CONVOLUTION OF VALUES OF THE LERCH ZETA-FUNCTION

M. RAM MURTY AND SIDDHI PATHAK

Abstract. We investigate generalizations arising from the identity

$$
\zeta_{2}(n-1,1)=\frac{n-1}{2} \zeta(n)-\frac{1}{2} \sum_{j=2}^{n-2} \zeta(j) \zeta(n-j),
$$

where $\zeta_{2}(k, 1)$ denotes a double zeta value at $(k, 1)$, or an Euler-Zagier sum. In particular, we prove analogues of the above identity for Lerch zeta-functions and Dirichlet L-functions. Such an attempt has met with limited success in the past. We highlight that this study naturally leads one into the realm of multiple L-values and multiple L^{*}-values.

1. Introduction

In the early 18th century, Euler extensively studied infinite series of the form

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}},
$$

for any positive integer $k>1$. After Riemann's introduction of the zeta-function,

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \Re(s)>1,
$$

we recognize the series studied by Euler as special values of $\zeta(s)$ at positive integers. In particular, Euler's resolution of the Basel problem leads to

$$
\zeta(2 k) \in \pi^{2 k} \mathbb{Q}^{*},
$$

for any positive integer $k \geq 1$. Thus, the values $\zeta(2 k)$ are all transcendental, thanks to Lindemann's theorem that π is transcendental. However, the arithmetic nature of $\zeta(2 k+1)$ for an integer $k \geq 1$ remains shrouded in mystery.

Recently, significant progress was made in this direction when Apéry [2] proved that $\zeta(3)$ is irrational, T. Rivoal [20] proved that infinitely many of $\zeta(2 k+1)$ are irrational and W. Zudilin [24] showed that at least one of $\zeta(5), \zeta(7), \zeta(9)$ and $\zeta(11)$ is irrational. The transcendence of the values $\zeta(2 k+1)$ is not known, although they are expected to be so. Moreover, it is widely believed that

$$
\pi, \zeta(3), \zeta(5), \zeta(7), \cdots
$$

are algebraically independent.
In an attempt to understand the nature of the special values of the Riemann zeta-function, it seems fruitful to adopt a larger perspective. The values then seem intimately connected with special values

[^0]of the multi-zeta functions. A multi-zeta value (MZV) of depth r and weight w is defined as the nested sum,
$$
\zeta_{r}\left(k_{1}, k_{2}, \cdots, k_{r}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{r} \geq 1} \frac{1}{n_{1}^{k_{1}} n_{2}^{k_{2}} \cdots n_{r}^{k_{r}}},
$$
where k_{i} are positive integers, $k_{1} \geq 2$ and $k_{1}+k_{2}+\cdots+k_{r}=w$. These values not only appear in several areas of mathematics but also in quantum physics. MZVs have been the focus of intense research in recent times. They satisfy a wide variety of relations. Recently, F. Brown [7] proved a remarkable theorem which states that all multiple zeta-values of weight n are \mathbb{Q}-linear combinations of
$$
\left\{\zeta\left(a_{1}, \cdots, a_{r}\right): a_{i} \in\{2,3\} \text { for } 1 \leq i \leq r, a_{1}+\cdots+a_{r}=n\right\} .
$$

The MZVs are also intricately related to the values of the Riemann zeta-function itself. Perhaps the most striking example of such a relation is that

$$
\zeta_{2}(2,1)=\zeta(3),
$$

or more generally,

$$
\begin{equation*}
\zeta_{2}(n-1,1)=\frac{n-1}{2} \zeta(n)-\frac{1}{2} \sum_{j=2}^{n-2} \zeta(j) \zeta(n-j), \tag{1}
\end{equation*}
$$

for a positive integer $n \geq 3$, which was certainly known to Euler. Thus, it is expected that the study of MZVs will shed light upon the arithmetic nature of $\zeta(2 k+1)$.

These convolution sum identities suggest that there must exist similar identities for other L-functions such as Dirichlet L-functions. Yet, to our knowledge, no one has derived such analogues. The closest we come to such an attempt revolves around a celebrated theorem of Ramanujan: let $\alpha, \beta>0$ with $\alpha \beta=\pi^{2}$, and let k be any non-zero integer. Then

$$
\begin{aligned}
\alpha^{-k}\left\{\frac{1}{2} \zeta(2 k+1)+\sum_{n=1}^{\infty} \frac{1}{n^{2 k+1}\left(e^{2 \alpha n}-1\right)}\right\}= & (-\beta)^{-k}\left\{\frac{1}{2} \zeta(2 k+1)+\sum_{n=1}^{\infty} \frac{1}{n^{2 k+1}\left(e^{2 \beta n}-1\right)}\right\} \\
& -2^{2 k} \sum_{j=0}^{k+1}(-1)^{j} \frac{B_{2 j}}{(2 j)!} \frac{B_{2 k+2-2 j}}{(2 k+2-2 j)!} \alpha^{k+1-j} \beta^{j},
\end{aligned}
$$

where B_{n} denotes the n-th Bernoulli number (see [3]). The last term on the right hand side of the above identity can be viewed as a convolution sum of zeta values since

$$
\zeta(2 k)=\frac{(2 \pi i)^{2 k} B_{2 k}}{2(2 k)!} .
$$

Attempts to generalize this identity to Dirichlet L-functions have met with limited success. For example, S. Chowla [8] derived an analog of this identity if $\zeta(s)$ is replaced by $L\left(s, \chi_{4}\right)$ where χ_{4} is the non-trivial Dirichlet character modulo 4 (see [3, pg. 277]). It is the purpose of this note to initiate a systematic study of such convolution identities. As Dirichlet L-functions are linear combinations of Hurwitz zeta-functions, it seems appropriate to derive convolution sum identities for them, and more generally for the Lerch zeta-functions.

The Hurwitz zeta-function was isolated for independent study by A. Hurwitz [13] in 1882. For $0<x \leq 1$, the Hurwitz zeta-function is defined as the series

$$
\zeta(s ; x):=\sum_{n=0}^{\infty} \frac{1}{(n+x)^{s}}, \Re(s)>1 .
$$

In 1887, Lerch studied an exponential twist of the Hurwitz zeta-function. For $|z| \leq 1, \alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$, the Lerch zeta-function is defined as

$$
\Phi(z ; \alpha ; s):=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+\alpha)^{s}},
$$

which converges for $\Re(s)>1$ if $z=1$ and $\Re(s)>0$ otherwise. The Riemann and Hurwitz zeta-functions are special cases of the Lerch zeta-function.

Moreover, this function generalizes another special function that makes an appearance in the theory of special values of zeta-functions, namely, the polylogarithm. For $|z| \leq 1$, the s-th polylogarithm is defined as

$$
\operatorname{Li}_{s}(z):=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}}=z \Phi(z, 1, s)
$$

This series converges for $s>1$ when $z=1$ and $s>0$ when $|z| \leq 1$ and $z \neq 1$.
Fix a positive integer $q \geq 3$. A Dirichlet character χ modulo q is a group homomorphism, χ : $(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$, extended as a completely multiplicative, periodic function on the integers. The L function associated to χ is defined as

$$
L(s ; \chi):=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

which converges absolutely for $\Re(s)>1$. It can be shown that (see [16, Section 5] for details) $L(k ; \chi) \in$ $\pi^{k} \mathbb{Q}^{*}$ when k and χ have the same parity, i.e., both are either odd or even. However, when k and χ have the opposite parity, the nature of the values $L(k ; \chi)$ is unknown. Since the function χ is periodic, for $\Re(s)>1$,

$$
L(s ; \chi)=\frac{1}{q^{s}} \sum_{a=1}^{q} \chi(a) \zeta\left(s ; \frac{a}{q}\right) .
$$

Thus, the Hurwitz zeta-functions are building blocks of the Dirichlet L-series.
That the above functions are inter-related is immediate from the following observations.

