
THE OKADA SPACE AND VANISHING OF L(1, f)

M. RAM MURTY AND SIDDHI PATHAK

Abstract. Fix a positive integer N ≥ 2. Following Chowla, we associate to each function
f : Z → C with period N , the L-series L(s, f) :=

∑
n≥1 f(n)/ns. Using a characterization

derived by Okada for the vanishing of L(1, f), we construct an explicit basis for the Q-vector
space,

O(N) = {f mod N : f(n) ∈ Q, L(1, f) = 0} .
We analyze the structure of this space and use the explicit basis to extend earlier works of Baker-
Birch-Wirsing and Murty-Saradha. The arithmetical nature of Euler’s constant γ emerges as a
central question in these extensions.

1. Introduction

For a positive integer N ≥ 2, let f : Z→ C be periodic with period N . The L-series associated
to f is given by

L(s, f) =
∞∑
n=1

f(n)

ns
,

which converges absolutely for Re(s) > 1. If ζ(s, x) denotes the Hurwitz zeta function

ζ(s, x) :=
∞∑
n=0

1

(n+ x)s
, 0 < x ≤ 1,

then

L(s, f) =
1

N s

N∑
a=1

f(a) ζ(s, a/N).

The Hurwitz zeta function extends analytically to the entire complex plane except for s = 1
where it has a simple pole with residue 1. As a result, L(s, f) also extends analytically to the
entire complex plane except for a simple pole at s = 1 with residue

1

N

N∑
a=1

f(a).

Thus, L(1, f) exists if and only if
N∑
a=1

f(a) = 0. (1)
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If ψ(x) = Γ′(x)/Γ(x) is the digamma function, then it is known that

ζ(s, x) =
1

s− 1
− ψ(x) +O(s− 1)

as s→ 1+, and we find

L(1, f) = − 1

N

N∑
a=1

f(a)ψ
( a
N

)
(2)

provided (1) holds. Moreover, if f̂(m) := N−1
N∑
a=1

f(a)e−2πiam/N , then it is not difficult to see

by Parseval’s theorem that

N∑
a=1

f(a)ψ
( a
N

)
= N

N−1∑
a=1

(
f̂(a) log

(
1− e2πia/N

))
+

(
N∑
a=1

f(a)

)(
1

N

N∑
a=1

ψ
( a
N

))
.

Therefore, together with (1), we have another expression for the value L(1, f), namely,

L(1, f) = −
N−1∑
a=1

f̂(a) log
(

1− e2πia/N
)
. (3)

For more details, we refer the reader to [16, Section 2.2, pg. 14].

Motivated by Dirichlet’s theorem that L(1, χ) 6= 0 for any non-principal Dirichlet character χ,
the study of non-vanishing of the value L(1, f) was initiated by S. Chowla in the 1960s and was
later developed by several authors beginning with the work of Baker, Birch and Wirsing [2]. In
this paper, we are interested in studying the Q-vector spaces

F (N) :=
{
f : Z→ Q

∣∣ f(n+N) = f(n) for all n ∈ Z
}
,

F (0)(N) :=

{
f ∈ F (N)

∣∣ N∑
a=1

f(a) = 0

}
, and (4)

O(N) :=
{
f ∈ F (0)(N)

∣∣L(1, f) = 0
}
.

Our analysis remains unchanged if the functions f ∈ F (N) are allowed to take values in a number

field K, which is disjoint from the N -th cyclotomic field Q(e2πi/N ). For simplicity however, we
restrict ourselves to the case when the functions are rational valued.

From the perspective of (2), our focus then is the study of Q-linear relations among values
of the digamma function ψ(a/N), with 1 ≤ a ≤ N . Inspired by this objective, we define the
following Q-vector spaces:

D(N) := Q-span of
{
ψ
( a
N

)
: 1 ≤ a ≤ N

}
,

D (0)(N) := Q-span of
{
L(1, f) : f ∈ F (0)(N)

}
.

