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Abstract. For any natural number n and (m,n) = 1, we analyse the eigenvalues
and their multiplicities of the matrix A(n,m) := (ζmrs

n ) for 0 ≤ r, s ≤ n − 1. As a
consequence, we evaluate the quadratic Gauss sum and derive the law of quadratic
reciprocity using only elementary methods.

1. Introduction

For natural numbers n and k, a general Gauss sum is defined as

G(k) :=
n−1∑
j=0

e2πij
k/n. (1)

When k = 1, (1) reduces to the sum of all n-th roots of unity, which is a geometric
sum and can be easily evaluated to zero. The case k = 2 turns out to be more difficult,
and it took Gauss several years to determine (1) when n is an odd prime in order to
prove the law of quadratic reciprocity. For further reading on Gauss sums, we refer the
reader to [2] and [3].

In this article, we focus on the quadratic Gauss sum, namely,

G(2) =

n−1∑
j=0

e2πij
2/n. (2)

It can be shown that

Theorem 1.1. For a natural number n,

G(2) =


√
n if n ≡ 1 mod 4,

0 if n ≡ 2 mod 4,

i
√
n if n ≡ 3 mod 4,

(1 + i)
√
n if n ≡ 0 mod 4.

There are many proofs of Theorem 1.1 in the literature. But most of the proofs
use advanced tools. For example, [4] uses the theory of Fourier series, while [7] proves
it using the truncated Poisson summation formula. The novelty of this article is that
it utilizes only elementary methods, thus making the proof of Theorem 1.1 accessible

2010 Mathematics Subject Classification. 11L05, 11A15.
Key words and phrases. Gauss sum, quadratic reciprocity law.
Research of the first author was partially supported by an NSERC Discovery grant.

1



2 M. RAM MURTY AND SIDDHI PATHAK

to high school students. This linear algebra approach to evaluating (2) was initiated
by Schur [9] in 1921 and simplified by Waterhouse [10] in 1970, to prove Theorem 1.1
when n is an odd prime. It was later expanded upon by the first author [8] to prove
Theorem 1.1 for all n odd. The case n even was left open. In this note, we use a
slight generalization of the method in these earlier works to prove Theorem 1.1 for even
natural numbers n, hence determining (2) for all natural numbers n using only linear
algebra and elementary number theory.

For clarity and continuity of exposition, we include the proof of Theorem 1.1 for n
odd and the law of quadratic reciprocity in the earlier sections. We then use these
results to prove Theorem 1.1 for n even.

2. Preliminary Results

Let n be a natural number and ζn := e2πi/n. For (m,n) = 1, we define the n × n
matrix,

A(n,m) = (ζmrsn ) for 0 ≤ r, s ≤ n− 1.

The motivation behind defining this matrix is the observation that

TrA(n, 1) =

n−1∑
j=0

ζj
2

n = G(2).

Let A(n,m)r,s denote the (r, s)-th entry of A(n,m). Since the trace of a matrix is
the sum of its eigenvalues counted with multiplicities, it suffices to find the eigenvalues
of A(n,m) and their multiplicities. In order to compute the eigenvalues, observe that
for 0 ≤ k, l ≤ n− 1, (

A(n,m)
)2
k,l

=
n−1∑
j=0

ζmkjn ζmjln =
n−1∑
j=0

ζmj(k+l)n , (3)

which is zero unless m(k + l) ≡ 0 (mod n). Since (m,n) = 1, this is equivalent to the
condition that (k+ l) ≡ 0 (mod n), in which case the sum is n because it is a geometric
sum. In other words,

A(n,m)2 =



n 0 0 . . . 0 0
0 0 0 . . . 0 n
0 0 0 . . . n 0
...

...
... . .

. ...
0 0 n . . . 0 0
0 n 0 . . . 0 0


. (4)

Therefore, (
A(n,m)

)4
r,s

=

n−1∑
k=0

(
A(n,m)

)2
r,k

(
A(n,m)

)2
k,s
,

and the summand is n2 if r+k ≡ 0 (mod n) and s+k ≡ 0 (mod n) and zero otherwise.
Thus, the summand is non-zero only when r = s in which case it is n2. This shows that(

A(n,m)
)4

= n2I.
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Hence, the eigenvalue of
(
A(n,m)

)4
is n2. By elementary linear algebra, we get that

the eigenvalues of
(
A(n,m)

)2
are n and −n. Consequently, the eigenvalues of A(n,m)

are ±
√
n and ±i

√
n. Let a, b, c, d be the multiplicities of

√
n,−
√
n, i
√
n and −i

√
n

respectively. Thus,

TrA(n,m) =
√
n
(
(a− b) + i(c− d)

)
, (5)

for some natural numbers a, b, c and d.