$$
\begin{align*}
\zeta\left(k ; \frac{1}{2}\right) & =\left(2^{k}-1\right) \zeta(k), \operatorname{Li}_{k}(-1)=-\Phi(-1 ; 1 ; k)=\left(1-\frac{2}{2^{k}}\right) \zeta(k) \\
& \Phi\left(-1 ; \frac{1}{2} ; k\right)=2^{k} L\left(k ; \chi_{4}\right) \tag{2}
\end{align*}
$$

where χ_{4} is the non-trivial character modulo 4 .
Multi-variable analogs of the above zeta-functions have been studied by various authors. The theory of meromorphic continuation of multiple Hurwitz zeta-function was studied by Akiyama and Ishikawa [1] and by the first author and Kaneenika Sinha [18]. Around the same time, the multiple Hurwitz zeta-functions were also studied in [15]. The multiple Hurwitz zeta-function,

$$
\widetilde{\zeta}\left(s_{1}, \cdots, s_{r} ; x_{1}, \cdots, x_{r}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{r} \geq 1} \frac{1}{\left(n_{1}+x_{1}\right)^{s_{1}} \cdots\left(n_{r}+x_{r}\right)^{s_{r}}},
$$

converges when $x_{i} \in(0, \infty)$ and

$$
\begin{equation*}
\Re\left(s_{1}\right)>1, \Re\left(s_{1}+s_{2}\right)>2, \cdots, \Re\left(s_{1}+\cdots+s_{r}\right)>r . \tag{3}
\end{equation*}
$$

The analytic continuation of these multiple Hurwitz zeta-functions was the center of interest in [18]. However, the arithmetic nature of special values of the multiple Hurwitz zeta-functions have not been
studied previously in full generality. In the special case that $x_{i}=1 / 2$, the multiple Hurwitz zeta-values are called multiple t-values. A detailed study of these special values in the spirit of multiple zeta-values has been carried out by M. E. Hoffman in [12], who conjectured that the dimension of the \mathbb{Q}-vector space generated by the weight k multiple t-values is the $k^{\text {th }}$ Fibonacci number. A basis for this vector space was conjectured by B. Saha in [22].

In order to ensure elegance of our formulas, we modify the above definition slightly to include the indices equal to 0 and ensure that $x_{i} \notin\{0,-1,-2, \cdots\}$. Thus, throughout this paper, we will consider the multiple Hurwitz zeta-function to be

$$
\begin{equation*}
\zeta\left(s_{1}, \cdots, s_{r} ; x_{1}, \cdots, x_{r}\right)=\sum_{n_{1}>n_{2}>\cdots>n_{r} \geq 0} \frac{1}{\left(n_{1}+x_{1}\right)^{s_{1}} \cdots\left(n_{r}+x_{r}\right)^{s_{s}}} . \tag{4}
\end{equation*}
$$

Adopting this convention implies that

$$
\zeta\left(s_{1}, \cdots, s_{r} ; 1, \cdots, 1\right)=\zeta_{r}\left(s_{1}, \cdots, s_{r}\right),
$$

the usual multi-zeta function. Note that

$$
\zeta\left(s_{1}, \cdots, s_{r} ; x_{1}, \cdots, x_{r}\right)=\widetilde{\zeta}\left(s_{1}, \cdots, s_{r} ; x_{1}, \cdots, x_{r}\right)+\frac{1}{x_{r}^{s_{r}}} \widetilde{\zeta}\left(s_{1}, \cdots, s_{r-1} ; x_{1}, \cdots, x_{r-1}\right) .
$$

In the same vein, the meromorphic continuation of multiple Lerch zeta-function was studied by S. Gun and B. Saha in [11]. We will define a multiple Lerch-zeta function as

$$
\begin{equation*}
\Phi\left(z_{1}, \cdots, z_{r} ; \alpha_{1}, \cdots, \alpha_{r} ; s_{1}, \cdots, s_{r}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{r} \geq 0} \frac{z_{1}^{n_{1}} \cdots z_{r}^{n_{r}}}{\left(n_{1}+\alpha_{1}\right)^{s_{1}} \cdots\left(n_{r}+\alpha_{r}\right)^{s_{r}}}, \tag{5}
\end{equation*}
$$

for $\alpha_{i} \in(0, \infty), s_{1}, \cdots s_{r}$ satisfying (3) and z_{i} such that $\prod_{i=1}^{j}\left|z_{i}\right| \leq 1$ for all $1 \leq j \leq r$ (for a proof, see [21, Section 2.2]). Note that we include the term corresponding to $n_{r}=0$ to ensure clean identities, so our definition includes more terms than that used in [11]. It is then easy to see that $\Phi\left(1, \cdots, 1 ; \alpha_{1}, \cdots, \alpha_{r} ; s_{1}, \cdots, s_{r}\right)=\zeta\left(s_{1}, \cdots, s_{r} ; \alpha_{1}, \cdots, \alpha_{r}\right)$ and the multiple polylogarithms (see [23]),

$$
\mathrm{Li}_{s_{1}, \cdots, s_{r}}\left(z_{1}, \cdots, z_{r}\right)=\sum_{n_{1}>\cdots>n_{r} \geq 1} \frac{z_{1}^{n_{1}} \cdots z_{r}^{n_{r}}}{n_{1}^{s_{1}} \cdots n_{r}^{s_{r}}}=z_{1} \cdots z_{r} \Phi\left(z_{1}, \cdots, z_{r} ; 1, \cdots, 1 ; s_{1}, \cdots, s_{r}\right) .
$$

When $z_{i}= \pm 1$, the corresponding multiple polylogarithms are called alternating Euler-Zagier sums, which have been extensively studied in the literature (for example, see [5] and [6]). In order to maintain consistency of notation for depth 2 sums, we use the following convention.

$$
\begin{equation*}
\zeta_{2}(\bar{r}, s):=\sum_{m=2}^{\infty} \frac{(-1)^{m}}{m^{r}} \sum_{n=1}^{m-1} \frac{1}{n^{s}}, \quad \zeta_{2}(\bar{r}, \bar{s}):=\sum_{m=2}^{\infty} \frac{(-1)^{m}}{m^{r}} \sum_{n=1}^{m-1} \frac{(-1)^{n}}{n^{s}} . \tag{6}
\end{equation*}
$$

Multiple Dirichlet L-functions were considered by Akiyama and Ishikawa [1] and also appear in the work of Goncharov [10]. Let $\chi_{1}, \chi_{2}, \cdots, \chi_{r}$ be primitive Dirichlet characters of the same modulus q. Then the associated multiple Dirichlet L-function is defined as

$$
L\left(s_{1}, \cdots, s_{r} ; \chi_{1}, \cdots, \chi_{r}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{r} \geq 1} \frac{\chi_{1}\left(n_{1}\right) \cdots \chi_{r}\left(n_{r}\right)}{n_{1}^{s_{1} \cdots n_{r}}{ }^{s_{r}}} .
$$

The convolution of values of Dirichlet L-functions is considerably more involved. The multiple L functions that appear are more general than the multiple Dirichlet L-functions above, namely, if f_{1}, f_{2}, \cdots, f_{r} be functions on the integers, that are periodic modulo the same modulus, q and satisfy $\sum_{a=1}^{q} f_{j}(a)=0$ for all $1 \leq j \leq r$, then define the multiple L-function,

$$
\begin{equation*}
L\left(s_{1}, \cdots, s_{r} ; f_{1}, \cdots, f_{r}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{r} \geq 1} \frac{f_{1}\left(n_{1}\right) \cdots f_{r}\left(n_{r}\right)}{n_{1}^{s_{1}} \cdots n_{r}^{s_{r}}}, \tag{7}
\end{equation*}
$$

which converges for s_{1}, \cdots, s_{r} satisfying (3).
Another multiple Dirichlet series allied to (7) are quasi-multiple L-functions, where the strict inequality in (7) is replaced by a possible equality. Analogously, one can also define the quasi-multiple Hurwitz zeta-functions. They are a special case of a general multiple zeta-function introduced by Matsumoto [15] and are discussed in [18, pg. 13]. In particular, the quasi-multiple L-functions that appear in our work will be

$$
\begin{equation*}
L^{*}\left(s_{1}, \cdots, s_{r} ; x_{1}, \cdots, x_{r}\right):=\sum_{n_{1} \geq n_{2} \geq \cdots \geq n_{r} \geq 1} \frac{f_{1}\left(n_{1}\right) \cdots f_{r}\left(n_{r}\right)}{n_{1}^{s_{1} \cdots n_{r}}{ }^{s_{r}}} \tag{8}
\end{equation*}
$$

for $x_{i} \in \mathbb{R} \backslash\{0,-1,-2, \cdots\}, 1 \leq i \leq r$ and s_{i} satisfying (3). These can be related to the multiple L-functions via a simple inclusion-exclusion principle.

