∑
d|N

µ(d) Annd
(
f

(k)
d

)
,

where µ(·) denotes the Möbius function.

Proof. We begin by noting that for any periodic function f , Ann1(f)(n) = f(n) − D1(f)(n) =
f(n)− f(n) = 0. Recall that

∑
d|N

µ(d) =

{
1 if N = 1,

0 otherwise.

Now consider the sum

F(n) :=
∑
d|N

µ(d) Annd
(
f

(k)
d

)
(n). (7)
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Expanding the sum using the definition of the Annd operator, we have

F(n) =

(∑
d|N

µ(d) f
(k)
d (n)

)
−
(∑
d|N

µ(d) dk Dd(f
(k)
d )(n)

)

=

(∑
d|N

µ(d)
∑

m∈M(N),
d|m

f(mn)

mk

)
−
(∑
d|N,
d|n

µ(d) dk f
(k)
d

(n
d

))

=

( ∑
m∈M(N)

f(mn)

mk

∑
d|N,
d|m

µ(d)

)
−
(∑
d|N,
d|n

µ(d) dk
f

(k)
1 (n)

dk

)

= f(n)−
(
f

(k)
1 (n)

∑
d|(n,N)

µ(d)

)
,

= f(n)− f̃ (k)
1 (n).

�

Therefore, for every f ∈ F (N ;K),

L(s, f) = L(s, f̃
(k)
1 ) +

∑
d|N

µ(d)

(
1− dk

ds

)
L(s, f

(k)
d ). (8)

Note that in the above decomposition, f
(k)
d ∈ F (N/d). If N is assumed to be squarefree, then

one can further prove the following.

Lemma 3.2. Let N be squarefree and f̃
(k)
d := f

(k)
d χ0,N/d ∈ FD(N/d) where χ0,N/d denotes the

principal character mod N/d. Then

L(s,F) =
∑
d|N
d 6=1

µ(d)
∏
p|d

(
1− pk

ps

)
L(s, f̃

(k)
d ).

Proof. The function L(s, f
(k)
d ) can be written as the linear combination

L(s, f
(k)
d ) =

∑
m|N/d

1

ms

∞∑
n=1

f
(k)
d (mn)χ0,N/md(n)

ms
=
∑
m|N/d

mk

ms
L(s, f̃

(k)
md).

We get the second equality by observing that f
(k)
d (mn) = mkf̃

(k)
dm(n) whenever (n,N/dm) = 1.

Therefore, we have

L(s,F) =
∑
d|N

µ(d)

(
1− dk

ds

) ∑
m|N/d

mk

ms
L(s, f̃

(k)
dm) =

∑
d|N

L(s, f̃
(k)
d )

∑
m|d

µ(m)

(
1− mk

ms

)
(d/m)k

(d/m)s
.

It remains to evaluate the second summand in the above sum. For d 6= 1, by applying the identity∑
m|d µ(m) = 0, we have∑

m|d

µ(m)

(
1− mk

ms

)
(d/m)k

(d/m)s
=
∑
m|d

µ(m)
(d/m)k

(d/m)s
=
∏
p|d

(
1− pk

ps

)
. (9)

We obtain the final expression by noting that N (and hence d) is squarefree and using the Möbius
inversion formula. �
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3.1. Vanishing criterion for L(k, f) with k ≥ 2. We are now equipped to prove analogs of
Okada’s vanishing criteria, that is, [21, Theorem 10] and [22, Theorem 1]. More specifically, we
prove the following.

Theorem 3.3. Let f ∈ Ok(N). Then assuming the Chowla-Milnor conjecture, we have

L(s, f) =
∑
d|N

(
1− dk

ds

)
µ(d)L(s, f

(k)
d ).

Moreover, for f ∈ F (N), L(k, f) = 0 if and only if (f(1), f(2), · · · , f(N)) satisfies the following
system of ϕ(N) linear equations: for each 1 ≤ n ≤ N with (n,N) = 1,

Xn +

N∑
a=1,

1<(a,N)

XaAk(a, n) = 0,

where Ak(a, n) ∈ Q is defined by

Ak(a, n) =
∑

m∈M(N),
mn≡a mod N

1

mk
.

Proof. By Lemma 3.1, the L-function associated to f has the form as in (8). Since k > 1, the

functions L(s, f
(k)
d ) are holomorphic around s = k and hence

L(k, f) = L(k, f̃
(k)
1 ).

Therefore if L(k, f) = 0, then L(k, f̃
(k)
1 ) = 0. Recall that f̃

(k)
1 ∈ FD(N). Thus, the Chowla-Milnor

conjecture (Conjecture 2) implies that f̃
(k)
1 = 0. This proves the first assertion.

Using the definition of f̃
(k)
1 , we obtain that L(k, f) = 0 if and only if for every (n,N) = 1,

0 =
∑

m∈M(N)

f(mn)

mk
=

N∑
a=1

f(a)
∑

m∈M(N),
mn≡a mod N

1

mk
.

Note that if (a,N) = 1, then the congruence mn ≡ a mod N has a solution in M(N) only if
n ≡ a mod N , in which case, the only solution is m = 1. This proves the theorem. �

The corollary below follows from Theorem 3.3.

Corollary 3.4. Let f ∈ F (N) be such that f(1) = 1. Let Mf := max{|f(n)| : 1 ≤ n ≤ q}. If
L(k, f) = 0, then conditional on the Chowla-Milnor conjecture, Mf is not attained at a residue
class n satisfying (n,N) = 1. Moreover,

Mf ≥
1

(N−k + (ζ(k)− 1))
,

which tends to infinity as k tends to infinity.

Proof. First suppose that there exists an n coprime to N such that Mf = |f(n)| and L(k, f) = 0.
Then we have by Theorem 3.3,∑
m∈M(N)

f(mn)

mk
= 0 =⇒ −f(n) =

∑
m∈M(N)
m 6=1

f(mn)

mk
=⇒ Mf = |f(n)| ≤Mf (ζ(k)− 1) < Mf ,
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which is a contradiction.