Now, if [x0, x1, · · · , xn−1] is an eigenvector of
(
A(n,m)

)2
with eigenvalue n, then due

to (3), it satisfies xi = xn−i for 1 ≤ i ≤ n− 1. Hence, the dimension of the eigenspace

corresponding to the eigenvalue n of
(
A(n,m)

)2
is (n + 1)/2 if n is odd and n/2 + 1

if n is even. Since the n-eigenspace of
(
A(n,m)

)2
comprises of the ±

√
n-eigenspace of

A(n,m), we get the relations

a+ b =
n+ 1

2
and c+ d =

n− 1

2
, (6)

when n is odd and

a+ b =
n

2
+ 1 and c+ d =

n

2
− 1, (7)

when n is even. Before proceeding, we prove the following lemma:

Lemma 2.1. For any natural number n and (m,n) = 1, let A(n,m) = (ζmrsn ) with
0 ≤ r, s ≤ n− 1. Then we have

∣∣TrA(n,m)
∣∣ =


√
n if n is odd,√
2n if n ≡ 0 mod 4,

0 if n ≡ 2 mod 4.

Proof. Observe that ∣∣TrA(n,m)
∣∣2 =

(
TrA(n,m)

)(
TrA(n,m)

)
,

=

( n−1∑
k=0

ζmk2

n

)( n−1∑
l=0

ζ−ml2

n

)
,

=

n−1∑
k=0

n−1∑
l=0

ζm(k2−l2)
n ,

=
n−1∑
l=0

n−1∑
k=0

ζm(k−l)(k+l)
n .

The above sums depend only on the residue class of k and l modulo n and run over
all residue classes mod n. Thus, for each fixed l mod n, we can make the linear change
of variable j = k − l, which again runs over all residue classes mod n. Therefore, we
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have

∣∣TrA(n,m)
∣∣2 =

n−1∑
l=0

n−1∑
j=0

ζmj(j+2l)
n ,

=
n−1∑
j=0

ζmj
2

n

n−1∑
l=0

ζ2mjln .

Since (m,n) = 1, the inner sum is non-zero only if 2j ≡ 0 (mod n). If n is odd, then
the only value of j which satisfies this congruence is j = 0. Thus, |TrA(n,m)| evaluates
to n when n is odd. If n is even, there are two values of j that satisfy the congruence,
namely, j = 0 and j = n/2. Hence, the sum becomes∣∣TrA(n,m)

∣∣2 =
(
1 + ζmn

2/4
n

)
n = (1 + imn)n,

which is zero if n ≡ 2 (mod 4) and 2n if n ≡ 0 (mod 4). This proves the lemma. �

Note that Lemma 2.1 proves Theorem 1.1 when n ≡ 2 (mod 4). As a consequence
of the above lemma, we have

Corollary 1. For an odd natural number n,

TrA(n,m) =

{
±
√
n if n ≡ 1 mod 4,

±i
√
n if n ≡ 3 mod 4.

Proof. From (5),

∣∣TrA(n,m)
∣∣ =
√
n

(
(a− b)2 + (c− d)2

)1/2

.

When n is odd, Lemma 2.1 leads us to deduce that either

(1) a− b = ±1 and c = d, or
(2) a = b and c− d = ±1.

In Case (1), equation (6) implies that c+ d = 2d = (n− 1)/2, i.e, d = (n− 1)/4 ∈ N
and hence n ≡ 1 (mod 4). In Case (2), equation (6) implies that a+b = 2b = (n+1)/2,
i.e, b = (n+ 1)/4 ∈ N so that n ≡ 3 (mod 4). �

We observe that the quadratic Gauss sums have the following multiplicative property.