The identities we obtain naturally also include the digamma function $\psi(x)$, which is defined as the logarithmic derivative of the gamma function. Owing to the infinite product of $\Gamma(z)$, one obtains a series expansion for $\psi(z)$, namely

$$
\psi(z):=-\gamma-\frac{1}{z}-\sum_{n=1}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n}\right), \quad z \neq 0,-1,-2, \cdots
$$

Here γ denotes the Euler-Mascheroni constant. Thus, $\psi(1)=-\gamma$.
We first prove convolution sum identities for Lerch zeta-functions where the argument $z \neq 1$. From these identities, we derive the analogous expressions for Hurwitz zeta-functions by careful analysis of the effect of taking limit as $z \rightarrow 1^{-}$. Thus, our main theorem is

Theorem 1.1. Let $k \geq 3$ be a positive integer, $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$ and $z_{1}, z_{2} \in \mathbb{C}$ with $0<$ $\left|z_{1}\right|,\left|z_{2}\right| \leq 1, z_{1} \neq 1$ and $z_{2} \neq 1$. Then

$$
\begin{aligned}
& \sum_{j=1}^{k-1} \Phi\left(z_{1} ; \alpha ; j\right) \Phi\left(z_{2} ; \alpha ; k-j\right) \\
& =(k-1) \Phi\left(z_{1} z_{2} ; \alpha ; k\right)-\left(\log \left(1-z_{1}\right)+\log \left(1-z_{2}\right)\right) \Phi\left(z_{1} z_{2} ; \alpha ; k-1\right) \\
& \quad-z_{2}^{-1} \Phi\left(z_{1} z_{2}, z_{2}^{-1} ; \alpha, 1 ; k-1,1\right)-z_{1}^{-1} \Phi\left(z_{1} z_{2}, z_{1}^{-1} ; \alpha, 1 ; k-1,1\right)
\end{aligned}
$$

where the last two terms are multiple Lerch zeta-functions as defined in (5).
As an easy corollary of this theorem using (2), we deduce the following identity for values of $L\left(s ; \chi_{4}\right)$, where χ_{4} denotes the non-trivial Dirichlet character modulo 4.

Corollary 1.1. Let $k \geq 3$ be a positive integer and χ_{4} denote the non-trivial Dirichlet character modulo 4. Then,

$$
\begin{aligned}
\sum_{j=1}^{k-1} L\left(j ; \chi_{4}\right) L\left(k-j ; \chi_{4}\right)=(k-1)\left(1-\frac{1}{2^{k}}\right) & \zeta(k)-\log 2\left(1-\frac{1}{2^{k-1}}\right) \zeta(k-1) \\
& +2 \Phi\left(1 ;-1 ; \frac{1}{2}, 1 ; k-1,1\right)
\end{aligned}
$$

Now, we fix z_{2} and take the limit as $z_{1} \rightarrow 1^{-}$in Theorem 1.1. This gives the following theorem for values of the Lerch and the Hurwitz zeta-function.

Theorem 1.2. Let $k \geq 3$ be a positive integer, $0<|z| \leq 1$ and $z \neq 1$ and $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$. Then

$$
\begin{aligned}
\sum_{j=2}^{k-1} \zeta(j ; \alpha) \Phi(z ; \alpha ; k-j)=(k-1) \Phi(z ; \alpha ; k) & +(\psi(\alpha)+\gamma-\log (1-z)) \Phi(z ; \alpha ; k-1) \\
& -z^{-1} \Phi\left(z, z^{-1} ; \alpha, 1 ; k-1,1\right)-\Phi(z, 1 ; \alpha, 1 ; k-1,1)
\end{aligned}
$$

where the last two terms are multiple Lerch zeta-functions as defined in (5).
Similarly, on taking the limit as $z \rightarrow 1^{-}$in the above theorem, we get
Corollary 1.2. Let $k \geq 4$ be a positive integer and $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$. Then

$$
\sum_{j=2}^{k-2} \zeta(j ; \alpha) \zeta(k-j ; \alpha)=(k-1) \zeta(k ; \alpha)+2(\psi(\alpha)+\gamma) \zeta(k-1 ; \alpha)-2 \zeta(k-1,1 ; \alpha, 1)
$$

In particular, when $k=3$ and $\alpha=1$, the above corollary implies $\zeta(3)=\zeta_{2}(2,1)$. Moreover, we can take $z=-1$ and $\alpha=1$ in Theorem 1.2 to obtain

Corollary 1.3. For any integer $k \geq 4$,

$$
\begin{aligned}
\sum_{j=2}^{k-2}\left(1-\frac{2}{2^{k-j}}\right) \zeta(j) \zeta(k-j)=(k-1) \zeta(k) & -\left(1-\frac{2}{2^{k-1}}\right)(\log 2) \zeta(k-1) \\
& +\zeta_{2}(\overline{k-1}, \overline{1})-\zeta_{2}(\overline{k-1}, 1)
\end{aligned}
$$

where the last terms are alternating Euler-Zagier sums, defined in (6).
This identity has been discussed in detail in [5, Section 4, (15)].
In [17], the first author emphasized that $\zeta(2)=\pi^{2} / 6$ itself implies the more general fact that $\zeta(2 k) \in \pi^{2 k} \mathbb{Q}$, simply because of the neat identity

$$
\begin{equation*}
\left(k+\frac{1}{2}\right) \zeta(2 k)=\sum_{j=1}^{k-1} \zeta(2 j) \zeta(2 k-2 j) \tag{9}
\end{equation*}
$$

This is another relation among the zeta-values that Euler was familiar with. It is natural to inquire if convolutions of values of the Lerch zeta-functions at even positive integers lead to new identities, different from the ones described previously. Towards this question, we prove the following.

Theorem 1.3. Let $k \geq 2$ be a positive integer and complex numbers z_{1} and z_{2} such that $0<\left|z_{1}\right|=$ $\left|z_{2}\right| \leq 1$ and $z_{1}, z_{2} \neq 1$. Then

$$
\begin{aligned}
& \sum_{j=1}^{k-1} \Phi\left(z_{1} ; \alpha ; 2 j\right) \Phi\left(z_{2} ; \alpha ; 2 k-2 j\right) \\
& =\left(k-\frac{1}{2}\right) \Phi\left(z_{1} z_{2} ; \alpha ; 2 k\right)-\frac{1}{2} \Phi\left(z_{1} z_{2} ; \alpha ; 2 k-1\right)\left(\log \left(1-z_{1}\right)+\log \left(1-z_{2}\right)\right) \\
& -\frac{1}{2} \Phi\left(z_{1}^{-1} z_{2} ; \alpha ; 2 k-1\right) \Phi\left(z_{1} ; 2 \alpha ; 1\right)-\frac{1}{2} \Phi\left(z_{1} z_{2}^{-1} ; \alpha ; 2 k-1\right) \Phi\left(z_{2} ; 2 \alpha ; 1\right) \\
& -\frac{z_{2}^{-1}}{2} \Phi\left(z_{1} z_{2}, z_{2}^{-1} ; \alpha, 1 ; 2 k-1,1\right)+\frac{1}{2} \Phi\left(z_{1} z_{2}^{-1}, z_{2} ; \alpha, 2 \alpha ; 2 k-1,1\right) \\
& -\frac{z_{1}^{-1}}{2} \Phi\left(z_{1} z_{2}, z_{1}^{-1} ; \alpha, 1 ; 2 k-1,1\right)+\frac{1}{2} \Phi\left(z_{1}^{-1} z_{2}, z_{1} ; \alpha, 2 \alpha ; 2 k-1,1\right)
\end{aligned}
$$

Taking $z_{1}=z_{2}=-1$ and $\alpha=1 / 2$ in the above theorem, we deduce that

Corollary 1.4. Let χ_{4} denote the non-trivial character modulo 4 and $k \geq 2$ be an integer. Then

$$
\begin{aligned}
& \sum_{j=1}^{k-1} L\left(2 j ; \chi_{4}\right) L\left(2 k-2 j ; \chi_{4}\right) \\
& =\left(1-\frac{1}{2^{2 k}}\right)\left(k-\frac{1}{2}\right) \zeta(2 k)-\left(1-\frac{1}{2^{2 k-1}}\right)(\log 2) \zeta(2 k-1)+\frac{1}{2^{2 k-1}} \Phi\left(1,-1 ; \frac{1}{2}, 1 ; 2 k-1,1\right)
\end{aligned}
$$

On the other hand, considering the equation in Theorem 1.3 at $z=z_{1}=z_{2},|z|<1$ and taking the limit as $z \rightarrow 1^{-}$, we deduce the following identity for the values of Hurwitz zeta-functions.

