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Abstract. Let p be a prime number. For each natural number n, we study the behaviour of the
function fp(n) which enumerates the number of factorizations ab = n with a+ b a perfect square
(mod p). The study of this function is inspired by the cognate function f(n) which enumerates
the number of factorizations ab = n with a + b a perfect square. The descent theory of elliptic
curves would show that if f(n) is unbounded for squarefree values of n, then there are elliptic
curves over the rational number field with arbitrarily large rank. In this note, we show for every
prime p, fp(n) is unbounded as n ranges over squarefree values, thus providing some evidence for
the conjecture that f(n) is unbounded for squarefree n.

1. Introduction

For a natural number n, let

f(n) := # {1 ≤ a, b ≤ n : ab = n, a+ b is a perfect square} .

The unboundedness of f(n) for n squarefree has a connection to the unbounded rank conjecture
of elliptic curves which we will describe in section 2 below.

For a fixed prime p, let

fp(n) := #

{
1 ≤ a, b ≤ n : ab = n,

(
a+ b

p

)
= 1

}
,

where
(
a
p

)
denotes the Legendre symbol. In this paper, we show that for any fixed prime number

p, the function fp(n) is unbounded as n ranges over squarefree numbers. The study of this
function is inspired by the cognate function f(n) defined above. The descent theory of elliptic
curves (see section 2) would show that if f(n) is unbounded as a function of n, then there are
elliptic curves over the rational number field with arbitrarily large rank. If f(n) is unbounded,
then so is fp(n) for every prime p. We show the following.

Theorem 1. Let p be a prime number. Then,∑
n≤x

n squarefree

fp(n) ≫ x log x,

with the implied constant dependent on the prime p. Consequently, fp(n) is unbounded as n varies
over squarefree positive integers.
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2. Two descent via a 2-isogeny

In his famous 1961 Haverford lectures, Tate [5] (see also the appendix in [2]) described a simple
algorithm for determining the Mordell-Weil rank of elliptic curves of the form

E : y2 = x3 + ax2 + bx, a, b ∈ Z.

We let W = (0, 0) and observe that it is a rational point on E(Q) of order 2. Now define the
curve E′ as:

E′ : y2 = x3 + a′x2 + b′x.

with a′ = −2a and b′ = a2 − 4b. Denoting by O the identity element of E(Q), we define the map

αE : E(Q) → Q×/Q×2

by α(O) = 1 mod Q×2, αE(W ) = b mod Q×2 and for x ̸= 0,

αE(x, y) = x mod Q×2.

The definition of αE′ is analogous. The image of αE and αE′ are then shown to be finite. If r
denotes the rank of E(Q), Tate [5] proves that

2r+2 = |Im(αE)| |Im(αE′)| .

Thus, to determine the rank r, one needs to determine the size of the images of αE and αE′ .
To this end, we consider every possible factorization b = b1b2 with b1, b2 ∈ Z. For each such

factorization, we examine the Diophantine equation involving the variables M,N and e:

N2 = b1M
4 + aM2e2 + b2e

4. (1)

If (1) has a solution in non-zero integers M,N, e with e > 0, then a routine verification shows
that

x =
b1M

2

e2
, y =

b1MN

e3

gives a rational point P = (x, y) on E so that αE(P ) = b1 mod Q×2.
For curves with a = 0, we now see the connection to the function f(n). For n squarefree,

consider the family of curves

En : y2 = x3 + nx.

The algorithm for the rank of this curve derived by Tate would imply 2r+2 ≥ f(n). Thus, if f(n)
is unbounded, then the Mordell-Weil ranks of En(Q) would be unbounded. This is the motivation
for studying f(n) and fp(n).

In his MSc thesis (written under the direction of the senior author), David Clark [1] proved
that f(n) is unbounded if we remove the restriction that n is squarefree. In this paper, we study
fp(n) for n squarefree so as to elucidate the more difficult study of f(n) when n is squarefree.

3. Preliminary lemmas

In the proof of our theorem, we need various results that we collect in this section for ease of
reference.

The first is a Tauberian theorem. We use the classical version as stated below. See Exercise
4.4.17 in [4] for a reference.
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Lemma 2. Let f(s) =
∑∞

n=1 an/n
s with an = O(nϵ). Suppose that

f(s) = ζ(s)kg(s),

where k is a natural number and g(s) is a Dirichlet series absolutely convergent in ℜ(s) > 1− δ
for some 0 < δ < 1. Then we have∑

n≤x

an ∼ g(1)

(k − 1)!
x (log x)k−1

as x → ∞.