By equation (2), D (0)(N) ⊆ D(N) and the question arises if this containment is strict. Since
−ψ(1) = γ is Euler’s constant, it is an element of D(N). However, it is unlikely that it is an

element of D (0)(N) and thus we conjecture that the containment is strict. In fact, we will provide
evidence for the conjecture that

D(N) = D (0)(N)⊕ γQ.
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In Section 4, we will show that if there is an N ≥ 2 such that D (0)(N) = D(N), then for every

M ≥ 2 which is coprime to N , the containment is strict. That is, D (0)(M) ( D(M).

An expanded discussion of these vector spaces and methods of viewing this conjecture are
found in section 4. In the penultimate section of this paper, we describe a Galois action on O(N)
and study this representation.

But we begin with the problem of finding explicit bases for the vector spaces (4). To this end,
we will use earlier works of Okada [13], [14]. In [13, Theorem 10], the following theorem was
proved.

Theorem 1.1 (Okada). Fix a positive integer N ≥ 2 and let ω(N) be the number of distinct
prime factors of N and φ the Euler totient function. Fix a function f ∈ F (N). Then the value
L(1, f) exists and equals zero, i.e., f ∈ O(N), if and only if (f(1), f(2), · · · , f(N)) is a solution
to the following system of φ(N) + ω(N) linear equations with rational coefficients:

xn +
N∑
a=1,

1<(a,N)<N

xaA(a, n) +
xN
φ(N)

= 0, for each 1 ≤ n ≤ N, (n,N) = 1 (5)

N∑
a=1

xa
ε(a, p)

ε(p, p)
= 0, for each prime p | N,

where A(a, n) and ε(a, p) are rational numbers defined as

A(a, n) =
∑

m∈M(a,n)

1

m
, (6)

with M being the monoid generated by prime divisors of N , M(a, n) = {m ∈M : mn ≡ a mod N}
and

ε(a, p) =

vp(N) +
1

p− 1
if vp(a) ≥ vp(N),

vp(a) if vp(a) < vp(N).

Here vp(a) is the power of the prime p that divides a.

An important point to note here is that the convergence condition (1) is included in the above
φ(N) + ω(N) linear equations. It is also worth remarking that A(N,n) = 1/φ(N) when n is
coprime to N as is easily calculated. Then (5) can be expressed in the slightly abbreviated form:

xn +
N∑
a=1,

1<(a,N)≤N

xaA(a, n) = 0, for each 1 ≤ n ≤ N, (n,N) = 1. (7)

The rationality of the numbers A(a, n) for (n,N) = 1 is not immediate from the definition
above. Okada obtained an alternate expression for these numbers in [14] to deduce their ratio-
nality. We discuss this in detail in Section 3.

In principle, Theorem 1.1 gives us a characterization of when relations between special values
of the digamma function can hold. In practice however, this is not the case. For example, there
is the celebrated conjecture of Erdős [8]:
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Conjecture 1.2. Let f be an arithmetic function, periodic with period N ≥ 2 such that f(n) = ±1
for n 6≡ 0 (mod N) and f(N) = 0. Then

L(1, f) =
∞∑
n=1

f(n)

n
6= 0.

If (1) does not hold, then the value of the L-function is clearly non-zero, and so we may focus
on the case when (1) holds. Looking at (1) modulo 2, we must clearly have N odd and so we
need only consider the cases N ≡ 1 (mod 4) and N ≡ 3 (mod 4). In the latter case, the first
author and Saradha proved the conjecture (see Theorem 7 of [12]). The case N ≡ 1 (mod 4)
remains open and Theorem 1.1 does not seem to help in resolving the issue, though it provides
a wealth of relations among the values of a function f with L(1, f) = 0. Erdős’s conjecture can
be viewed as part of a larger question about simple relations among the values of the digamma
function. To determine when such relations hold is a problem of equal and independent interest.