Corollary 1.5. Let $k \geq 2$ be an integer and $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$. Then

$$
\begin{aligned}
\sum_{j=1}^{k-1} \zeta(2 j ; \alpha) \zeta(2 k-2 j ; \alpha)=\left(k-\frac{1}{2}\right) & \zeta(2 k ; \alpha)+(\psi(2 \alpha)+\gamma) \zeta(2 k-1 ; \alpha) \\
& -\zeta(2 k-1,1 ; \alpha, 1)+\zeta(2 k-1,1 ; \alpha, 2 \alpha)
\end{aligned}
$$

where the last two terms are multiple Hurwitz zeta-functions as in (4).
For Dirichlet L-functions associated to primitive Dirichlet characters, we have the following theorem.
Theorem 1.4. Let χ_{1}, χ_{2} be primitive Dirichlet characters modulo $q \geq 3$ and $k \geq 3$ be an integer. For a primitive Dirichlet character $\chi \bmod q$, define two allied periodic functions mod q by

$$
T_{q, a, \chi}(n):=\chi(n) \zeta_{q}^{a n}, \text { and } T_{q, a}(n):=\zeta_{q}^{a n}
$$

for any $a \in \mathbb{Z}$. Also, let $\tau(\chi)=\sum_{a=1}^{q} \chi(a) \zeta_{q}^{a}$ be the Gauss sum associated to χ. Then,

$$
\begin{aligned}
& \sum_{j=1}^{k-1} L\left(j ; \chi_{1}\right) L\left(k-j ; \chi_{2}\right) \\
& =(k-1) L\left(k ; \chi_{1} \chi_{2}\right)-\frac{1}{\tau\left(\overline{\chi_{2}}\right)} \sum_{a=1}^{q-1}\left(\overline{\chi_{2}}(a) \log \left(1-\zeta_{q}^{a}\right) L\left(k-1 ; T_{q, a, \chi_{1}}\right)\right) \\
& -\frac{1}{\tau\left(\overline{\chi_{1}}\right)} \sum_{a=1}^{q-1}\left(\overline{\chi_{1}}(a) \log \left(1-\zeta_{q}^{a}\right) L\left(k-1 ; T_{q, a, \chi_{2}}\right)\right)-\frac{1}{\tau\left(\overline{\chi_{2}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{2}}(a) \zeta_{q}^{-a} L^{*}\left(k-1,1 ; T_{q, a, \chi_{1}}, T_{q,-a}\right) \\
& \quad-\frac{1}{\tau\left(\overline{\chi_{1}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{1}}(a) \zeta_{q}^{-a} L^{*}\left(k-1,1 ; T_{q, a \chi_{2}}, T_{q,-a}\right)
\end{aligned}
$$

where the last terms involve multiple L^{*}-function as defined in (8).
This is a generalization of Corollary 1.1 and gives an idea of the various combinations of special values involved. It is not difficult to see that for $r, s \in \mathbb{N}$ with $1<r$ and $1 \leq s$, and a primitive character $\chi \bmod q$,

$$
\begin{aligned}
L^{*}\left(r, s ; T_{q, a, \chi}, T_{q,-a}\right) & =\sum_{m=1}^{\infty} \frac{\chi(m) \zeta_{q}^{a m}}{m^{r}} \cdot \frac{\zeta_{q}^{-a m}}{m^{s}}+\sum_{m=1}^{\infty} \frac{\chi(m) \zeta_{q}^{a m}}{m^{r}} \sum_{j=1}^{m-1} \frac{\zeta_{q}^{a j}}{j^{s}} \\
& =L(r+s, \chi)+L\left(r, s ; T_{q, a, \chi}, T_{q, a}\right)
\end{aligned}
$$

Using this in the above theorem, together with the fact that for a primitive Dirichlet character χ mod q,

$$
\sum_{a=1}^{q} \chi(a) \zeta_{q}^{-a}=\chi(-1) \tau(\chi)
$$

simplifies the identity as follows:

$$
\begin{aligned}
& \sum_{j=1}^{k-1} L\left(j ; \chi_{1}\right) L\left(k-j ; \chi_{2}\right) \\
& =(k-1) L\left(k ; \chi_{1} \chi_{2}\right)-\chi_{2}(-1) L\left(k ; \chi_{1}\right)-\chi_{1}(-1) L\left(k ; \chi_{2}\right) \\
& -\frac{1}{\tau\left(\overline{\chi_{2}}\right)} \sum_{a=1}^{q-1}\left(\overline{\chi_{2}}(a) \log \left(1-\zeta_{q}^{a}\right) L\left(k-1 ; T_{q, a, \chi_{1}}\right)\right)-\frac{1}{\tau\left(\overline{\chi_{1}}\right)} \sum_{a=1}^{q-1}\left(\overline{\chi_{1}}(a) \log \left(1-\zeta_{q}^{a}\right) L\left(k-1 ; T_{q, a, \chi_{2}}\right)\right) \\
& -\frac{1}{\tau\left(\overline{\chi_{2}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{2}}(a) \zeta_{q}^{-a} L\left(k-1,1 ; T_{q, a, \chi_{1}}, T_{q,-a}\right)-\frac{1}{\tau\left(\overline{\chi_{1}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{1}}(a) \zeta_{q}^{-a} L\left(k-1,1 ; T_{q, a \chi_{2}}, T_{q,-a}\right) .
\end{aligned}
$$

Remark. It is evident from the above theorem that in order to study the special values of Dirichlet L-function, one must investigate the allied functions

$$
\operatorname{Li}_{k}(z ; \chi):=\sum_{n=1}^{\infty} \frac{\chi(n) z^{n}}{n^{k}},|z| \leq 1,
$$

for a Dirichlet character χ modulo q. By the duality between Dirichlet characters and arithmetic progressions, these sums will be naturally related to the function,

$$
\sum_{\substack{n=1, n \equiv a \bmod q}}^{\infty} \frac{z^{n}}{n^{k}},
$$

which is essentially the Lerch zeta-function $\Phi(z ; a / q ; k)$.

2. Proof of main theorems

The method of summation in evaluating the sums that arise in our theorems is based on the same general principle, which we outline below. Fix a positive integer $r \geq 1$ and a positive integer $k \geq 4$. For complex numbers z_{1}, z_{2} with $\left|z_{i}\right| \leq 1$ and $z_{i} \neq 1, i=1,2, \alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$, let the r-level convolution be defined as

$$
\mathcal{C}_{r}\left(z_{1}, z_{2} ; \alpha\right):=\sum_{j=1}^{k-1} \Phi\left(z_{1} ; \alpha ; r j\right) \Phi\left(z_{2} ; \alpha ; r(k-j)\right) .
$$

Then we expand the right hand side as

$$
\begin{aligned}
\mathcal{C}_{r}\left(z_{1}, z_{2} ; \alpha\right) & =\sum_{j=1}^{k-1} \sum_{n, m=0}^{\infty} \frac{z_{1}^{m}}{(m+\alpha)^{r j}} \cdot \frac{z_{2}^{n}}{(n+\alpha)^{r(k-j)}} \\
& =(k-1) \sum_{n=0}^{\infty} \frac{\left(z_{1} z_{2}\right)^{n}}{(n+\alpha)^{r k}}+\sum_{\substack{n, m=0, n \neq m}}^{\infty} z_{1}^{m} z_{2}^{n} \sum_{j=1}^{k-1} \frac{1}{(m+\alpha)^{r j}} \cdot \frac{1}{(n+\alpha)^{r(k-j)}} \\
& =(k-1) \Phi\left(z_{1} z_{2} ; \alpha ; r k\right)+\sum_{\substack{n, m=0, n \neq m}}^{\infty} \frac{z_{1}^{m} z_{2}^{n}}{(n+\alpha)^{r k}} \sum_{j=1}^{k-1}\left(\frac{n+\alpha}{m+\alpha}\right)^{r j}
\end{aligned}
$$

Now, the inner sum can be evaluated as a geometric series,

$$
\frac{1}{(n+\alpha)^{r k}} \sum_{j=1}^{k-1}\left(\frac{n+\alpha}{m+\alpha}\right)^{r j}=\frac{1}{(m+\alpha)^{r(k-1)}(n+\alpha)^{r(k-1)}}\left(\frac{(n+\alpha)^{r(k-1)}-(m+\alpha)^{r(k-1)}}{(n+\alpha)^{r}-(m+\alpha)^{r}}\right)
$$

Thus we get

$$
\begin{align*}
\mathcal{C}_{r}\left(z_{1}, z_{2} ; \alpha\right)=(k-1) \Phi\left(z_{1} z_{2} ; \alpha ; r k\right) & +\sum_{m=0}^{\infty} \frac{z_{1}^{m}}{(m+\alpha)^{r(k-1)}} \sum_{\substack{n=0, n \neq m}}^{\infty} \frac{z_{2}^{n}}{(n+\alpha)^{r}-(m+\alpha)^{r}} \\
& +\sum_{n=0}^{\infty} \frac{z_{2}^{n}}{(n+\alpha)^{r(k-1)}} \sum_{\substack{m=0, m \neq n}}^{\infty} \frac{z_{1}^{m}}{(m+\alpha)^{r}-(n+\alpha)^{r}} . \tag{10}
\end{align*}
$$