Lemma 2.2. For a natural number n = n1n2 with (n1, n2) = 1 and (m,n) = 1, define
A(n,m) = (ζmrsn ) for 0 ≤ r, s ≤ n− 1. Then we have,

TrA(n,m) = TrA(n1,mn2) TrA(n2,mn1).
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Proof. The right hand side can be simplified as follows

TrA(n1,mn2) TrA(n2,mn1) =

n1−1∑
j=0

n2−1∑
k=0

e2πimn2j2/n1 e2πimn1k2/n2

=

n1−1∑
j=0

n2−1∑
k=0

e2πim(n2
2j2+n1

2k2)/n1n2

=

n1−1∑
j=0

n2−1∑
k=0

e2πim(n2j+n1k)
2/n,

as e2πim(2jkn1n2)/n = 1. Now, since (n1, n2) = 1, the Chinese remainder theorem gives
that as j and k range from 0 to n1 − 1 and 0 to n2 − 1 respectively, n2j + n1k ranges
over all residue classes modulo n. Hence, we have

TrA(n1,mn2) TrA(n2,mn1) =
n−1∑
r=0

e2πimr
2/n = TrA(n,m).

�

3. Proof of Theorem 1.1 for n odd

As seen earlier, G(2) = TrA(n, 1). Thus, we consider the case m = 1 in this section.
Corollary 1 gives the value of the desired sum up to sign. To determine the sign in
each case, we consider the determinant of the matrix A(n, 1), which is the product of
its eigenvalues counted with multiplicities.

Lemma 3.1. Let A := A(n, 1) = (ζrsn ) for 0 ≤ r, s ≤ n− 1. Then

detA =

{
i(

n
2) nn/2 if n is odd,

i(
n
2)+1 nn/2 if n is even.

(8)

Proof. Observe that A is a Vandermonde matrix, that is, A is of the form
1 x1 x1

2 x1
3 . . . x1

n−1

1 x2 x2
2 x2

3 . . . x1
n−1

...
...

...
...

. . .
...

1 xn xn
2 xn

3 . . . xn
n−1

 .
The determinant of an n× n Vandermonde matrix is well-known to be∏

1≤i<j≤n

(
xj − xi

)
.

Hence, we have that

detA =
∏

0≤r<s≤n−1

(
ζsn − ζrn

)
. (9)

From the explicit computation of A(n, 1)2 in (4), we see that this matrix is nI up
to interchanging of rows. Moreover, interchanging 2 rows of a matrix only changes
the sign of the determinant. Hence, detA2 = ±nn. In particular, the number of row
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interchanges to transform A2 to nI is (n − 1)/2 when n is odd and (n − 2)/2 when n
is even. This is because we need to interchange rows corresponding to r and n − r for
1 ≤ r ≤ n− 1 to get nI. This is precisely (n− 1)/2 number of distinct changes for odd
n. When n is even, the row corresponding to r = n/2 has its diagonal entry as n, which
need not be changed. For reasons evident from the calculations below, we write this as

detA =

{
±i(

n
2) nn if n is odd,

±i(
n
2)+1 nn if n is even.

(10)

To determine the sign in the above computation, we calculate product in equation (9)
in another way. For notational convenience, we will write r < s for 0 ≤ r < s ≤ n − 1
and simplify (9) as follows -

detA =
∏
r<s

(
ζsn − ζrn

)
=
∏
r<s

(
e2πis/n − e2πir/n

)
=
∏
r<s

eiπs/neiπr/n
(
e(iπs−iπr)/n − e−(iπs−iπr)/n

)
= i(

n
2)
∏
r<s

[
eiπ(r+s)/n

]∏
r<s

[
2 sin

(
(s− r)π

n

)]
, (11)

as sin θ = (eiθ − e−iθ)/2i. Now, note that

n−1∑
r,s=0,
r 6=s

(r + s) =

n−2∑
r=0

n−1∑
s=r+1

(r + s)

=
n−1∑
s=1

s−1∑
r=0

(r + s)

=
n−1∑
s=1

(
s(s− 1)

2
+ s2

)

=

n−1∑
s=1

3s2 − s
2

=
3

2

(n− 1)n(2n− 1)

6
− 1

2

n(n− 1)

2

= 2n

(
n− 1

2

)2

.

Therefore, the first product in (11) becomes

eiπ(
∑

r<s(r+s))/n = eiπ(2n(n−1)
2/4n) = i(n−1)

2

,
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which is 1 when n is odd and i when n is even. Since 0 < (s − r)π/n < π, the second

product in (11) is a positive quantity. Thus, the determinant becomes i(
n
2)nn when n

is odd and i(
n
2)+1nn when n is even. �

Since the determinant of matrix is the product of its eigenvalues, we have

detA = (
√
n)
a
(−
√
n)
b
(i
√
n)
c
(−i
√
n)
d

= i2b+c+3d nn/2.