On the other hand, with the normalization f(1) = 1 we have a lower bound on Mf . Indeed,
let n be such that |f(n)| = Mf . Then we obtain that

f(1) +
f(n)

nk
= −

∑
m6=1,n

f(m)

mk
=⇒

∣∣∣∣f(1) +
f(n)

nk

∣∣∣∣ ≤Mf (ζ(k)− 1) =⇒ 1−
Mf

nk
≤Mf (ζ(k)− 1) .

By choosing n larger than N , we obtain the desired result. �

3.2. Vanishing criterion for L(1, f). With the framework set up earlier, we give a simplified
treatment of Okada’s Theorem [22, Theorem 1] below. The difference between the analysis for
the vanishing of L(k, f) with k ≥ 2 and that of L(1, f) comes from the possibility of the pole at
s = 1 of L(s, f). Indeed, it is evident from Theorem 3.3 that for k ≥ 2,

dimQOk(N) = N − ϕ(N), (10)

whereas it follows from [21, Theorem 10] that

dimQO1(N) = N − ϕ(N)− ω(N),

where ω(N) denotes the number of distinct prime divisors of N .

We prove a proposition of independent interest which is used in the proof. Throughout this
discussion, ζq = e2πi/q and ζN = e2πi/N .

Proposition 3.5. Let q = pr with p being a prime and let I be the index set of positive integers
less than q that are co-prime to q. If aj ∈ Q such that

∑
j∈I aj = 0 then∑

j∈I
aj log |1− ζjq | is a Q linear combination of logarithm of units in Z[ζq].

Proof. We know that the ideal (p) totally ramifies in Q(ζq) and hence in Q(ζq)
+ = Q(ζq + ζq).

Therefore, we have

(p) = (|1− ζq)|)ϕ(q)/2

and hence, p = |1 − ζq|ϕ(q)/2 u for some unit u ∈ Z[ζq]. Applying the Galois action σj : ζq → ζjq
for j ∈ I, we obtain that p = |1− ζjq |ϕ(q)/2 uj , where uj is also an unit in Z[ζq]. Now,∑

j∈I
aj log |1− ζjq | =

1

ϕ(q)/2

∑
j∈I

aj log |1− ζjq |ϕ(q)/2 =
1

ϕ(q)/2

∑
j∈I

aj log
(
pu−1

j

)
=

1

ϕ(q)/2

∑
j∈I

aj(− log uj + log p) = − 1

ϕ(q)/2

∑
j∈I

aj log uj ,

where in the last step, we have used the hypothesis
∑

j∈I aj = 0. �

The following lemma is a direct consequence of Baker’s theorem of linear forms in logarithms
of algebraic numbers and the fact that that prime ideals do not contain units.

Lemma 3.6. Let F be a number field. Suppose that u1, . . . , un ∈ O∗F and let S be a finite set of
rational primes. Then

Q 〈log ui | 1 ≤ i ≤ n〉 ∩Q 〈log p | p ∈ S〉 = {0}.

Okada’s vanishing criteria [21, Theorem 10] follows easily from [22, Theorem 1]. Thus, we
prove an equivalent formulation of [22, Theorem 1] below.
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Theorem 3.7 (Okada, [22]). Let f ∈ O(N). Then

L(s, f) =
∑
p|N,

p−prime

(
1− p

ps

)
L(s, hp),

for certain hp ∈ F0(N/p).

Proof. We first observe that for any g ∈ F (N ;K) and r = l1l2 · · · lt with li’s being distinct primes,

Annr(g) = g − rDr(g)

=

(
g − l1Dl1(g)

)
+

(
l1Dl1(g)− (l1l2)Dl1l2(g)

)
+ · · ·+

(
(l1l2 · · · lt−1)Dl1l2···lt−1(g)− (l1l2 · · · lt)Dl1l2···lt(g)

)
= Annl1(g) + Annl2

(
l1Dl1(g)

)
+ · · ·+ Annlt

(
(l1l2 · · · lt−1)Dl1l2···lt−1(g)

)
.

Hence, for k = 1, the expression in (8) can be written as

L(s, f) = L(s, f̃1) +
∑
p|N,

p−prime

(
1− p

ps

)
L(s, hp),

for certain hp ∈ F (N/p) with f̃1 := f̃
(1)
1 as defined previously.

Let ρhp denote the residue of L(s, hp) at s = 1. Then

L(1, f) = L(1, f̃1)−
∑
p|N

ρhp log p,

by Taylor’s theorem. Now suppose that L(1, f) = 0. This implies that

L(1, f̃1) =
∑
p|N

ρhp log p. (11)

We want to conclude that f̃1 = 0 and that ρhp = 0 for all p | N . Note that
∑N

a=1 f̃1(a) = 0, as

the sum L(1, f̃) converges to a finite value.

Now, note that L(1, f̃1) is a Q-linear combination of logarithm of units in Z[ζN , i]. Indeed,

write L(1, f̃1) = L(1, f̃1
o
) + L(1, f̃1

e
) where

f̃1
o

:=
f̃1(n)− f̃1(−n)

2
and f̃1

o
:=

f̃1(n)− f̃1(−n)

2

denote the odd and even parts of f respectively. We know that L(1, f̃1
o
) is an algebraic multiple

of π = 2 log i (See [17]) and L(1, f̃1
e
) is a Q-linear combination of logarithm of positive algebraic

numbers (See equation (12) below). For f̃1 even, we claim that L(1, f̃1) is a Q-linear form of
logarithm of units in Z[ζN ]. To see this, for a divisor d of N , we define the set Sd,N as follows :

Sd,N := {1 ≤ a ≤ N | a/N = c/d for (c, d) = 1}.