The following result is due to Hooley [3].

Lemma 3 (Hooley, 1975). Let R(x; a, q) be the number of squarefree numbers in the arithmetic
progression a mod q with (a, q) = 1. For any ϵ > 0, we have

R(x; a, q) =
1

ζ(2)

∏
p|q

p prime

(
1− 1

p2

)−1 x

q
+Oϵ

((
x

q

)1/2

+ q1/2+ϵ

)
. (2)

Lemma 4. ∑
n≤x

µ2(n) d(n) = Cx log x+ o(x log x)

where

C =
∏
p

(
1− 3

p2
+

2

p3

)
= 0.33...

Proof. This is a simple application of Lemma 2. Here are the relevant details. We have
∞∑
n=1

µ2(n)d(n)

ns
=
∏
p

(
1 +

2

ps

)
.

The infinite product can be re-written as∏
p

(
1− 1

ps

)−2∏
p

(
1− 1

ps

)2(
1 +

2

ps

)
= ζ(s)2g(s) (say).

An application of the Tauberian theorem gives∑
n≤x

µ2(n)d(n) = Cx log x+ o(x log x)

with

C =
∏
p

(
1− 3

p2
+

2

p3

)
=
∏
p

(
p3 − 3p+ 2

p3

)
Since each factor in the absolutely convergent product is non-zero, we deduce C ̸= 0, as desired.

□

Remark 3.1. We remark that it is possible to refine the lemma to give constants C,D such that∑
n≤x

µ2(n)d(n) = Cx log x+Dx+O(x1/2),

using the technique of contour integration as discussed in Chapter 4 of [4].
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We also use the following estimates. Let R(x) denote the number of squarefree numbers n ≤ x.
It is well-known that (see for example, Exercise 1.4.4 of [4])

R(x) =
x

ζ(2)
+O(

√
x).

By partial summation,∑
n≤x

n squarefree

1

n
=
∑
n≤x

µ2(n)

n
=

∫ x

1

R(t)

t2
dt+O(1) =

log x

ζ(2)
+O(1). (3)

Similarly, we can deduce ∑
n≤x

n squarefree

1√
n
=

2
√
x

ζ(2)
+O(log x). (4)

Using these, we prove the crucial lemma below.

Lemma 5. For a prime p,∣∣∣∣∣∣∣∣
∑
ab≤x,

a,b squarefree

(
a+ b

p

)∣∣∣∣∣∣∣∣ ≤
1

√
p (p+ 1) ζ(2)2

x log x+O (x) .

Proof. Recall that the Legendre symbol can be written using the Gauss sum as(
a

p

)
=

1

τ

∑
c ̸=0

(
c

p

)
e

(
ca

p

)
,

where e(t) = e2πit and

τ =

p−1∑
b=1

(
b

p

)
e

(
b

p

)
is the Gauss sum. Hence, we have(

a+ b

p

)
=

1

τ

∑
c̸=0

(
c

p

)
e

(
c(a+ b)

p

)
.

Therefore, ∑
ab≤x,

a,b squarefree

(
a+ b

p

)
=

1

τ

∑
c̸=0

(
c

p

) ∑
ab≤x,

a,b squarefree

e

(
c(a+ b)

p

)
,

and the innermost sum can be written as∑
a≤x,

a, squarefree

e

(
ca

p

) ∑
b≤x/a,

b squarefree

e

(
cb

p

)
. (5)

This motivates us to consider ∑
b≤Y,

b squarefree

e

(
cb

p

)
.
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Again, using the Möbius function to sift out non-squarefree numbers, we have∑
b≤Y,

b squarefree

e

(
cb

p

)
=
∑
b≤Y

e

(
cb

p

)∑
t2|b

µ(t) =
∑
t≤

√
Y

µ(t)
∑

s≤Y/t2

e

(
ct2s

p

)
.

If t is not divisible by p, the inner sum is bounded giving a final contribution of O(
√
Y ) in this

case. Inserting this into (5) gives an estimate of O(x), where the constant depends on p. If t is
divisible by p, the contribution is ∑

t≤
√
Y

p|t

µ(t)

[
Y

t2

]
.

Note that
∞∑
t=1
p|t

µ(t)

t2
=

−1

p2

∏
l prime
l ̸=p

(
1− 1

l2

)
=

−1

p2

(
1− 1

p2

)−1 ∏
l prime

(
1− 1

l2

)
=

−1

(p2 − 1)ζ(2)
.