Comparing this with Lemma 3.1 and noting that 3 ≡ −1 mod 4, we get the conditions
that

2b+ c− d ≡
(
n

2

)
mod 4, (12)

when n is odd. We will use this congruence to determine a, b, c, d as follows.
Suppose n is odd and n ≡ 1 (mod 4). By Corollary 1, we know that a− b = ±1 and

c− d = 0. Thus, (6) and (12) lead to

a− b = a+ b− 2b

≡ n+ 1

2
− n(n− 1)

2
mod 4

≡ n+ 1

2
− n− 1

2
mod 4

≡ n+ 1− n+ 1

2
mod 4

≡ 1 mod 4.

Therefore, a−b = 1, which proves that G(2) = TrA(n, 1) =
√
n when n ≡ 1 (mod 4).

Now, suppose n ≡ 3 (mod 4). Corollary 1 tells us that a = b and c − d = ±1. Thus,
(6) and (12) give

c− d ≡ n(n− 1)

2
− 2b mod 4

≡ 3(n− 1)

2
− n+ 1

2
mod 4

≡ 3n− 3− n− 1

2
mod 4

≡ n− 2 mod 4

≡ 1 mod 4.

Therefore, when n ≡ 3 mod 4, we deduce that G(2) = TrA(n, 1) = i
√
n as in Theorem

1.1.

4. The law of quadratic reciprocity

Let a be a natural number and p be an odd prime. The Legendre symbol is defined
as (

a

p

)
=


0 if p | a,
1 if x2 ≡ a mod p has a solution,

−1 if x2 ≡ a mod p has no solution.
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We connect the quadratic Gauss sum G(2) with the Legendre symbol in the following
lemma.

Lemma 4.1. Let p be an odd prime and (m, p) = 1. Define A(p,m) = (ζmrsp ) for
0 ≤ r, s ≤ p− 1. Then

TrA(p,m) =

(
m

p

)
TrA(p, 1),

where (mp ) is the Legendre symbol.

Proof. We note that(
k

p

)
+ 1 =


1 if p | k,
2 if p 6 | k, k is a quadratic residue mod p,

0 otherwise.

For any 0 ≤ k ≤ p − 1, the polynomial x2 − k has at most two roots in Fp, the finite
field with p elements. Also, if j is a root of this polynomial, then so is p − j (which
is distinct from j as p is odd). Hence, for each k ∈ Fp and k 6= 0, there are either 2
values of j satisfying j2 ≡ k (mod p) or none. Thus, the quadratic Gauss sum can be
rewritten as

TrA(p,m) =

p−1∑
j=0

e2πimj
2/p

=

p−1∑
k=0

[(
k

p

)
+ 1

]
e2πimk/p

=

p−1∑
k=0

[
e2πimk/p

]
+

p−1∑
k=0

(
k

p

)
e2πimk/p

=

p−1∑
k=0

(
k

p

)
e2πimk/p, (13)

as the first sum is the sum of all p-th roots of unity and vanishes. Since the Legendre
symbol is multiplicative, we multiply the second sum by 1 = (mp )2 and have

TrA(p,m) =

(
m

p

)2 p−1∑
k=0

(
k

p

)
e2πimk/p

=

(
m

p

) p−1∑
k=0

(
km

p

)
e2πikm/p

=

(
m

p

) p−1∑
j=0

(
j

p

)
e2πij/p

=

(
m

p

)
TrA(p, 1),

by taking m = 1 in (13). �
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The law of quadratic reciprocity can be stated as follows.

Theorem 4.2. Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

Proof. For convenience of notation, we define

e(n) =

{
1 if n ≡ 1 mod 4,

i if n ≡ 3 mod 4.

Thus, Theorem 1.1 states that for odd n, TrA(n, 1) = e(n)
√
n. Therefore, taking

n = pq, we have

e(pq)
√
pq = TrA(pq, 1) =

(
TrA(p, q)

)(
TrA(q, p)

)
,

by Lemma 2.2. Using Lemma 4.1, we get

e(pq)
√
pq =

(
p

q

)(
q

p

)(
TrA(p, 1)

)(
TrA(q, 1)

)
=

(
p

q

)(
q

p

)
e(p)e(q)

√
pq,

which implies that (
p

q

)(
q

p

)
=

e(pq)

e(p)e(q)
.