Thus,

L(1, f̃1) = −
∑
d|N

∑
a∈Sd

̂̃
f1(a) log |1− ζaN | (12)



SPECIAL VALUES OF DIRICHLET SERIES WITH PERIODIC COEFFICIENTS 13

If d has at least two distinct odd prime factors or if 4p | d for some odd prime p, then the inner
sum is a Q linear combination of logarithms of units in Z[ζN ] as |1− ζd| is an unit in Z[ζd]. Hence
it suffices to show that Proposition 3.5 can be applied for sets Spk,N and S2pk,N (which occur if
N is even). Note that

∑
a∈S

pk,N

̂̃
f1(a) =

pk−1∑
j=1

(j,p)=1

̂̃
f1(Nj/pk) =

1

N

pk−1∑
j=1

(j,p)=1

N∑
b=1

f̃1(b) e2πijb/pk

=

N∑
b=1

(b,N)=1

f̃1(b)

pk−1∑
j=1

(j,p)=1

e2πijb/pk = 0,

and Proposition 3.5 can be applied to the inner sum in (12) consisting of indices in Spk,N . The
same proof works verbatim when we replace Spk,N by S2pk,N for primes p dividing N . Therefore,

L(1, f̃1) is a Q linear combination of logarithm in units in Z[ζN ].

We can now apply Lemma 3.6 to show that ρhp = 0. Hence L(1, f̃1) = 0 and by the Theorem

of Baker, Birch and Wirsing, we have f̃1 = 0. �

Remark. It is possible to show that L(1, f̃1) is a Q linear combination of logarithm of units in
Z[ζN , i] by following the steps as mentioned in the proof of [2, Theorem 1] or by appealing to Ra-
machandra units as mentioned in [15, Section 4] and applying Lemma 3.6. However, Proposition
3.5 is a more direct approach, which seems to be missing from the literature.

3.3. Proof of Theorem 1.2. An alternate interpretation of Theorem 3.3 is that for k, N ≥ 2,

Ok(N) =
∑
d|N

Annd (F (N/d)) .

However, it is clear by comparing dimensions of the vector spaces involved that the above sum
is not direct. We address this issue in Theorem 1.2 by obtaining a decomposition of Ok(N) into
disjoint subspaces, each of which can be identified with functions “induced from lower levels”.

Proof of Theorem 1.2. Note that Theorem 1.2 is immediate from the following statement: if
f ∈ Ok(N), then for each proper divisor d of N , we have a unique function gd ∈ FD(N/d) such
that

L(s, f) =
∑
d|N

(
1− dk

ds

)
L(s, gd).

We prove this statement below assuming the Chowla-Milnor conjecture.

First we show that the functions gd are linearly independent over Q, i.e. if∑
d|N,
d>1

(
1− dk

ds

)
L(s, gd) = 0, (13)

for gd ∈ FD(N/d), then gd ≡ 0. Indeed, writing the function gd in terms of its character
decomposition ∑

χ mod N/d

cχ,(N/d) χ
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and rearranging the sum over the primitive characters mod d for each proper divisor d of N we
obtain the following :

0 =
∑
D|N

(
1− Dk

Ds

) ∑
d|(N/D)

∑
χ mod (N/D)

cond(χ)=d

cχ,(N/D) L(s, χ)

=
∑
D|N

∑
χ mod D
χ primitive

∑
d|(N/D)

(
cχ,(N/d)

(
1− dk

ds

) ∏
p|(N/D)
p-d

(
1− χ(p)

ps

))
L(s, χ).

By the linear independence of L(s, χ) over the ring of Dirichlet polynomials (see [14]), we get
that for every divisor d of N , and for every character χ mod D with D 6≡ 2 mod 4,∑

d|N/D

(
cχ,(N/d)

(
1− dk

ds

) ∏
p|(N/D)
p-d

(
1− χ(p)

ps

))
= 0. (14)

For brevity, henceforth we write N/D as q and remove the subscript χ while denoting cχ,(N/d).
Expanding (14), for each divisor d of q, and setting α(d) = χ(d)µ(d) we get :∑

d|q

cd
∑
e|q

(e,d)=1

α(e)

es
=
∑
d|q

cd d
k

ds

∑
e|q

(e,d)=1

α(e)

es

=⇒
∑
d|q

α(d)

ds

∑
e|q

(e,d)=1

ce =
∑
d|q

1

ds

∑
e|d

(d/e,e)=1

ek ce α

(
d

e

)
.

By equating the coefficients of ds, we have for every d | q,

α(d)
∑
e|q

(e,d)=1

ce =
∑
e|d

(d/e,e)=1

ek ce α

(
d

e

)
. (15)

We shall first prove that if α(d) = 0, then cd = 0. We write d = dfds, where ds is the largest di-
visor of d for which α(ds) 6= 0. Here df consists of prime factors p of q such that either α(p) = 0 or
p2 | q. Note that for df 6= 1 and ds = 1, we obtain cd = 0 from (15) as for any e | d with e 6= 1 and
(e, d/e) = 1, α(e) = 0. If ds > 1, the elements e | d satisfying (d/e, e) = 1 and α(d/e) 6= 0 are the
ones of the form e = dfb with b | ds. By proceeding via induction in (15) on the number of prime
factors of ds, we obtain cdf b = 0 for b | ds. Thus, for any d | q with α(d) = 0, we have cd = 0 and
it remains to consider the case when α(d) 6= 0. This also implies that d is a squarefree divisor of q.

In what follows whenever we mention a divisor d of q, we also assume that d satisfies α(d) 6= 0.

In (15), write α(d) = α(de)α(e) for divisor d of q to get∑
e|q/d

ce =
∑
e|d

ce e
k α(e) =

∑
e|d

ce β(e), (16)

where β(e) = ek α(e). Since α is multiplicative, so is β.

Now define two functions arithmetic A and B for suitable j, d, q by

Aj(d; q) :=
∑
e|d

cje; Bj(d; q) :=
∑
e|d

β(e) cje
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Therefore for each divisor d of q, (16) can be written as follows :

A1(d; q) = B1(q/d; q).

For a prime p, setting q = pq′ and d = pd′ (whenever p | d), the above equation can be expressed
as

A1

(
q′

d′
; q′
)

= B1(d′; q′) + β(p)Bp(d′; q′) (17)

Ap
(
q′

d′
; q′
)

+A1

(
q′

d′
; q′
)

= B1(d′; q′). (18)

To see this, note that the coefficients of ce appearing in Aj(d; q), Bj(d; q) are independent of q,
and that we have the following property for A1(d; q) and B1(d; q) when d = pd′.

A1(d; q) = A1(d′, q′) +Ap(d′, q′), B1(d; q) = B1(d′, q′) + β(p)Bp(d′, q′).