Thus, we have ∣∣∣∣∣∣∣∣∣
∑
t≤

√
Y

p|t

µ(t)

[
Y

t2

]∣∣∣∣∣∣∣∣∣ ≤
Y

(p2 − 1) ζ(2)
+O

(√
Y
)
.

Putting everything together along with the fact that |τ | = √
p, we get the lemma. □

4. Proof of the main theorem

When p = 2, note that f2(n) = #{1 ≤ a, b ≤ n : ab = n} = d(n), the divisor function. It has
already been established in Lemma 4 that∑

n≤x
n squarefree

d(n) = Cx log x+ o(x log x).

This proves the theorem for p = 2.

Henceforth, let p ≥ 3 be a fixed prime and fp(n) be as above. Note that

2fp(n) =
∑

1≤a,b≤n
ab=n

((
a+ b

p

)
+ 1

)
−

∑
1≤a,b≤n,

ab=n, p|a+b

1.

Let

S(x) = 2
∑
n≤x

n squarefree

fp(n).

Then

S(x) =
∑
n≤x

n squarefree

∑
ab=n

(
a+ b

p

)
+

∑
n≤x

n squarefree

∑
ab=n

1 −
∑
n≤x

n squarefree

∑
ab=n, p|a+b

1.



6 A. B. DIXIT, M. R. MURTY, AND S. PATHAK

Let us denote the three summations over n ≤ x on the right hand side as S1, S2 and S3 respec-
tively.

We first obtain an upper bound on S3. Observe that in S3, we have that a and b are coprime
for otherwise, n would not be squarefree. Therefore,

S3 =
∑
n≤x

n squarefree

∑
ab=n, p|a+b

1 =
∑
a≤x

a squarefree

∑
b≤x

a
, p|a+b

(a,b)=1
b squarefree

1

≤
∑
a≤x

a squarefree

∑
b≤x

a
, p|a+b

b squarefree

1.

The inner sum above is counting squarefree b ≤ x/a which are congruent to −a (mod p). There-
fore, using (2) in Lemma 3 with ϵ = 1/4, we get∑

b≤x
a
, p|a+b

b squarefree

1 =
1

ζ(2)

p

(p2 − 1)

x

a
+O

((
x

ap

)1/2

+ p3/4

)
.

Inserting this estimate in the upper bound for S3, together with (3) and (4), gives

S3 ≤
1

ζ(2)

p

(p2 − 1)

∑
a≤x

a squarefree

x

a
+
√
x O

 ∑
a≤x

a squarefree

1√
a

+O(x)

=
1

ζ(2)2
p

(p2 − 1)
x log x+O(x), (6)

where the implied constant in the O-term depends on p.

We estimate S2 using Lemma 4:

S2 = Cx log x+ o(x log x). (7)

Finally, we estimate S1 as follows. The condition that n = ab is squarefree can be re-written
using the Möbius function.

S1 =
∑
n≤x

n squarefree

∑
ab=n

(
a+ b

p

)
=

∑
ab≤x

a,b squarefree

(
a+ b

p

)∑
d|a
d|b

µ(d)

=
∑
d≤x

µ(d)

(
d

p

) ∑
ab≤x/d2

a,b squarefree

(
a+ b

p

)
.

By Lemma 5, we deduce

|S1| ≤
1

√
p(p+ 1)ζ(2)2

∑
d≤x

x

d2
log
( x

d2

)+O(x) =
1

√
p (p+ 1) ζ(2)

x log x+O(x). (8)

Putting everything together, for a fixed prime p, we have

S(x) = S1 + S2 − S3,
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Now by (6), (7) and (8), we get that

S(x) ≥
[
C − 1

√
p(p+ 1)ζ(2)

− p

(p2 − 1)ζ(2)2

]
x log x+ op(x log x).

Since the constant in brackets above is minimized when p = 3,

C − 1
√
p (p+ 1) ζ(2)

− p

(p2 − 1) ζ(2)2
> C − 1

4
√
3 ζ(2)

− 3

8 ζ(2)2
= 0.10 . . . > 0.

The above inequality implies that S(x) ≫ x log x, thus establishing that fp(n) is unbounded as
n ranges over squarefree numbers.

□

5. Concluding remarks

An examination of the algorithm described in Section 2 shows that we can consider the more
general function f(n;A) for squarefree n which counts the number of factorizations ab = n such
that a+ b+A is a perfect square. The function f(n) corresponds to the case A = 0. Our analysis
can be extended to study fp(n;A) which counts the number of factorizations such that a+ b+A
is a square mod p. This may be of some help in our search for elliptic curves of unbounded
Mordell-Weil rank.
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