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ABSTRACT. For an algebraic number field K, let (x (s) be the associated Dedekind zeta-function.
It is conjectured that (x(m) is transcendental for any positive integer m > 1. The only known
case of this conjecture was proved independently by C. L. Siegel and H. Klingen, namely that,
when K is a totally real number field, (x(2n) is an algebraic multiple of 72" U and hence,
is transcendental. If K is not totally real, the question of whether (x(m) is irrational or not
remains open. In this paper, we prove that for a fixed integer n > 1, at most one of (x (2n+1) is
rational, as K varies over all imaginary quadratic fields. We also discuss a generalization of this
theorem to CM-extensions of number fields.

1. Introduction

The Riemann zeta-function, ((s) has occupied center stage in mathematics since its introduc-

tion in the phenomenal 1859 paper of Riemann. In this paper, Riemann proved that
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for R(s) > 1 has an analytic continuation to the entire complex plane, except for a simple pole
at s = 1 with residue 1, and satisfies a functional equation relating the value at s to the value
at 1 — s. Moreover, it was proved independently by Hadamard and de la Vallée Poussin that
the distribution of primes (in particular, the prime number theorem) is a consequence of the
non-vanishing of ((s) on the line R(s) = 1 together with the simple pole at s = 1. These ideas
gave birth to the study of zeta and L-functions in other number theoretic contexts.

The focus of the current paper is another question about ((s), which has been baffling math-
ematicians since the 18th century. In 1735, Euler proved that for £ € N,

i 1 (271)?* By,
O
—n 2(2k)!

where By is the k-th Bernoulli number given by the generating function
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We recognize that the infinite series evaluated by Euler are nothing but the special values, ((2k).
Whether such an “explicit evaluation” exists for the values ((2k + 1) as well, is still an open
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question. Using the functional equation of ((s), Euler’s theorem implies that

Biy1
—k) = (=1)* f 1,2, -
((—=k) = (-1) P or ke {0,1,2,---}

Thus, the value of ((s) at negative integers is rational with ((—2n) =0 for n € N.

Furthermore, the transcendence of m due to Lindemann implies that ((2k) € 7%¢Q*, is also
transcendental for every & € N. On the other hand, the algebraic/transcendental nature of
((2k 4+ 1) is shrouded in mystery. Spectacular breakthroughs have recently been made by Apéry
[1] in 1978 who showed that ((3) ¢ Q; by Rivoal [16] in 2000 and Ball and Rivoal [3] in 2001,
who showed that for infinitely many k, ((2k + 1) ¢ Q; and W. Zudilin [24] who proved that at
least one of ((5), ¢(7), ¢(9) and ((11) is irrational.

Let K be a number field with [K : Q] = n and Ok be its ring of integers. Then the Dedekind
zeta-function attached to K is defined as

1\ ! 1
(k(s) = H (1 - W) = Z N R(s) > 1,
pCOK, ACOk,
p#0 A0
where the product is over non-zero prime ideals in Ok and N denotes the absolute norm. When
K = Q, the Dedekind zeta-function (g(s) is simply the Riemann zeta-function ((s).

The function (x(s) was introduced by R. Dedekind, who also conjectured its analytic continu-
ation, which was proved later by Hecke [8]. The function (x(s) extends analytically to the entire
complex plane except for a simple pole at s = 1. The residue at s = 1 is given by the analytic
class number formula,

1 T2
lim (s — 1) Cre(s) = 2 n LI
s—1+ w |dK|
where 71 is the number of real embeddings of K , 2r9 is the number of complex embeddings of
K, h denotes the class number, R is the regulator, w is the number of roots of unity in K and
dk is the discriminant of K (see [14, Chapter 1]).

Analogous to the Riemann zeta-function, the Dedekind zeta-function captures crucial infor-
mation about the distribution of prime ideals in Ok . For example, the non-vanishing of (x(s)
on the line R(s) = 1 along with its simple pole at s = 1, implies the prime ideal theorem. The
prime ideal theorem asserts that if wx () := #{p € Ok : p is prime , Np < x}, then

x

() ~ logx’

as x — oo. For a proof of this theorem, we refer the reader to the exposition in [14, Theorem
3.2].