Comparing (17) and (18) we immediately obtain that

Ap
(
q′

d′
; q′
)

= −β(p)Bp(d′; q′) (19)

for each divisor d′ of q′ with α(d′) 6= 0.

We show that this system of equations does not have any non-trivial solutions. For every
divisor d′ of q′, we can rearrange the above equation as

cpd′ =
∑
e|d′

µ(e)Ap
(
d′

e
; q′
)

= −β(p)
∑
e|d′

µ(e)Bp(d′; q′). (20)

Writing X as the column vector [cpd′ ]d′|q′ , we have

X = −β(p)AX

where A is a matrix with entries in algebraic integers. If X is a non-zero vector then −1/β(p) is
an eigenvalue for A . However, the eigenvalues of the matrix A are algebraic integers. Hence, X
is the zero vector and cd = 0 whenever p | d.

Recall that we had set d = pd′ and q = pq′. For each divisor d′ of q′, we have Aj(d; q) =
Aj(d′; q′) and Bj(d; q) = Bj(d′; q′). Thus, it suffices to consider the system of equations

A1(d′; q′) = B1(q′/d′; q′).

Proceeding inductively on the number of divisors of q′, we obtain the result that cd = 0 for all
divisors d of q.

Therefore, we have proved that (13) has only trivial solutions. From here, we see that if

Vspan := Q
〈(

1− dk

ds

)
L(s, gd)

∣∣∣∣ d | N, gd ∈ FD (Nd
)〉

,

then dimQ Vspan = N − ϕ(N). Since Vspan ⊆ Ok(N) and dimQOk(N) = N − ϕ(N) from (10),
Theorem 1.2 is proved. �



16 A. BHARADWAJ AND S. PATHAK

4. Induction of arithmetical functions

Towards the proof of Theorem 1.3, we define induction of arithmetical functions akin to that
of Dirichlet characters. Given a character χ mod q, its lift, χN mod N is given by χN = χχ0,N ,
where χ0,N is the principal character modulo N . The values L(k, χ) and L(k, χN ) differ by at
most an Euler factor. Rephrasing this observation, we can say that given a character χ mod q
and a natural number N such that q | N , we have another arithmetic function Ψ of period N
taking values in Q(χ) such that L(k, χ) = L(k,Ψ). We generalize this observation for any func-
tion f ∈ FD(q;K).

If f ∈ FD(q;K), then we can write f uniquely as

f =
∑

χ mod q

cχ(f)χ, where cχ(f) :=
1

ϕ(q)

q∑
a=1

f(a)χ(a).

Using this expression for the function f , we define a ‘lift’ of f mod q to a function mod N
preserving the value at k as follows.

Definition 4.1. Let k, q, N be positive integers greater than 1, such that q | N . Let f ∈ FD(q;K)
have the character decomposition, f =

∑
χ mod q cχ(f)χ. We define

IndNq (f) :=
∑

χ mod q

cχ(f)∏
p|N (1− χ(p)p−k)

χN ,

where χN denotes the character mod N induced from χ mod q.

From the above definition, we note that

L
(
s, IndNq (f)

)
=

∑
χ mod q

[
cχ(f)∏

p|N (1− χ(p)p−k)

∏
p|N

(
1− χ(p)

ps

) L(s, χ)

]
,

because χN = χχ0,N . Therefore,

L
(
k, IndNq (f)

)
=

∑
χ mod q

cχ(f)L(k, χ) = L(k, f).

Clearly, IndNq (f) ∈ FD(N ;K(χ)), where K(χ) is the field obtained by adjoining the character
values χ(n) to K. However, one can further prove the following.

Lemma 4.2. Let f ∈ FD(q;K) have the character decomposition f =
∑

χ mod q cχ(f)χ. Then,
for any prime p, the arithmetic function

g =
∑

χ mod q

cχ(f)χ

(1− χ(p)p−k)
∈ FD(q;K).

Proof. If p | q, then we have χ(p) = 0, and hence g = f . Hence, we consider the case when p - q
and we should prove that the function g is K-valued, as we know that g is supported on co-prime
residue classes modulo q. We first note that if f ∈ FD(q;K), then, for any r co-prime to q, the
function σr(f)(n) = f(r−1n) ∈ FD(q,K) has the character decomposition

σr(f) =
∑

χ mod q

cχ(f)χ(r)χ ∈ FD(q,K). (21)

Let l be an exponent of p in (Z/qZ)∗, i.e. pl ≡ 1 mod q. Then note that(
1− χ(p)

pk

)( l−1∑
i=0

χ(pi)

pik

)
= C−1 =⇒

(
1− χ(p)

pk

)−1

= C

(
l−1∑
i=0

χ(pi)

pik

)
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where C :=

(
1− 1

plk

)−1

. Substituting the above expression in g gives

g = C
∑

χ mod q

cχ(f)

(
l−1∑
i=0

χ(pi)

pik

)
χ = C

l−1∑
i=0

1

pik

∑
χ mod q

cχ(f)χ(pi)χ. (22)

From (21), we conclude that g is K valued.
�

Now by applying Lemma 4.2, and iterating (22) consecutively, we obtain that the arithmetic
function IndNq (f) is also K-valued. Thus, we have proved the following proposition.

Proposition 4.3. The operator IndNq defined in 4.1 is an injective operator,

IndNq : FD(q;K)→ FD(N ;K)

such that L(k, IndNq (f)) = L(k, f).

The injectivity of the Ind operator is clear as IndNq (f) = 0 implies that cχ(f) = 0, that is f ≡ 0
by the orthogonality of characters mod N .

With the above setup in place, Theorem 1.3 can be easily proved.

Proof of Theorem 1.3. Assume that the Chowla-Milnor Conjecture 2 is true modulo N . This is
equivalent to stating that the map FD(N) 7→ C, sending f → L(k, f) is injective. Let d be a
divisor of N . By Proposition 4.3, we see that the map FD(N/d) 7→ FD(N) sending f → IndNN/d(f)

is also injective. Hence we conclude that the composite map FD(N/d)→ C,

f 7→ IndNN/d(f) 7→ L(k, IndNN/d(f))

is injective. Since L(k, IndNN/d(f)) = L(k, f), the Chowla-Milnor conjecture is true modulo N/d.