We observe that the right hand side is 1 if at least one of p or q is congruent to 1 (mod 4)
and −1 otherwise. This is precisely as stated in the law of quadratic reciprocity. �

5. Evaluation of TrA(n,m) for odd n

In Section 3, we evaluated TrA(n, 1) for odd natural numbers n. We use this compu-
tation to determine TrA(n,m) for n odd and (m,n) = 1 in general. Before proceeding,
we recall the Jacobi symbol, which is a generalization of the Legendre symbol. For any
positive integer a and an odd natural number n = pα1

1 pα2
2 · · · p

αk
k , where pj are distinct

odd primes, the Jacobi symbol ( an) is defined as a product of the Legendre symbols,(
a

n

)
=

k∏
j=1

(
a

pj

)αj

.

Recall that the law of quadratic reciprocity extends to the Jacobi symbol by elementary
number theory considerations.

Lemma 5.1. For an odd natural number n and (m,n) = 1, we have

TrA(n,m) =

(
m

n

)
TrA(n, 1),

where (mn ) is the Jacobi symbol.
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Proof. Let ω3(n) be the number of prime divisors p of n with p ≡ 3 (mod 4) counted
with multiplicity. We claim that for any odd n,

TrA(n, 1) = δ(n)
∏
p|n

TrA(p, 1), (14)

where δ(n) = ±1 and the product is over primes dividing n repeated with multiplicity.
Indeed, we know that the product on the right hand side of (14) can be evaluated by
the already proven cases of Theorem 1.1 to be∏

p|n

TrA(p, 1) = iω3(n)
√
n.

Also, since

n ≡

{
1 mod 4 if ω3(n) is even,

3 mod 4 if ω3(n) is odd,

and the results from Section 3, the left hand side of (14) is
√
n if ω3(n) is even and

i
√
n if ω3(n) is odd. Thus, TrA(n, 1) and the product agree up to sign (which of course

depends on n) so that(14) is immediate.

Writing (14) explicitly,

n−1∑
j=0

e2πij
2/n = δ(n)

∏
p|n

[ p−1∑
k=0

e2πik
2/p

]
= δ(n)

∏
p|n

[ p−1∑
k=0

(
e2πik

2/n
)n/p]

,

we observe that all terms in (14) lie in the n-th cyclotomic field, Q(ζn). Thus, by apply-
ing the Galois automorphism that sends ζn to ζmn , and noting that this automorphism
fixes the rationals (and hence δ(n)), (14) becomes

n−1∑
j=0

e2πimj
2/n = δ(n)

∏
p|n

[ p−1∑
k=0

(
e2πimk

2/n
)n/p]

= δ(n)
∏
p|n

[ p−1∑
k=0

e2πimk
2/p

]
.

Each term in the above product is TrA(p,m) for an odd prime p and (m, p) = 1.
Hence, by Lemma 4.1, we get

TrA(n,m) = δ(n)

[∏
p|n

(
m

p

)][∏
p|n

TrA(p, 1)

]
.

Thus, by (14),

TrA(n,m) =

(
m

n

)
TrA(n, 1).

�

6. Proof of Theorem 1.1 for n even

The case n ≡ 2 (mod 4) was settled in Lemma 2.1. Thus, we assume that 4|n. We
begin with the following elementary result which will be proved by induction.
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Lemma 6.1. Let r and s be natural numbers with r ≥ 2 and s odd. Then

TrA(2r, s) =

(
2r

s

)
(1 + is)

√
2r.

Proof. We proceed by induction on r. The base cases are r = 2 and r = 3. For r = 2,

TrA(4, s) = 1 + e2πis/4 + e2πis + e2πis9/4 = 2(1 + is).

For r = 3,

TrA(8, s) = 2(1 + (−1)s + 2eiπs/4),

by considering squares modulo 8. Thus, TrA(8, s) = 4eiπs/4. Using eiθ = cos θ+ i sin θ,
we get that TrA(8, s) = 4(cos(sπ/4)+ i sin(sπ/4)), which is 2

√
2(1+ i) if s ≡ 1 (mod 4)

and −2
√

2(1− i) if s ≡ 3 (mod 4). Hence, we see that Lemma 6.1 is true when r = 2, 3.