The Dedekind zeta function satisfies a functional equation in the same spirit as the Riemann
zeta-function, namely,

£c(s) = €xc(1 = 5),
Els) = (mm> r(3) T ),

where

2r2 /2 2

which is analytic in the entire complex plane except for simple poles at s = 0 and s = 1. Since
the gamma function has poles at negative integers, we see that if r; > 0, then from the functional
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equation one can deduce that (x(s) is always zero at all non-zero negative even integers. Addi-
tionally, if K is not totally real (i.e., ro > 0), then (x(s) is zero at all odd negative integers as
well. Thus, the only non-zero values of (i (s), at negative integers —m, arise when K is totally
real and m > 0 is odd. From the functional equation, these values correspond to (x(2n) for an
integer n > 0.

In 1940, Hecke [9] proved that (i (2n) is an algebraic multiple of 74" for a real quadratic field
K. This led him to conjecture similar phenomena when K is any totally real field. Indeed, it was
shown by C. L. Siegel and H. Klingen [11] independently, that when F' is totally real, (z(1 — 2n)
is rational. This translates to (z(2n) being an algebraic multiple of 72"F*Q generalizing Euler’s
1737 theorem for the Riemann zeta-function. The method utilized by them relied on the theory
of Hilbert modular forms. An accessible exposition of the proof can be found in the appendix of
Siegel’s TIFR lecture notes [19]. In 1976, T. Shintani [17] provided an alternate proof of this theo-
rem from a classical perspective, whereas geometric proofs have recently appeared in [5] and in [4].

When K is not totally real, nothing is known regarding the irrationality or transcendence of
Cr(n). In 1990, D. Zagier [23] put forth a conjecture connecting these values to the polylogarithm

function,
X _n

) z
Lig(z) := ; e |z| < 1.

He conjectured that “Cx(n) is a simple multiple of the determinant of a matrix whose entries are

linear combinations of polylogarithms evaluated at a certain number in K. The case n = 3 of

Zagier’s conjecture was settled by A. Goncharov [7]. However, we are still far from understanding

the nature of these numbers.

If K/Q is an imaginary quadratic field, then (x(s) = ((s) L(s, x), where x is an odd Dirichlet
character. We know that L(2m + 1,x) is an algebraic multiple of 72™*1 (see [15, Proposition
2]). Thus, (x(2m+1) = ¢(2m+1) L(2m + 1, x) is an algebraic multiple of 7>™1 ((2m +1). We
would anticipate all of these numbers to be transcendental, however, we are far from establishing
this.

In particular, we expect all of the numbers (i (2n+1) (when K ranges over imaginary quadratic
fields) to be irrational. We can prove:

Theorem 1.1. Let m > 1 be a fized integer. Then the numbers
{(K(Qm +1) : K/Q is an imaginary quadratic extension }

are irrational with at most one exception.
This immediately implies that
Corollary 1. For a positive real number D, let
Sp :={K : K/Q is an imaginary quadratic extension, |dx| < D},
where |dg| denotes the absolute discriminant of the field K. Then, Theorem 1.1 implies that

#{(xk(2m+1) : (k(2m+1) € Q, K € §p and m € N, m < x} - 1
#{(m,K) : K € §p, me N;m <z} ~ ¥’

and the right hand side tends to zero as D — oo.
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Additionally, as a consequence of Proposition 2.2 used in the proof of Theorem 1.1, we obtain
the following interesting corollaries, which will be proved in Section 3.

Corollary 2. Let m be a fized positive integer. Then, either all the numbers
{(K(Zm +1) : K/Q is an imaginary quadratic extensz’on}

are transcendental or all the above numbers are algebraic.

Corollary 3. Let m be a fized positive integer. Then the numbers
{(K(Zm +1) : K/Q is an imaginary quadratic extensz’on}

are Q-linearly independent.

A number field F is said to be CM if there exists a subfield F' of F, such that I is totally real,
and F is a totally imaginary quadratic extension of F'. The aim of this paper is to highlight that
an irrationality result for the values of the Dedekind zeta-function of CM-number fields can be
deduced from our current knowledge. In particular, we obtain the following.