Therefore, the above computations naturally lead one into the study of the auxiliary sums

$$
\begin{equation*}
\mathcal{S}_{r, m}(z, \alpha):=\sum_{\substack{n=0, n \neq m}}^{\infty} \frac{z^{n}}{(n+\alpha)^{r}-(m+\alpha)^{r}}, \tag{11}
\end{equation*}
$$

where $z \in \mathbb{C}$ with $|z| \leq 1, z \neq 1$ and $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$. Our focus will mostly be on the cases $r=1$ and $r=2$. We will also later indicate the difficulties in obtaining neat formulas for $r \geq 3$ using the above method.
2.1. Evaluation of auxiliary sum. For a non-negative integer m, let H_{m} denote the $m^{\text {th }}$ harmonic number, that is,

$$
H_{m}:=\sum_{j=1}^{m} \frac{1}{j}
$$

if m is a strictly positive integer and $H_{0}:=0$. It is not difficult to see that

$$
\begin{equation*}
H_{N}=\log N+\gamma+O\left(\frac{1}{N}\right) \tag{12}
\end{equation*}
$$

Analogous to the harmonic numbers, we introduce the generalized harmonic numbers, defined as

$$
H_{k}(z, \alpha):= \begin{cases}\sum_{j=0}^{k} \frac{z^{j}}{(j+\alpha)}, & \text { if } k \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

for $|z| \leq 1$ and $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$. Let $H_{k}(\alpha):=H_{k}(1, \alpha)$, so that $H_{m}=H_{m-1}(1)$. The asymptotic behaviour of these numbers is evident from the following lemma.
Lemma 2.1. Let $|z| \leq 1, \alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$ and k be a non-negative integer. Then,

$$
H_{k}(\alpha)=\log k-\psi(\alpha)+O\left(\frac{1}{k}\right)
$$

as $k \rightarrow \infty$. If $z \neq 1$, then

$$
\lim _{k \rightarrow \infty} H_{k}(z, \alpha)=\Phi(z ; \alpha ; 1)
$$

Proof. When $z \neq 1$, the series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{(n+\alpha)}
$$

can be shown to converge using Abel's theorem. When $z=1$, the asymptotics follow from (12) and the series representation of the digamma function,

$$
\frac{1}{\alpha}+\sum_{n=1}^{\infty}\left(\frac{1}{n+\alpha}-\frac{1}{n}\right)=-\gamma-\psi(\alpha)
$$

for $\alpha \neq 0,-1,-2, \cdots$.

Also note that for $z \neq 1$ and $0<|z| \leq 1$,

$$
\Phi(z ; 1 ; 1)=z^{-1} \log (1-z) .
$$

With this background, the auxiliary sum in the case $r=1$ can be expressed as follows.
Lemma 2.2. Let $z \in \mathbb{C}$ with $|z| \leq 1, z \neq 1$ and m be a non-negative integer. Then

$$
\mathcal{S}_{m}(z):=\sum_{\substack{n=0, n \neq m}}^{\infty} \frac{z^{n}}{n-m}=-z^{m} \log (1-z)-z^{m-1} H_{m-1}\left(z^{-1}, 1\right),
$$

where the last term involves a generalized harmonic number.
Proof. Separating the sum into two parts gives

$$
\begin{aligned}
\mathcal{S}_{m}(z) & =\sum_{m<n} \frac{z^{n}}{n-m}+\sum_{0 \leq n<m} \frac{z^{n}}{n-m}=\sum_{j=1}^{\infty} \frac{z^{j+m}}{j}-\sum_{j=1}^{m} \frac{z^{m-j}}{j} \\
& =-z^{m} \log (1-z)-\sum_{j=0}^{m-1} \frac{z^{(m-j-1)}}{j+1} \\
& =-z^{m} \log (1-z)-z^{m-1} H_{m-1}\left(z^{-1}, 1\right) .
\end{aligned}
$$

In the case $r=2$, we have
Lemma 2.3. Let $z \in \mathbb{C}$ with $|z| \leq 1, z \neq 1$ and m be a non-negative integer. Then

$$
\begin{aligned}
\mathcal{S}_{2, m}(z, \alpha) & :=\sum_{\substack{n=0, n \neq m}}^{\infty} \frac{z^{n}}{(n+\alpha)^{2}-(m+\alpha)^{2}} \\
& =\frac{z^{m}}{4(m+\alpha)^{2}}-\frac{1}{2(m+\alpha)}\left\{z^{m} \log (1-z)+z^{m-1} H_{m-1}\left(z^{-1}, 1\right)\right\} \\
& -\frac{1}{2(m+\alpha)}\left\{z^{-m} \Phi(z ; 2 \alpha ; 1)-z^{-m} H_{m-1}(z, 2 \alpha)\right\}
\end{aligned}
$$

Proof. By partial fractions, we know that

$$
\frac{1}{(n+\alpha)^{2}-(m+\alpha)^{2}}=\frac{1}{2(m+\alpha)}\left(\frac{1}{n-m}-\frac{1}{n+m+2 \alpha}\right) .
$$

The required sum can then be re-written as

$$
\mathcal{S}_{2, m}(z, \alpha)=\frac{1}{2(m+\alpha)} \mathcal{S}_{m}(z)+\frac{z^{m}}{4(m+\alpha)^{2}}-\frac{1}{2(m+\alpha)} \sum_{n=0}^{\infty} \frac{z^{n}}{n+m+2 \alpha} .
$$

The last sum can be determined as follows

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{z^{n}}{n+m+2 \alpha} & =\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \frac{z^{n}}{n+m+2 \alpha}=\lim _{N \rightarrow \infty} \sum_{j=m}^{N+m} \frac{z^{j-m}}{j+2 \alpha} \\
& =z^{-m} \lim _{N \rightarrow \infty}\left(\sum_{j=0}^{N+m} \frac{z^{j}}{j+2 \alpha}-\sum_{j=0}^{m-1} \frac{z^{j}}{j+2 \alpha}\right) \\
& =z^{-m} \lim _{N \rightarrow \infty}\left(H_{N+m}(z, 2 \alpha)-H_{m-1}(z, 2 \alpha)\right) \\
& =z^{-m} \Phi(z ; 2 \alpha ; 1)-z^{-m} H_{m-1}(z, 2 \alpha) .
\end{aligned}
$$

The evaluation of $\mathcal{S}_{2, m}(z, \alpha)$ is now evident from Lemma 2.2.
Remark. Using partial fractions, it is possible to obtain that for $|z| \leq 1$ and $z \neq 1$,

$$
\mathcal{S}_{r, m}(z, \alpha)=\frac{1}{r(m+\alpha)^{r-1}} \sum_{k=1}^{r} \zeta_{r}^{k} \sum_{\substack{n=0, n \neq m}}^{\infty} \frac{z^{n}}{(n+\alpha)-\zeta_{r}^{k}(m+\alpha)},
$$

where ζ_{r} denotes a primitive r-th root of unity. However, for $r \geq 3$, since the roots of unity are complex, the evaluation of inner sums is not immediate. Moreover, when $r=2^{s}$, the sums arising above have the special form

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{(n+\alpha)^{2^{t}}+(m+\alpha)^{2^{t}}}, \quad 0 \leq t \leq s-1 .
$$

When $t=1, \alpha=1$ and $z=1$, the resulting sum can be evaluated using [19, Theorem 2]. This highlights the importance of the study of the series

$$
\sum_{n=0}^{\infty} \frac{A(n)}{B(n)} z^{n},
$$

where $A(X)$ and $B(X)$ are suitable polynomials with rational coefficients and $|z| \leq 1$.
2.2. Proof of Theorem 1.1. Let $r=1$ in (10). Then, we have

$$
\begin{aligned}
\mathcal{C}_{1}\left(z_{1}, z_{2} ; \alpha\right)=(k-1) & \Phi\left(z_{1}, z_{2} ; \alpha ; k\right) \\
& +\sum_{m=0}^{\infty}\left(\frac{z_{1}^{m}}{(m+\alpha)^{k-1}} \cdot \mathcal{S}_{m}\left(z_{2}\right)\right)+\sum_{n=0}^{\infty}\left(\frac{z_{2}^{n}}{(n+\alpha)^{k-1}} \cdot \mathcal{S}_{n}\left(z_{1}\right)\right) .
\end{aligned}
$$