�

4.1. The functions f̃
(k)
1 and IndNq (f). Before concluding our discussion, we underline the

inherent connection between the function f̃
(k)
1 from Section 3 and the Ind operator defined above.

To do so, we first prove the following key lemma.

Lemma 4.4. Let f ∈ FD(q;K) and q | N . For (n,N) = 1, we have

IndNq (f)(n) =
∑

m∈M(N)

f(mn)

mk

Proof. Since |χ(p)p−k| ≤ 1, we note that(
1− χ(p)

pk

)−1

=
∑

n∈M(p)

χ(n)

nk
,

which gives ∏
p|N

(
1− χ(p)

pk

)−1

=
∑

n∈M(N)

χ(n)

nk
.

Therefore, for (n,N) = 1, we have

IndNq (f)(n) =
∑

χ mod q

∑
m∈M(N)

cχ(f)χ(m)

mk
χN (n) =

∑
m∈M(N)

f(mn)

mk
.
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In the last step we used the character decomposition of f to evaluate f(mn). This proves the
lemma. �

For a divisor d of N , define the map Bd : F (N ;K)→ FD(N/d;K) by

Bd(f)(n) :=

{
f(dn) if (n,N/d) = 1

0 otherwise,
(23)

so that given any arithmetic function f ∈ F (N ;K), L(s, f) naturally decomposes as

L(s, f) =
∑
d|N

1

ds
L(s,Bd(f)) with Bd(f) ∈ FD(N/d;K).

Thus, Bd(f) can be viewed as the building block of f modulo N/d.

The following proposition establishes the relation between the function f̃
(k)
1 and the Ind oper-

ator.

Proposition 4.5. Let f ∈ F (N ;K). With notation as before,

L

(
s, f̃

(k)
1

)
=
∑
d|N

1

dk
L
(
s, IndNN/d Bd(f)

)
.

Proof. Now let g ∈ FD(N ;K) be defined such that

L(s, g) :=
∑
d|N

1

dk
L
(
s, IndNN/d Bd(f)

)
.

On expanding this function by Lemma 4.4, whenever (n,N) = 1, we have

g(n) =
∑
d|N

1

dk

∑
m∈M(N/d)

Bd(f)(mn)

mk

=
∑
d|N

1

dk

∑
m∈M(N/d)

χ0,N/d(mn)
f(dmn)

mk
=

∑
m∈M(N)

f(mn)

mk
.

In the last step, we note that given m ∈M(N) there is exactly one d such that (N/d,mn/d) = 1.

Therefore χ0,N/d1(mn/d1) = 0 unless d1 = d. Hence g = f̃
(k)
1 . �

An alternate proof of an analog of Theorem 3.7 for k > 1 can be obtained from the above

observations. Note that L(k, f) = L(k, f̃
(k)
1 ). In order to show that

f − f̃ (k)
1 ∈ K 〈Annp(F (N/p)) : p | N〉 ,

it suffices to prove

Bd(f)− IndNN/d Bd(f) ∈ K 〈Annp(F (N/p)) : p | N〉 .

To do so, we consider the Dirichlet series associated to Bd(f) and IndNN/d Bd(f). We use the

character decomposition of these functions and proceed along the same lines as in the proof of
Lemma 4.2.
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5. Explicit computations

In Theorem 1.2, we showed that if L(k, f) = 0, then there exist unique functions gd ∈ FD(N/d)
such that

L(s, f) =
∑
d|N

(
1− dk

ds

)
L(s, gd).

A natural question is whether the functions gd ∈ FD(N/d) can be explicitly given in terms of the
function f . This is a difficult problem in general. However, we address the cases when N is a
product of two or three primes in this section. These computations highlight the intricacies of
the desired endeavour.

5.1. Example N = pq. Suppose that f ∈ Ok(N). By Theorem 1.2, we know that there exists
unique gd ∈ FD(N/d) (for every proper d | N) such that

L(s, f) =

(
1− pk

ps

)
L(s, gp) +

(
1− qk

qs

)
L(s, gq) +

(
1− Nk

N s

)
L(s, gN ).

By Lemma 3.2, we have

L(s, f) = −
(

1− pk

ps

)
L(s, f̃

(k)
p )−

(
1− qk

qs

)
L(s, f̃

(k)
q ) +

∏
t|N

t prime

(
1− tk

ts

)
L

(
s, f̃

(k)
pq

)
. (24)

For a Dirichlet character χ of period co-prime to pq, we write∏
t|N

t prime

(
1− tk

ts

)

= cp,χ

(
1− pk

ps

)(
1− χ(q)

qs

)
+ cq,χ

(
1− qk

qs

) (
1− χ(p)

ps

)
+ cpq,χ

(
1− (pq)k

(pq)s

)
. (25)

If we solve this equation for cd,χ and substitute in (24) (with χ being the trivial character), we
get the desired functions gd for d | pq, d 6= 1.

Continuing (25), by equating the coefficients of d−s for d | N , we get the following system of
equations :

cp,χ + cq,χ + cpq,χ = 1, pkcp,χ + χ(p)cq,χ = pk, χ(q)cp,χ + qkcq,χ = qk,

pkχ(q)cp,χ + qkχ(p)cq,χ + (pq)kcpq,χ = (pq)k.

The solution for this system of equations is obtained as

cp,χ =
1− χ(p)

pk

1− χ(pq)
(pq)k

, cq,χ =
1− χ(q)

qk

1− χ(pq)
(pq)k

, cpq,χ = −

∏
t|pq

(
1− χ(t)

tk

)
1− χ(pq)

(pq)k

. (26)
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Substituting these values in (24), we get:

L(s, gp) = −L(s, f̃
(k)
p ) + f(N)

1− p−k

(1−N−k)
L(s, χ0,q),

L(s, gq) = −L(s, f̃
(k)
q ) + f(N)

1− q−k

(1−N−k)
L(s, χ0,p),

L(s, gpq) = − f(N)

(1−N−k)
ζ(s).