Theorem 1.2. Let m > 1 be a fixed integer. Fix a totally real field F'. Consider any family § of
CM-extensions E/F satisfying the following: for Ey, Ey € § with Ey # Es, the square-free parts
of dg, and dg, are co-prime. Then the numbers

{{E(Zm—i— 1): Ee 3}
are irrational with at most one exception.

Our work will use the theory of Artin L-series and a central theorem of Coates and Lichtenbaum
[6] regarding special values of certain Artin L-series.

2. Preliminaries

In this section, we review parts of algebraic number theory that are relevant to our discussion.

2.1. Artin L-functions. We summarize relevant facts regarding Artin L-functions below. A
gentle introduction to Artin L-functions can be found in N. Snyder’s senior thesis, titled “Artin
L-functions: A Historical Approach” [20]. A more concise account is included in the monograph
[14, Chapter 2].

Let E/F be a Galois extension of number fields with Galois group G. Let p: G — GL(V) be
a representation of G with character x. Then the Artin L-function associated to the extension
E/F and the representation p is defined as

L(87X7E/F): | | LP(S7X7E/F)5
pCOp,
p prime

where the local factors at each prime ideal p of OF are as follows. Suppose first that p is unramified
in E. Let o, denote the conjugacy class corresponding to the Frobenius at p. The local factor at
p is defined as

-1
Ly(s,x, E/F) = det (I — ,o(ap)Nps> .
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Now suppose that p is ramified in E and fix a prime 98 above p. Let V® be the subspace of
vectors fixed by the inertia group Iy, pointwise. That is,

Vlm:{vev cp() v =, forallLEIgg}.

Since Iy is a normal subgroup of Gy, one can see that Vi s Gyp-invariant. Let og be any
Frobenius element at 3. Then,

-1
Ly(s,x, E/F) = det (I - p(O‘gp)lvj(B Np_5> ,

where o|,,15; denotes o restricted to the invariant subspace VI for o € Gy. Note that the above
definition is independent of the choice of the Frobenius element. The infinite product consisting
of all these local factors converges absolutely for $(s) > 1 and defines the Artin L-function asso-
ciated to p and the extension E/F.

These L-functions take more familiar shape in certain scenarios. For example, suppose E/F
is Galois with Galois group G. Then, the Artin L-function obtained by considering the trivial
representation of G is nothing but the Dedekind zeta-function attached to the ground field, (g (s).
On the other hand, the Artin L-functions associated to characters of Gal(Q((,)/Q) are precisely
the Dirichlet L-functions.

Artin conjectured that any Artin L-function L(s,x, E/F) associated to a character y of
Gal(F/F) extends to an analytic function to the entire complex plane except for a possible pole
at s = 1, of order equal to the multiplicity of the trivial representation in y. This is one of the
classical conjectures in number theory and remains unresolved in general. It is known in the spe-
cial case when Gal(E/F) is abelian. In this case, by Artin’s reciprocity law, the Artin L-function
of an irreducible character corresponds to a Hecke L-function, which is known to be entire (see
[12, Chapter 9] for further details). There are also some recent results in the 2-dimensional case
due to Langlands [13], Tunnell [21], Khare and Wintenberger [10].

Artin L-functions satisfy a functional equation in the same spirit as the Riemann zeta-function.
At the infinite primes, i.e., the Archimedean places, the corresponding Euler factors are defined
as follows. Let v be an Archimedean place of F'. Then,

((2m)~® F(s))dim(p), if v is complex,
(7521 (s/2))" (= HD/2T((s 4 1)/2))b if v is real.