The above two sums can be simplified using the expressions for $\mathcal{S}_{m}(z)$ obtained in Lemma 2.2. For instance,

$$
\begin{aligned}
\sum_{m=0}^{\infty}\left(\frac{z_{1}^{m}}{(m+\alpha)^{k-1}} \cdot \mathcal{S}_{m}\left(z_{2}\right)\right) & =-\log \left(1-z_{2}\right) \sum_{m=0}^{\infty} \frac{\left(z_{1} z_{2}\right)^{m}}{(m+\alpha)^{k-1}}-z_{2}^{-1} \sum_{m=0}^{\infty} \frac{\left(z_{1} z_{2}\right)^{m}}{(m+\alpha)^{k-1}} H_{m-1}\left(z_{2}^{-1}, 1\right) \\
& =-\log \left(1-z_{2}\right) \Phi\left(z_{1} z_{2} ; \alpha ; k-1\right)-z_{2}^{-1} \Phi\left(z_{1} z_{2}, z_{2}^{-1} ; \alpha, 1 ; k-1,1\right)
\end{aligned}
$$

where the last term is a multiple Lerch zeta-function as defined in (5). The remaining sum can also be evaluated similarly. This proves Theorem 1.1.
2.3. Proof of Theorem 1.2. The idea of the proof is that for a fixed integer $k>1, \alpha \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$, the function

$$
\Phi(z ; \alpha ; k):=\sum_{j=0}^{\infty} \frac{z^{j}}{(j+\alpha)^{k}}
$$

is a continuous function of z on the $\operatorname{disk}\{z \in \mathbb{C}:|z| \leq 1\}$. However, when $k=1$, the limit $\lim _{z \rightarrow 1^{-}} \Phi(z ; \alpha ; 1)$ does not exist because of the pole of the Hurwitz zeta-function at $s=1$. Therefore,
we re-write the identity obtained in Theorem 1.1 as follows.

$$
\begin{aligned}
& \sum_{j=2}^{k-1} \Phi\left(z_{1} ; \alpha ; j\right) \Phi\left(z_{2} ; \alpha ; k-j\right) \\
& =(k-1) \Phi\left(z_{1} z_{2} ; \alpha ; k\right)-\left(\log \left(1-z_{2}\right)\right) \Phi\left(z_{1} z_{2} ; \alpha ; k-1\right) \\
& \quad-z_{2}^{-1} \Phi\left(z_{1} z_{2}, z_{2}^{-1} ; \alpha, 1 ; k-1,1\right)-z_{1}^{-1} \Phi\left(z_{1} z_{2}, z_{1}^{-1} ; \alpha, 1 ; k-1,1\right) \\
& \quad-\left\{\log \left(1-z_{1}\right) \Phi\left(z_{1} z_{2} ; \alpha ; k-1\right)+\Phi\left(z_{1} ; \alpha ; 1\right) \Phi\left(z_{2} ; \alpha ; k-1\right)\right\}
\end{aligned}
$$

For a fixed $z_{2} \neq 1$, we would like to consider the limit $z_{1} \rightarrow 1^{-}$. That is, we let $z_{1} \in \mathbb{R}$ with $0<z_{1}<1$ and then take the limit as $z_{1} \rightarrow 1$. For all the terms in the above identity except the ones in curly brackets, the limit as $z_{1} \rightarrow 1^{-}$exists. Hence, we concentrate on just those two terms. Observe that

$$
\begin{aligned}
& \lim _{z_{1} \rightarrow 1^{-}} \log \left(1-z_{1}\right) \Phi\left(z_{1} z_{2} ; \alpha ; k-1\right)+\Phi\left(z_{1} ; \alpha ; 1\right) \Phi\left(z_{2} ; \alpha ; k-1\right) \\
& =\lim _{z_{1} \rightarrow 1^{-}} \lim _{N \rightarrow \infty}\left[\Phi\left(z_{2} ; \alpha ; k-1\right)\left(\sum_{j=0}^{N} \frac{z_{1}^{j}}{j+\alpha}\right)-\Phi\left(z_{1} z_{2} ; \alpha ; k-1\right)\left(\sum_{j=1}^{N} \frac{z_{1}^{j}}{j}\right)\right] .
\end{aligned}
$$

Now, note that for a fixed $z_{2}, \Phi\left(z z_{2} ; \alpha ; k-1\right)$ is a continuous function of z. Thus, we have that the limit equals
$\Phi\left(z_{2} ; \alpha ; k-1\right) \lim _{z_{1} \rightarrow 1^{-}} \lim _{N \rightarrow \infty}\left[\left(\sum_{j=0}^{N} \frac{z_{1}^{j}}{j+\alpha}-\sum_{j=1}^{N} \frac{z_{1}^{j}}{j}\right)\right]=\Phi\left(z_{2} ; \alpha ; k-1\right) \lim _{z_{1} \rightarrow 1^{-}} \lim _{N \rightarrow \infty}\left[\frac{1}{\alpha}+\sum_{j=1}^{N} \frac{\alpha z_{1}^{j}}{j(j+\alpha)}\right]$.
Since $\sum_{j=1}^{\infty} 1 /(j(j+\alpha))<\infty$, one can interchange the limits thanks to the dominated convergence theorem, to get that the above limit is in fact

$$
\Phi\left(z_{2} ; \alpha ; k-1\right)\left[\frac{1}{\alpha}+\lim _{N \rightarrow \infty} \sum_{j=1}^{N}\left(\frac{1}{j+\alpha}-\frac{1}{j}\right)\right]=-(\psi(\alpha)+\gamma) \Phi\left(z_{2} ; \alpha ; k-1\right) .
$$

This implies Theorem 1.2.
2.4. Proof of Theorem 1.3. We take $r=2$ in (10). Therefore, we have

$$
\begin{aligned}
\mathcal{C}_{2}\left(z_{1}, z_{2} ; \alpha\right)=(k-1) & \Phi\left(z_{1} z_{2} ; \alpha ; 2 k\right)+\sum_{m=0}^{\infty} \frac{z_{1}^{m}}{(m+\alpha)^{2(k-1)}} \mathcal{S}_{2, m}\left(z_{2}, \alpha\right) \\
& +\sum_{n=0}^{\infty} \frac{z_{2}^{n}}{(n+\alpha)^{2(k-1)}} \mathcal{S}_{2, n}\left(z_{1}, \alpha\right) .
\end{aligned}
$$

Using the evaluation of $\mathcal{S}_{2, m}(z, \alpha)$ from Lemma 2.3, we get

$$
\begin{aligned}
& \sum_{m=0}^{\infty} \frac{z_{1}^{m}}{(m+\alpha)^{2(k-1)}} \mathcal{S}_{2, m}\left(z_{2}, \alpha\right) \\
& =\frac{1}{4} \Phi\left(z_{1} z_{2} ; \alpha ; 2 k\right)-\frac{1}{2} \log \left(1-z_{2}\right) \Phi\left(z_{1} z_{2} ; \alpha ; 2 k-1\right)-\frac{1}{2} \Phi\left(z_{2} ; 2 \alpha ; 1\right) \Phi\left(z_{1} z_{2}^{-1} ; \alpha ; 2 k-1\right) \\
& -\frac{z_{2}^{-1}}{2} \Phi\left(z_{1} z_{2}, z_{2}^{-1} ; \alpha, 1 ; 2 k-1,1\right)+\frac{1}{2} \Phi\left(z_{1} z_{2}^{-1}, z_{2} ; \alpha, 2 \alpha ; 2 k-1,1\right),
\end{aligned}
$$

where the last two terms are multiple Lerch zeta-functions. The theorem now follows since the remaining sum can be computed by symmetry.
2.5. Dirichlet L-functions: Proof of Theorem 1.4. Recall that for a primitive Dirichlet character χ,

$$
\begin{equation*}
\sum_{a=1}^{q} \bar{\chi}(a) \zeta_{q}^{a n}=\chi(n) \tau(\bar{\chi}) \tag{13}
\end{equation*}
$$

where ζ_{q} is a primitive q-th root of unity and $\tau(\chi)=\sum_{a=1}^{q} \chi(a) \zeta_{q}^{a}$ is the Gauss sum associated to χ. Since χ is primitive, $\tau(\chi) \neq 0$. Thus, we have the following lemma.