5.2. Example N = pqr. By symmetry, it suffices to compute gp, gpq, gpqr. Henceforth, whenever
we refer to

∏
t|d for a divisor d of N , the product should be taken over all the primes t dividing

d.

Proceeding as in the earlier example, by Lemma 3.2, it is enough to decompose
∏
t|pipj (1−t

k−s)

and
∏
t|N (1 − tk−s) in a ‘suitable’ manner consisting of Euler factors arising from the Dirichlet

series associated to L(s, χ). We first compute gpq.

Let h ∈ FD(r). Then we have

∏
t|pq

(
1− tk

ts

)
L(s, h) =

∑
χ mod r

cχ(h)
∏
t|pq

(
1− tk

ts

)
L(s, χ)

=
∑
t|pq

(
1− tk

ts

) ∑
χ mod r

cχ(h) ct,χ

(
1− χ(pq/t)

(pq/t)s

)
L(s, χ) +

(
1− (pq)k

(pq)s

) ∑
χ mod r

cχ(h) cpq,χ L(s, χ)

(27)

=
∑
t|pq

(
1− tk

ts

)
L(s, ht) +

(
1− (pq)k

(pq)s

)
L(s, hpq)

=
∑
d|pq

(
1− dk

ds

)
L(s, hd).

(28)

In the above t runs over the primes dividing pq. We also note that hd ∈ FD(N/d) and we get

(27) by (25). From Lemma 3.2, we need to consider the above equation for h = f̃
(k)
pq in order to

compute hd.
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Now, decompose the function h as follows. For (n, r) = 1 we have

f̃
(k)
pq (n) =

∑
m∈M(N)

f(p1p2mn)

(p1p2m)k

=
∑

m∈M(pq)

f(p1p2mn)

(p1p2m)k
+

∑
m∈M(N)

r|m

f(p1p2mn)

(p1p2m)k

=
∑

m∈M(pq)

f(p1p2mn)

(p1p2m)k
+
f(N)

Nk

∑
m∈M(N)

1

mk

=
∑

m∈M(pq)

f(p1p2mn)

(p1p2m)k
+
f(N)

Nk

∏
t|N

(
1− 1

tk

)−1

.

Rewriting the first summand in terms of Bpq(f) (see 23), and by arguments similar to Lemma
4.4, we have

L(s, h) =
1

(pq)k

∑
χ mod r

cχ(Bpq(f))∏
t|pq(1− χ(t)t−k)

L(s, χ) +
f(N)

Nk

∏
t|N

(
1− 1

tk

)−1

L(s, χ0,r)

By substituting values cχ,p and cχ,pq as mentioned in (26), we have

L(s, hp) =
1

(pq)k

∑
χ mod r

cχ(Bpq(f))

(1− χ(q)q−k)(1− χ(pq)(pq)−k)
L(s, χN/p)

+
f(N)

Nk

∏
t|N/p
t prime

(
1− 1

tk

)−1(
1− 1

(pq)k

)−1

L(s, χ0,qr) (29)

L(s, hpq) =
1

(pq)k

∑
χ mod r

cχ(Bpq(f))

(1− χ(pq)(pq)−k)
L(s, χN/p)

+
f(N)

Nk

(
1− 1

rk

)−1(
1− 1

pqk

)−1

L(s, χ0,r). (30)

We do a similar analysis for the term
∏
t|N (1− tk−s)L(s, f̃

(k)
q ). Since

f̃
(k)
q = f(N)N−k

∏
t|N

(1− t−k)−1,

we require decomposition akin to (25) along the following lines:∏
t|N

(
1− 1

tk

)
=
∑
pi|N

cpi

(
1− pki

psi

) ∏
t|N/pi

(
1− 1

ts

)

+
∑
pi<pj

cpipj

(
1− (pipj)

k

(pipj)s

) ∏
t|N/pipj

(
1− 1

ts

)
+ cN

(
1− Nk

N s

)
.

(31)
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We now expand (31) and equate the coefficients of Dirichlet polynomials as done in Example
5.1. For each proper divisor D of N , we get the following equation :

−
∑
d|D

µ(d) cd d
k +

∑
d|N/D

cd = Dk.

Solving the above system of equations (using SAGE), we find that

cD = −µ(D)

∏
p|D
(
1− p−k

)
1−N−k

.

We therefore obtain :

f̃
(k)
q (1)

∏
t|N

(
1− tk

ts

)
ζ(s) =

f̃
(k)
q (1)

1−N−k

(∑
pi|N

(
1− 1

pki

) (
1− pki

psi

)
L(s, χ0,N/pi)

−
∑
pi<pj

∏
t|pipj

(
1− 1

tk

) (
1− (pipj)

k

(pipj)s

)
L(s, χ0,N/pipj )

+
∏
t|N

(
1− 1

tk

)(
1− Nk

N s

)
ζ(s). (32)

On substituting the values (32), (29), (30) in Lemma 3.2, we obtain the following evaluations:

L(s, gp) = −L(s, f̃
(k)
p ) + L(s, hp)−

f(N)

Nk

∏
t|qr

(
1− 1

tk

) (
1− 1

Nk

)−1

L(s, χ0,qr)

L(s, gpq) = L(s, hpq)−
f(N)

Nk

((
1− 1

rk

)(
1− 1

Nk

))−1

L(s, χ0,r)

L(s, gN ) = − f(N)

(1−N−k)
ζ(s).

6. Arithmetic nature of L(k, χ)

Analogous to the odd zeta-values, it is expected that the special values of the Dirichlet L-

functions {L(k, χ) : χ mod N, χ(−1) 6= (−1)k} are transcendental and algebraically indepen-
dent (see [5, Section 4]). However, the polylog conjecture is not sufficient to conclude this. In this
section, we consider instead the effect of the Polylog conjecture (Conjecture 1) on the algebraicity
of L(k, χ).

If L(k, χ) ∈ Q, it is a natural question to investigate the Galois structure imparted to the set
Sk := {χ mod N : L(k, χ) ∈ Q, N ≥ 2, squarefree}. We deduce this in Theorem 1.4. Through-
out this section, we assume the Polylog conjecture.