Here a is the dimension of the +1 eigenspace of complex conjugation and b is the dimension of
—1 eigenspace of complex conjugation. Hence,

Ly(s,x, E/F) —{

a+ b= dim(p).
Therefore, the gamma factors for L(s, p, E/F) are

’Y(&Xa E/F) - H LV(87X7E/F)'

v - Archimedean place of F’

An important invariant that makes an appearance in the functional equation is the Artin
conductor, . The Artin conductor is an ideal in the ring O and is defined by the restriction of
x to the inertia group and its various subgroups. We refrain from giving the technical definition
here and refer the reader to [14, pg. 28] for the precise version. However, we note one of the
useful connections of the Artin conductor to the relative discriminants of number fields. In 1931,
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E. Artin [2] proved the conductor-discriminant formula for any Galois extension of number fields
E/F. This formula states that

or = [L R o
xe@
where D/ p denotes the relative discriminant of F /F, G denotes the set of all irreducible char-
acters of G and x(1) is the dimension of the irreducible representation corresponding to x.

Let
= |dr"V Ny € @,
where dr denotes the discriminant of the field F. The completed Artin L-function can then be
defined as
A(s,x, E/F) = AY*4(s,x, E/F) L(s, x, E/ F).

This completed Artin L-function satisfies the functional equation

A(va,E/F) :W(X)A(l_saYaE/F)’ (2)
for all s € C. The number W (x) is called the Artin root number and is a complex number of
absolute value 1, carrying deep arithmetic meaning. One important observation here is that if x

is real-valued, then W (y) = £1. This can be seen by comparing the above functional equation
with its complex conjugate.

Using basic functorial properties of Artin L-functions, one can translate the group theoretic
identity,
regg = > x(1) x,
xe@G
to a factorization identity, namely,

Ce(s) s) I Les.x. B/F) (3)

x€G,
x#1

where reg. denotes the regular representation of G.

2.2. Values of zeta-functions at negative integers. Let ((s) denote the Riemann zeta-
function. As a by-product of Riemann’s proof of analytic continuation and functional equation
of ((s), one can obtain the evaluation of {(—n) for a positive integer n in terms of Bernoulli
numbers. Analogously, for a positive integer ¢, let x : (Z/qZ)* — C* be a Dirichlet character
mod ¢ and let L(s,x) be the Dirichlet L-series attached to x. It can be shown that L(s,x) is
entire when  is non-principal. Furthermore, for any integer n > 0,

n+1ZX ”+1< )

where B,,(X) € Q[X] is the n*" Bernoulli polynomial. We refer the reader to [22, Chapter 4] for
a proof. This implies that if y is a quadratic character, then L(—n,x) € Q.

L(—n,x) =

Similarly, the Siegel-Klingen theorem proves that the values of Dedekind zeta-functions at-
tached to totally real fields at odd negative integers are rational. Moreover, Siegel [18] proved
an analogue of this theorem for Hecke L-series associated to ray class characters. It was further
suggested by Serre that Siegel’s work itself implies a similar result for all Artin L-functions. This
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appears in the paper of Coates and Lichtenbaum [6, Theorem 1.2]. In particular, they show the
following.

Theorem 2.1 (Coates-Lichtenbaum). Let F' be a totally real number field and E/F be a Galois
extension with Galois group G. Let p be a representation of G with character x and L(s,x, E/F)
be the associated Artin L-function. Let Q(x) = Q({x(g) : g € G}) and n be a positive integer
such that L(—n, x, E/F) # 0. Then L(—n, x, E/F) is an algebraic number lying in the field Q(x).

It is evident from the functional equation (2) that there exist positive integers n such that
L(—n,x, E/F) is not zero if and only if F is totally real and either (a) F is totally real and n is
odd or (b) E is totally imaginary and n is even.

2.3. An important proposition. The proof of our theorem is based on the following proposi-
tion. In order to state the proposition, we define the notion of rational equivalence. Two complex
numbers o and [ are said to be rationally equivalent, i.e., a ~qg g if 8 = wa for some u € Q*.
With this definition, we show that

Proposition 2.2. Fix a totally real number field F'. Let E1 and Es be two CM-extensions of F
and dg, and dg, be their respective discriminants. Then, for any fized integer m > 0,

Co (2m+1) <\dEzr>”2
CEB, (2m + 1) ‘dE1’ .