Suppose that r ≥ 4 and Lemma 6.1 holds for all 2 ≤ α ≤ r− 1. To prove it for r, we
note that

TrA(2r, s) =
2r∑
j=1

e2πisj
2/2r

=

2r∑
j=1,
j−odd

e2πisj
2/2r +

2r∑
j=1,
j−even

e2πisj
2/2r

=
1

2

( 2r∑
j=1,
j−odd

e2πisj
2/2r + e2πis(j+2r−2)

2
/2r
)

+

2r−1∑
k=1

e2πisk
2/2r−2

,

where in the first sum, we pair the terms corresponding to j and j + 2r−2 (which are
distinct as j is odd) and in the second sum, we change the index of summation by
setting j = 2k. Now, each summand of the first term is

e2πisj
2/2r + e2πis(j+2r−2)

2
/2r = e2πisj

2/2r + e2πisj
2/2r e2πis(2

r−1j)/2r

= e2πisj
2/2r − e2πisj

2/2r

= 0,

as j is odd. We recognize the second term as 2 TrA(2r−2), which is equal to(
2r−2

s

)
2(1 + is)

√
2r−2

by the induction hypothesis. Thus, the principle of mathematical induction implies that

TrA(2r, s) =

(
2r

s

)
(1 + is)

√
2r

for all r ≥ 2. �

We now derive Theorem 1.1 in the case 4|n as a consequence of the proposition below.
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Proposition 6.2. Let n be natural number with 4|n and (m,n) = 1. Then

TrA(n,m) =

(
n

m

)
(1 + im)

√
n.

Proof. Write n = 2uv, with u ≥ 2 and v odd. We would like to evaluate TrA(2uv,m)
for (m,n) = 1. By Lemma 2.2, we get

TrA(2uv,m) =

(
TrA(2u, vm)

)(
TrA(v, 2um)

)
. (15)

We note that v is odd and (v, 2um) = 1. Hence, by Lemma 5.1,

TrA(v, 2um) =

(
2um

v

)
TrA(v, 1), (16)

which is known by the results in Section 3. Since 4|n and (m,n) = 1, m is odd.
Therefore, vm is odd and (2u, vm) = 1. To determine TrA(2u, vm), we use Lemma
6.1..

Thus, by (15), (16) and Lemma 6.1, we have

TrA(2uv,m) =
√

2u
(

2um

v

)(
2u

vm

)
(1 + ivm) TrA(v, 1),

which can be simplified using the multiplicativity of the Jacobi symbol to

TrA(2uv,m) =
√

2u
(

2u

m

)
εv,m,

where

εv,m =

(
m

v

)
(1 + ivm) TrA(v, 1).

Hence we see that the value of trace depends on whether v and m are congruent to 1 or
3 modulo 4. We remark that the case of odd n from Theorem 1.1 can be re-written as

TrA(n, 1) = i(n−1)
2/4√n.

Since both v and m are odd, we can use the law of quadratic reciprocity to deduce(
m

v

)(
v

m

)
=

{
−1 if both m, v ≡ 3 mod 4,

1 otherwise.

Therefore, we have the following table of values of εv,m:

v
m

1 mod 4 3 mod 4

1 mod 4

(
v
m

)
(1 + i)

√
v

(
v
m

)
(1− i)

√
v

3 mod 4

(
v
m

)
(1− i)i

√
v −

(
v
m

)
(1 + i)i

√
v
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Observe that i(1− i) = (1 + i) and i(1 + i) = −(1− i). Thus, whenever 4|n, we have

TrA(n,m) =

(
n

m

)
(1 + im)

√
n.

�

In particular, for m = 1, Proposition 6.2 implies Theorem 1.1 for n ≡ 0 mod 4.

7. Concluding Remarks

We observe that determining the quadratic Gauss sum in the case 4|n is more deli-
cate than the case n odd. The study of the eigenvalues and their multiplicites of the
matrix A(n,m) lies deeper than the law of quadratic reciprocity. The matrix A(n,m)
also appears in the context of the discrete Fourier transform of periodic arithmetical
functions. Thus, the study of its eigenvalues and their multiplicities is interesting in its
own right. Moreover, the investigation of the eigenvectors of A(n, 1) is even deeper than
the study of its eigenvalues and their multiplicites (for example, see [6]). Surprisingly,
the explicit construction of these eigenvectors was first done as late as 1972 in the paper
of McClellan and Parks [5].

Acknowledgements. We thank the referee and Anup Dixit for helpful comments on
an earlier version of this paper.
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