We begin with a lemma about the Q vector space of tuples of algebraic numbers. Let α1, . . . , αn
be distinct algebraic numbers with |αi| ≤ 1 and let the evaluation map Φ : Qn → C be given by

Φ(a1, . . . an) =

n∑
i=1

ai Lik (αi) . (33)

Let Vα = {(a1, . . . , an) ∈ Qn| Φ(a1, . . . , an) ∈ Q}. Note that Vα is a Q-vector space.
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Lemma 6.1. Suppose that α1, . . . , αn ∈ Q are such that Lik(α1), Lik(α2), · · · , Lik(αn) are Q-

linearly independent. Then, conditional on the Polylog conjecture, there exists a C ∈ Q∗ such
that for any (a1, . . . an), (b1, . . . bn) ∈ Vα \ {0}, ai = Cbi.

Proof. Let V = Vα. First, note that dimQ V/ ker Φ ≤ 1. Indeed, if V = {(0, . . . , 0)}, there is

nothing to prove. If not, then the map Φ|V : V 7→ Q is surjective and hence, V/ ker(Φ) ∼= Q. Since
Lik(α1), . . . ,Lik(αn) be linearly independent over Q, by Polylog conjecture, Lik(α1), . . . ,Lik(αn)
are linearly independent over Q, that is, ker Φ = {0}. Thus dimQ V ≤ 1 and we have the
lemma. �

Using equation (2), we know that

L(k, χ) =
N−1∑
a=1

χ̂(a) Lik(e
2πia/N ),

with χ̂(a) ∈ Q(χ)(e2πi/N ) and Q(χ) = Q({χ(n) : 1 ≤ n ≤ N}). However, if N is squarefree, one
can further prove the following.

Proposition 6.2. Let N be squarefree and χ be a character modN . Then

L(k, χ) = χ̂(1)

N−1∑
a=1

ca,χ Lik(e
2πia/N ),

where ca,χ ∈ Q(χ) and χ̂(1) = N−1
∑N

a=1 χ(a) e−2πia/N .

Proof. When (a,N) = 1, it is easy to see that

χ̂(a) =
1

N

N∑
b=1

χ(b) e−2πiab/N = χ(a) χ̂(1).

Now suppose (a,N) = d > 1. Write a = a1d. Therefore we have

χ̂(a) =
1

N

N∑
b=1

(b,N)=1

χ(b) e
− 2πia1b

(N/d) =
µ2(d)

N

N∑
b=1

(b,N)=1

χ(b) e
− 2πia1b

(N/d)

=
µ(d)

N

N∑
b=1

(b,N)=1

χ(b) e
− 2πia1b

(N/d)

d∑
c=1

(c,d)=1

e−2πibc/d, (34)

using the fact that µ2(d) = 1 since d is squarefree and that µ(d) =
d∑
c=1

(c,d)=1

ζ−bcd . Let c1 and c2 be

positive integers such that
1

N
= c1

1

N/d
+ c2

1

d
,

and Sa be the set

Sa :=

{
m ∈ (Z/NZ)∗ | m ≡ a1c

−1
1 mod N/d,m ≡ cc−1

2 mod d, as c varies over (Z/dZ)∗
}

Note that for m ∈ Sa, we have

e2πim/N = e
− 2πia1

(N/d) e2πic/d,
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for some c co-prime to d. Hence we can write (34) as

χ̂(a) =
µ(d)

N

∑
m∈Sa

N∑
b=1

χ(b) e−2πimb/N = χ̂(1)µ(d)
∑
m∈Sa

χ(m) = χ̂(1) ca,χ,

where ca,χ ∈ Q(χ), proving the proposition. �

With these preliminaries in place, we prove the theorem regarding the Galois structure of
Sk below. Recall the disjointness hypothesis (say ( Hdis)) that we assume in the statement of
Theorem 1.4: there exists a squarefree integer N and two distinct characters χ and Ψ mod N
such that

χ,Ψ ∈ Sk and Q(χ) ∩Q(Ψ) = Q. (Hdis)

Proof of Theorem 1.4. Let N be as in (Hdis) and l1, . . . lt be a maximal Q-linearly independent

subset of {Lik(e
2πia/N ) | 1 ≤ a < N}. We write,

Lik(e
2πij/N ) =

t∑
i=1

aij li for 1 ≤ j < N.

Re-writing L(k, χ) from Proposition 6.2 as a Q-linear combination of li for 1 ≤ i ≤ t, we get :

L(k, χ) = χ̂(1)

N−1∑
j=1

cj,χ

t∑
i=1

aij li = χ̂(1)

t∑
i=1

N−1∑
j=1

aij cj,χ

 li.

Then by Lemma 6.1, for any distinct characters, periodic modulo the same modulus, we have

χ̂(1)(
∑N−1

j=1 amj cj,χ)

Ψ̂(1)(
∑N−1

j=1 amj cj,Ψ)
=
χ̂(1)(

∑N−1
j=1 anj cj,χ)

Ψ̂(1)(
∑N−1

j=1 anj cj,Ψ)
,

for any two m,n with 1 ≤ m,n ≤ t and m 6= n. In the above we are considering only those

natural numbers m and n for which
∑N−1

j=1 amjcj,χ 6= 0. Since N is squarefree, χ̂(1), Ψ̂(1) are
non-zero and we have the following:

(
∑N−1

j=1 amj cj,χ)

(
∑N−1

j=1 anj cj,χ)
=

(
∑N−1

j=1 amj cj,Ψ)

(
∑N−1

j=1 anj cj,Ψ)
=: Cmn. (35)

Since the corresponding fields are disjoint, Cmn ∈ Q. Also, note that Cmn depends only on the
period and is independent of the characters χ,Ψ. Thus, we have

L(k, χ) =
χ̂(1)

N

N−1∑
j=1

a1j cj,χ

( t∑
i=1

Ci1 li

)
∈ Q =⇒

t∑
i=1

Ci1 li ∈ Q. (36)

Noting that (35) is valid if we replace χ by its conjugate (say χσ), and therefore by (36), we get

L(k, χσ) =
χ̂σ(1)

N

N−1∑
j=1

a1j cj,χσ

( t∑
i=1

Ci1 li

)
∈ Q.