Lemma 2.4. Let χ be a primitive Dirichlet character mod q and m be a fixed positive integer. Then,

$$
\sum_{\substack{n=1, n \neq m}}^{\infty} \frac{\chi(n)}{n-m}=-\frac{1}{\tau(\bar{\chi})} \sum_{a=1}^{q}\left(\bar{\chi}(a) \zeta_{q}^{a m} \log \left(1-\zeta_{q}^{a}\right)\right)-\frac{1}{\tau(\bar{\chi})} \sum_{a=1}^{q}\left(\bar{\chi}(a) \zeta_{q}^{a(m-1)} H_{m-1}\left(\zeta_{q}^{-a m}, 1\right)\right)
$$

Proof. Substituting the value of $\chi(n)$ from (13), we have

$$
\begin{aligned}
\sum_{\substack{n=1, n \neq m}}^{\infty} \frac{\chi(n)}{n-m} & =\frac{1}{\tau(\bar{\chi})} \sum_{\substack{n=1, n \neq m}}^{\infty} \frac{1}{n-m} \sum_{a=1}^{q} \bar{\chi}(a) \zeta_{q}^{a n} \\
& =\frac{1}{\tau(\bar{\chi})} \sum_{a=1}^{q} \bar{\chi}(a) \sum_{\substack{n=1, n \neq m}}^{\infty} \frac{\zeta_{q}^{a n}}{n-m} \\
& =\frac{1}{\tau(\bar{\chi})} \sum_{a=1}^{q} \bar{\chi}(a)\left(\mathcal{S}_{m}\left(\zeta_{q}^{a}\right)+\frac{1}{m}\right) \\
& =\frac{1}{\tau(\bar{\chi})} \sum_{a=1}^{q} \bar{\chi}(a) \mathcal{S}_{m}\left(\zeta_{q}^{a}\right)+\frac{1}{m \tau(\bar{\chi})} \sum_{a=1}^{q} \bar{\chi}(a) \\
& =\frac{1}{\tau(\bar{\chi})} \sum_{a=1}^{q} \bar{\chi}(a) \mathcal{S}_{m}\left(\zeta_{q}^{a}\right)
\end{aligned}
$$

The value of $\mathcal{S}_{m}\left(\zeta_{q}^{a}\right)$ can be calculated from Lemma 2.2. This proves the lemma.
Applying the above lemma, one can prove Theorem 1.4 as follows. For simplicity of notation, let

$$
C_{k}\left(\chi_{1}, \chi_{2}\right):=\sum_{j=1}^{k-1} L\left(j ; \chi_{1}\right) L\left(k-j ; \chi_{2}\right)
$$

Using the definition of the Dirichlet L-functions, we have

$$
\begin{aligned}
C_{k}\left(\chi_{1}, \chi_{2}\right) & =\sum_{m, n=1}^{\infty} \sum_{j=1}^{k-1} \frac{\chi_{1}(m)}{m^{j}} \cdot \frac{\chi_{2}(n)}{n^{k-j}} \\
& =(k-1) \sum_{m=1}^{\infty} \frac{\left(\chi_{1} \chi_{2}\right)(m)}{m^{k}}+\sum_{\substack{m, n=1, m \neq n}}^{\infty} \sum_{j=1}^{k-1} \frac{\chi_{1}(m)}{m^{j}} \cdot \frac{\chi_{2}(n)}{n^{k-j}} \\
& =(k-1) L\left(k ; \chi_{1} \chi_{2}\right)+\sum_{\substack{m, n=1, m \neq 1}}^{\infty} \frac{\chi_{1}(m) \chi_{2}(n)}{n^{k}} \sum_{j=1}^{k-1}\left(\frac{n}{m}\right)^{j}
\end{aligned}
$$

Since $m \neq n$ in the second sum, the inner sum can be simplified as a geometric sum,

$$
\frac{1}{n^{k}} \sum_{j=1}^{k-1}\left(\frac{n}{m}\right)^{j}=\frac{1}{(n-m)}\left(\frac{1}{m^{k-1}}-\frac{1}{n^{k-1}}\right) .
$$

Therefore, the convolution sum becomes

$$
C_{k}\left(\chi_{1}, \chi_{2}\right)=(k-1) L\left(k ; \chi_{1} \chi_{2}\right)+\sum_{m=1}^{\infty} \frac{\chi_{1}(m)}{m^{k-1}} \sum_{\substack{n=1, n \neq m}}^{\infty} \frac{\chi_{2}(n)}{n-m}+\sum_{n=1}^{\infty} \frac{\chi_{2}(n)}{n^{k-1}} \sum_{\substack{m=1, m \neq n}}^{\infty} \frac{\chi_{1}(m)}{m-n} .
$$

The inner sums were computed in Lemma 2.4. For any Dirichlet character $\chi \bmod q$ and $1 \leq a<q$, let $T_{q, a}(m):=\zeta_{q}^{a m}$ and $T_{q, a, \chi}(m):=\chi(m) \zeta_{q}^{a m}$. Thus, $T_{q, a}$ and $T_{q, a, \chi}$ define periodic functions on the integers, periodic modulo q. With this notation, the convolution becomes,

$$
\begin{aligned}
& C_{k}\left(\chi_{1}, \chi_{2}\right) \\
& \begin{aligned}
=(k-1) L\left(k ; \chi_{1} \chi_{2}\right)-\frac{1}{\tau\left(\overline{\chi_{2}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{2}}(a) \log \left(1-\zeta_{q}^{a}\right) \sum_{m=1}^{\infty} \frac{T_{q, a, \chi_{1}}(m)}{m^{k-1}} \\
-\frac{1}{\tau\left(\overline{\chi_{1}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{1}}(a) \log \left(1-\zeta_{q}^{a}\right) \sum_{n=1}^{\infty} \frac{T_{q, a, \chi_{2}}(n)}{n^{k-1}}-\frac{1}{\tau\left(\overline{\chi_{2}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{2}}(a) \zeta_{q}^{-a} \sum_{m=1}^{\infty} \frac{T_{q, a, \chi_{1}}(m)}{m^{k-1}} \sum_{j=1}^{m} \frac{\zeta_{q}^{-a j}}{j} \\
\quad-\frac{1}{\tau\left(\overline{\chi_{1}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{1}}(a) \zeta_{q}^{-a} \sum_{n=1}^{\infty} \frac{T_{q, a, \chi_{2}}(n)}{n^{k-1}} \sum_{j=1}^{n} \frac{\zeta_{q}^{-a j}}{j} \\
=(k-1) L\left(k ; \chi_{1} \chi_{2}\right)-\frac{1}{\tau\left(\overline{\chi_{2}}\right)} \sum_{a=1}^{q-1}\left(\overline{\chi_{2}}(a) \log \left(1-\zeta_{q}^{a}\right) L\left(k-1 ; T_{q, a, \chi_{1}}\right)\right) \\
-\frac{1}{\tau\left(\overline{\chi_{1}}\right)} \sum_{a=1}^{q-1}\left(\overline{\chi_{1}}(a) \log \left(1-\zeta_{q}^{a}\right) L\left(k-1 ; T_{q, a, \chi_{2}}\right)\right)-\frac{1}{\tau\left(\overline{\chi_{2}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{2}}(a) \zeta_{q}^{-a} L^{*}\left(k-1,1 ; T_{q, a, \chi_{1}}, T_{q,-a}\right) \\
\quad-\frac{1}{\tau\left(\overline{\chi_{1}}\right)} \sum_{a=1}^{q-1} \overline{\chi_{1}}(a) \zeta_{q}^{-a} L^{*}\left(k-1,1 ; T_{q, a \chi_{2}}, T_{q,-a}\right)
\end{aligned}
\end{aligned}
$$

where

$$
T_{q, a, \chi}(n)=\chi(n) \zeta_{q}^{a n} \quad \text { and } \quad T_{q,-a}(n)=\zeta_{q}^{-a n}
$$

This proves Theorem 1.4.
Remark. It is clear from the above proof that in order to understand r-level convolution of values of Dirichlet L-functions, one needs to understand sums of the form

$$
\sum_{\substack{n=1, n \neq m}}^{\infty} \frac{z^{n}}{n^{r}-m^{r}}
$$

for a fixed positive integer m and $|z| \leq 1$. These sums are interesting in their own right and we relegate their investigation to future research.

3. Concluding Remarks

The theorems included here are only the opening themes of a larger symphony of ideas. It is now clear that to understand the nature of $\zeta(2 k+1)$, it is necessary to study the multi-zeta values. Our
paper shows that a similar approach is needed to understand $L(k ; \chi)$ when k and χ have opposite parity.
In Theorems 1.1, 1.2 and 1.3, one can consider the more general case when the corresponding Lerch and Hurwitz zeta-functions have different parameters. For example, one can compute the convolution of values of $\Phi\left(z_{1} ; \alpha_{1} ; s\right)$ and values of $\Phi\left(z_{2} ; \alpha_{2} ; s\right)$ with $\alpha_{1} \neq \alpha_{2}$. The method outlined in this paper would also go through in these cases. However, the identities in these scenarios are not as elegant as the ones mentioned here.