Proof. Let G := Gal(E;/F) for j =1, 2. Then we have, G; = {1, ¢;}, where ¢; denote complex

conjugation. Let the characters corresponding to ¢; be x; : G; — {£1} where x;(c;) = —1. By

the factorization (3),

(5, (9) = Cr(9) (s, x5, B3/ F), =1, 2.
Thus,
CE1(2m+1) L(2m+1,x1,E1/F)

(e, (2m+1)  L(2m+1,x2, E2/F)

The functional equation of Artin L-functions (2) relate the value at 2m + 1 with the value at
—2m. Since F is totally real, all archimedean places of F' are real and hence, none of the gamma
factors appearing in the functional equation have poles at these integers. Thus, for j = 1, 2, we
have

A;Z;_m“)/? y(2m 41,4, E;/F) L(2m + 1,x;, E;/ F)
This implies that

—2m—1/2 7(—277’1, Xj> E]/F)
v2m +1, x5, E;/F)

Since Ej is a totally imaginary extension of F', Theorem 2.1 and (2) implies that

We would like to remark here that we do not need the full generality of Theorem 2.1. Since an
L-function associated to a one dimensional character is a product of Hecke L-functions, Siegel’s
result would suffice for the above conclusion.

L2m+1,x;,E;/F) = W(x;) (Ay,) L(=2m, x;, E;/F).

Moreover, W(x;) = %1 because x; are real valued for j = 1, 2. Hence,

_ 7(_2m7x'7E'/F)
L(2m + 1,5, E;/F) ~q Ay }/? T@m + L B/F)
AW R R
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On taking the ratio of L(2m + 1, x;, E;/F) for j = 1, 2, the gamma factors cancel as they are
same for both the Artin L-functions under consideration. Thus,

o (2m+1) (AXQ)W
<E2(2m+ 1) AXI ‘

The factor of |dp| will be common to both the values, and disappears in the ratio. Thus, the
contributing factor reduces to

Np /Qf)a

Np /QfXZ
Since the conductor of the trivial representation is the unit ideal, the conductor-discriminant
formula (1) implies

i =Dg/F-
The relative discriminant of F;/F is related to the absolute discriminant of E; by the formula

The statement of the proposition now follows. O

3. Proof of the Main theorems

3.1. Proof of Theorem 1.1. By Proposition 2.2, we know that if K7 and K> are two imaginary
quadratic extensions of QQ, then

C(2m+1) <\dK2|>1/2
(Cm+1) 2 \|dg,|)

Since K7 and K3 are distinct quadratic extensions of Q, and K; = Q(4/|dk,|), the numbers

|dk | are not rational multiples of each other. Hence, the above quotient is irrational, proving

the theorem.

3.2. Proof of Corollary 2. The statement of Proposition 2.2 implies that for two distinct
imaginary quadratic fields, K1 and Ks, the quotient

<K1 (2m + 1) By
nCmi1) %

Therefore, if (x(2m + 1) € Q for some imaginary quadratic field K, then the same will be true
for all imaginary quadratic fields.

3.3. Proof of Corollary 3. Suppose that there exist imaginary quadratic fields K;/Q, 1 < j <r
such that

,
ZCjCKj(Qm—i-l) =0, cj € Q, 1 <ji<nr
j=1
By the factorization (3), we have (k, (2m+1) = ((2m+1) L(2m+1, x;). Hence, the above relation
reduces to a relation among the values of Dirichlet L-functions. Now take ' = Q, E; = K; in
(4). Note that the corresponding ratio of gamma factors is independent of x; and simplifies to

1
7(—277@, Xj» K]/Q) ﬂ-(m_i) r (_m + %) (2m+l) 1 2m+1
g ~ I_‘ — — ~
7(2m+17Xj7Kj/Q) 7r_(m+1)I‘(m+1) QT 2 m + 9 Q7T ’
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as I'(1/2) = y/m. Thus, the above relation becomes

r

By
jZ; \/|dKj’

for certain rational numbers R;. However, the numbers , /|dk;| are Q-linearly independent. This

proves the corollary.

3.4. Proof of Theorem 1.2. The conditions on the family § ensure that for any F7 and Es in
S, |dg,|/|dE,| is not a perfect square in Q. The corollary is now immediate from Proposition 2.2.
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