Thus, under ( Hdis), we have that

L(k, χ) ∈ Q =⇒ L(k, χσ) ∈ Q
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for all characters χσ conjugate to χ.

We still have to prove the result for a character η ∈ Sk of a period different from N . Let η ∈ Sk
be of period M and set Q := lcm(N,M). Proceeding as above: replace N by Q, χ and Ψ mod N
by χQ and ΨQ mod Q respectively. Then we see that (35) also holds for characters χQ,ΨQ and
ηQ. Since we know that Cmn ∈ Q (by comparing χQ mod Q and ΨQ mod Q in (35)), we obtain

L(k, ηQ) ∈ Q =⇒ L(k, ησQ) ∈ Q.
As L(k, η) and L(k, ηQ) differ by an algebraic number, the result is also holds for L(k, η). �

Remark 6.3. We make the following observations about the above result.

(1) In general, it is not true that when χ and k are of the same parity, then L(k, χσ)/πk =
σ(L(k, χ)/πk). For instance, this can be seen by taking k = 1 and χ to be a primitive odd
character of conductor p2. We know that

p2 L(1, χ) = −i π B1,χ τ(χ),

where B1,χ ∈ Q denotes the generalized Bernoulli number. When we apply the automor-

phism σj : e2πi/p2 → e2πij/p2, we obtain σ(τ(χ)) = χσ(j)τ(χσ), which gives

σ

(
L(1, χ)

π

)
= χσ(j)

(
L(1, χσ)

π

)
.

(2) If one restricts to quadratic characters, then proceeding along the lines of [9, Proposition 5]
implies that given a number field K, there exist at most [K : Q]+1 quadratic characters χ
(of opposite parity), such that L(k, χ) ∈ K, conditional on the Chowla-Milnor conjecture.

7. Concluding Remarks

Characterizing rational valued periodic arithmetical functions f such that L(k, f) = 0 is not
only an interesting question in its own right, but also subsumes the investigation of possible lin-
ear relations among the special values of Dirichlet L-functions, the polylogarithm functions and
the Hurwitz zeta-functions respectively. The tools developed in Sections 3 and 4 provide new
framework for approaching these questions and advancing our understanding.

For instance, we have seen that

L(k, f) =
1

Nk

N∑
a=1

f(a) ζ
(
k,
a

N

)
,

which relates the vanishing of L(k, f) to linear relations among the numbers{
ζ
(
k,
a

N

)
| 1 ≤ a ≤ N

}
.

This problem was addressed by Milnor [12] using the theory of distributions (see also [23, Chapter
12]). Fix any complex number s. A function f on the interval (0, 1) is said to be a Kubert function
if f satisfies the Kubert relations or distribution relations, namely: for every natural number m
and x ∈ (0, 1),

f(x) = ms−1
m−1∑
l=0

f

(
x+ l

m

)
. (∗s)

Examples of such functions include the polylogarithm functions ls(x) := Lis(e
2πix), that satisfy

(∗s) when s 6= −1, −2, · · · and the Hurwitz zeta functions ζ(s, x) with s fixed, that satisfy (∗1−s)
whenever s 6= 0, 1, 2, · · · . A Kubert function is said to be universal if all Q-linear relations
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among the values of f are generated by Kubert relations. The function cot(πx) is an example of
a universal function (see [12, Theorem 3]).

In [12, Section 6], Milnor conjectures that if k > 1 is an integer, then the function ζ(k, x) is
universal. In the same discussion, he alludes to the equivalence between the universality of ζ(k, x)
as defined above and the statement that for every integer N ≥ 2, the numbers{

ζ
(
k,
a

N

)
| 1 ≤ a ≤ N, (a,N) = 1

}
are Q-linearly independent, which we refer to as the Chowla-Milnor conjecture. However, it is
not made immediately clear why these two claims are equivalent.

The method adopted in Section 3 can be viewed as an analytic perspective towards the algebraic
setup described above. Indeed, if gb(m) := 1 whenever m ≡ b mod N/d and 0 otherwise, then
unraveling the identity

L(s, f) =

(
1− dk

ds

)
L(s, gb) =⇒ L(k, f) = 0

in terms of the Hurwitz zeta-function leads to the distribution relation

ζ

(
k,

b

N/d

)
= d−k

d−1∑
l=0

ζ

(
k,

b
N/d + l

d

)
.

In other words, Theorem 3.3 gives an explicit proof that all possible Q-linear relations among
the Hurwitz zeta-values are generated by the distribution relations. In fact, in Theorem 1.2, we
go one step further and prove a stronger statement, which is that the relations mod N arising
from distributions modulo distinct divisors of N are linearly independent. Thus, our approach
provides an ‘analytic’ perspective to an ‘algebraic’ problem.

In the same spirit, Girstmair [8] utilized the theory of character coordinates and relative traces
of cyclotomic numbers to obtain an explicit formula for the coefficients aj in expressions such as

cot
(π
d

)
=

∑
1≤j≤N/2,
(j,N)=1

aj cot

(
jπ

N

)
,

where N ≥ 3 and d ≥ 2 is a divisor of N . Thus, the values of trigonometric functions at a ‘lower
level’ are written as a linear combination of the values at a ‘higher level’.

This can also be achieved via the induction operator IndNq defined in Section 4. Indeed, let

fa,q =


1 n ≡ a mod q

(−1)k n ≡ −a mod q

0 otherwise.

As derived in [18], note that

L(k, fa,q) =
(−1)k

(k − 1)!qk
dk−1

dzk−1
(π cot(πx))

∣∣∣∣
x=a/q

.

Similarly, we have the evaluation

L(k, IndNq fa,q) =
(−1)k

(k − 1)!Nk

N∑
n=1

(n,N)=1

ca,q,n,k
dk−1

dzk−1
(π cot(πx))

∣∣∣∣
x=n/N

,
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where ca,q,n,k are given by Lemma (4.4). By definition of the Ind operator, we have that

L(k, fa,q) = L(k, IndNq fa,q). Hence, comparing the above two equations immediately leads to
the desired expression.

Thus, the methods introduced in the paper have wider applicability and potential for further
development. We relegate this to future research.
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