Let G denote the Catalan's constant, that is,

$$
G=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}=L\left(2 ; \chi_{4}\right)=4 \Phi\left(-1 ; \frac{1}{2} ; 2\right) .
$$

Then $k=3$ and $k=2$ cases of Corollaries 1.1 and 1.4 furnish interesting relations among $G, L\left(1, \chi_{4}\right)$, $\pi^{2}, \zeta(3)$ and values of multiple zeta-functions.

A curious observation emerges from the identity stated in Corollary 1.2. For $k=3$, the left-hand side of the formula in Corollary 1.2 is empty and hence, zero. Substituting $\alpha=1 / 2$ and simplifying the right-hand side leads to the identity

$$
\zeta(3)=\frac{6}{7}(\log 2) \zeta(2)+\frac{4}{7} \sum_{n=1}^{\infty} \frac{H_{n}}{(2 n+1)^{2}} .
$$

Furthermore, taking $k=3$ in Corollary 1.3, we also get

$$
\zeta(3)=\frac{1}{4}(\log 2) \zeta(2)+\frac{1}{2} \zeta(\overline{2}, 1)-\frac{1}{2} \zeta(\overline{2}, \overline{1}) .
$$

This is interesting since (it seems) Euler conjectured that

$$
\zeta(3)=\alpha \pi^{2} \log 2+\beta(\log 2)^{2}
$$

for certain rational numbers α and β (see for example, [9, pg. 60]). This observation leads us to inquire whether

$$
\sum_{n=1}^{\infty} \frac{H_{n}}{(2 n+1)^{2}} \text { or } \zeta(\overline{2}, 1)-\zeta(\overline{2}, \overline{1})
$$

can be explicitly evaluated in terms of $\pi^{2} \log 2$ and $(\log 2)^{2}$. Perhaps not. To date, no one has disproved Euler's conjecture.

In this vein, we would like to highlight a conjecture by D. Bailey, J. Borwein and R. Girgensohn [4, Section 7, pg. 27] based on numerical evidence. To each (alternating) Euler-Zagier sum, $\Phi\left(\epsilon_{1}, \cdots, \epsilon_{r} ; 1, \cdots, 1 ; k_{1}, \cdots k_{r}\right), \epsilon_{j} \in\{ \pm 1\}$, one can associate the weight $w=k_{1}+\cdots+k_{r}$. Moreover, the weight of the product $\Phi\left(\epsilon_{1}, \cdots, \epsilon_{r} ; 1, \cdots, 1 ; k_{1}, \cdots k_{r}\right) \cdot \Phi\left(\delta_{1}, \cdots, \delta_{r} ; 1, \cdots, 1 ; m_{1}, \cdots m_{s}\right)$ is given by the sum $k_{1}+\cdots+k_{r}+m_{1}+\cdots+m_{s}$. Then, the conjecture of Bailey, Borwein and Girgensohn can be stated as follows.

Conjecture 1 (Bailey, J. Borwein, Girgensohn). Alternating Euler-Zagier sums of different weights are \mathbb{Q}-linearly independent.

Now, $\zeta(3)$ and $\pi^{2} \log 2$ have weight 3 each. However, $(\log 2)^{2}=\Phi(-1 ; 1 ; 1)^{2}=2 \zeta(\overline{1}, 1)$ (see [5, pg. 291]) and hence, has weight 2 . Therefore, Conjecture 1 would imply that $\zeta(\overline{2}, 1)-\zeta(\overline{2}, \overline{1})$ is a rational multiple of $\pi^{2} \log (2)$. This is not expected (see [5, pg. 291]) and thus, Euler's conjecture seems to be false.

4. Acknowledgment

We are grateful to the referee for very helpful comments on an earlier version of this paper.

References

[1] S. Akiyama and H. Ishikawa, On analytic continuation of multiple L-functions and related zeta functions, Analytic Number Theory (Beijing/Kyoto, 1999), 1-16, Dev. Math., 6 Kluwer Acad. Publ., Dodrecht, 2002.
[2] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque, 61 (1979), 11-13.
[3] B. Berndt, Ramanujan's Notebooks, Part II, Springer 1989.
[4] D. Bailey, J. M. Borwein and R. Girgensohn, Experimental evaluation of Euler sums, Experimental mathematics, 3, No. 1 (1994) 17-30.
[5] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proceedings of the Edinburgh Mathematical Society 38 (1995), 277-294.
[6] J. M. Borwein, D. M. Bradley and D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electronic J. Combin. 4 (1997), no. 2, \#R5.
[7] F. Brown, Motivic periods and $\mathbb{P}^{1} \backslash\{0,1, \infty\}$, Proceedings of ICM 2014, Vol. 2, 295-318.
[8] S. Chowla, Some infinite series, definite integrals and asymptotic expansions, J. Indian Math. Soc., 17 (1927/28) 261-288.
[9] W. Durham, Euler: The master of us all, Mathematical Association of America, Washington D. C. (1999).
[10] A. Goncharov, Multiple polylogarithms, cyclotomy, and modular complexes, Math. Res. Letters, 5 (4) (1998), $569-618$.
[11] S. Gun and B. Saha, Multiple Lerch zeta-functions and an idea of Ramanujan, Michigan Math Journal, 67 (2018), 267-287.
[12] M. E. Hoffman, An odd variant of the multiple zeta-values, Communications in Number Theory and Physics, vol. 13 no. 3 (2019), 529-567.
[13] A. Hurwitz, Einige Eigenschaften der Dirichlet Funktionen $F(s)=\sum(D / n) n^{-s}$, die bei der Bestimmung der Klassenzahlen Binärer quadratischer Formen auftreten, Zeitschrift f. Math. u. Physik, 27 (1882) 86-101.
[14] M. Lerch, Note sur la fonction $\mathfrak{R}(w, x, s)=\sum_{k=0}^{\infty} e^{2 \pi i k x} /(w+k)^{s}$, Acta Math. 11 (1887) 19-24.
[15] K. Matsumoto, The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I, Journal of Number Theory 101 (2003) 223-243.
[16] M. R. Murty, Transcendental numbers and special values of Dirichlet series, Contemporary Math., Vol. 701 (2018) 193-218.
[17] M. R. Murty, A simple proof of $\zeta(2)=\pi^{2} / 6$, The Mathematics Student, Vol. 88 No.s 1-2 (2019) 113-115.
[18] M. R. Murty and K. Sinha, Multiple Hurwitz zeta-functions, Multiple Dirichlet series, automorphic forms, and analytic number theory, Proc. Symp. Pure Math., 75 (2006), 135-156.
[19] M. R. Murty and C. Weatherby, A generalization of Euler's theorem for $\zeta(2 k)$, American Math. Monthly, 123 (2016) 53-65.
[20] T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, Volume 331, Issue 4, (15 August 2000), Pages 267-270.
[21] B. Saha, Analytic properties of multiple Dirichlet series associated to additive and Dirichlet characters, Manuscripta Mathematica, 159 (2019) 203-227.
[22] B. Saha, A conjecture about multiple t-values, arXiv:[1712.06325].
[23] M. Waldschmidt, Multiple polylogarithms: An Introduction, Number Theory and Discrete Mathematics, Editors: A. K. Agarwal, Bruce C. Berndt, Christian F. Krattenthaler, Gary L. Mullen, K. Ramachandra and Michel Waldschmidt, Hindustan Book Agency (2002) pg. 1-12.
[24] W. Zudilin, One of the numbers $\zeta(5), \zeta(7), \zeta(9)$ and $\zeta(11)$ is irrational, Uspekhi Mat. Nauk., 56 no. 4 (340) (2001) 149-150.

Department of Mathematics and Statistics, Jeffery Hall, Queen's University, Kingston, Canada, On K7L 3N6.

E-mail address: murty@mast.queensu.ca
Department of Mathematics, Pennsylvania State University, State College, PA 16802 United States of America.

E-mail address: siddhi.pathak@psu.edu

[^0]: 2010 Mathematics Subject Classification. 11M06, 11M32.
 Key words and phrases. Riemann zeta-function at integers, multi-zeta values, multiple Hurwitz zeta-functions.
 Research of the first author was partially supported by an NSERC Discovery grant. Research of the second author was partially supported by an Ontario Graduate Scholarship.