We will refer to the Q-vector space O(N) defined in (4) as the Okada space. We first find an
explicit basis for the Okada space. Using this basis, we extend previous theorems of Baker-Birch-
Wirsing [2, Theorem 1] and Murty-Saradha [11, Theorem 4]. Taking the analysis further, we

describe the Q-vector space spanned by the values L(1, f) as f ranges over functions in F (0)(N).
Moreover, we initiate a systematic study of a variant of Erdős’s conjecture. We conclude by
providing an algebraic perspective to this study by recognizing O(N) as a rational linear repre-
sentation of the group (Z/NZ)∗.

2. An explicit basis for O(N)

We say that a residue class r (mod N) is free if r is not coprime to N and is not represented
by a prime divisor of N . Using (7), the system of equations in Theorem 1.1 becomes

xn = −
∑
p|N

A(p, n)xp −
∑
r free

A(r, n)xr, (n,N) = 1

xp = −
∑

p|r, r free

ε(r, p)

ε(p, p)
xr, p|N.

Inserting the second set of formulas for xp into the first set of formulas and interchanging sum-
mation, we get

xn =
∑
r free

{
−A(r, n) +

∑
p|(r,N)

A(p, n)
ε(r, p)

ε(p, p)

}
xr, (n,N) = 1

xp = −
∑

p|r, r free

ε(r, p)

ε(p, p)
xr, p|N.

(8)

Thus, the following reordering of residue classes (mod N) suggests itself. First group together
the residue classes that are coprime to N , then those represented by prime divisors of N and
then the free residue classes, each in increasing order. On doing so, the system of equations in
Theorem 1.1 can be interpreted as an N ×N matrix equation, in reduced row echelon form.
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Immediately, we see that the null space of the matrix or the Okada space O(N) has dimension
N − φ(N) − ω(N) where ω(N) is the number of distinct prime divisors of N . This observation
enables us to write down an explicit basis for the Okada space. When N is prime, the Okada
space is zero dimensional and so, henceforth, we will tacitly assume N is composite.

For each free residue class r (mod N), let er be the column vector that satisfies er(r) = 1
and er(b) = 0 for every other free residue class b and which in addition satisfies (8). It is clear
that these N − φ(N) − ω(N) functions, er as r ranges over the free residue classes, are linearly
independent and hence form a basis for the Okada space.

We now determine the functions {er : r - free} explicitly. Since er is only supported on r
(mod N) among the free residue classes, the coefficient of xr in each set of equations is precisely
er(n) and er(p) respectively. We then see that all the functions in the Okada space O(N) are
given by making arbitrary selections for xr with r free, and then determining xn, for (n,N) = 1
and xp for p|N , by the above system (8). From Theorem 1.1, we can compute the values ε(r, p)
and ε(p, p) to be:

ε(p, p) =


1 +

1

p− 1
if p ||N

1 otherwise,

ε(r, p) =


vp(N) +

1

p− 1
if vp(r) ≥ vp(N)

vp(r) otherwise.

Therefore we have two natural cases, namely, when p ||N and when p2 | N . In the case when
p ||N , ε(p, p) = p/(p− 1), ε(r, p) = 0 for free classes ‘r’ such that p - r and ε(r, p) = p/(p− 1) for
free classes ‘r’ with p | r. Hence, when p ||N , we have that

er(p) =

{
−1 if p | r,
0 otherwise.

(9)

Now consider the case when p2 | N , so that ε(p, p) = 1. Thus, er(p) = −ε(r, p), that is,

er(p) =


−vp(N)− 1

p− 1
if vp(r) ≥ vp(N),

−vp(r) if vp(r) < vp(N).

(10)

In particular, eN (p) = −1 if p ||N and

eN (p) = −vp(N)− 1

p− 1

otherwise.

Furthermore, if n is coprime to N , we can determine er(n) as follows. From equation (7), we
can write,

er(n) +
∑
p|N

er(p)A(p, n) + er(r)A(r, n) = 0,

from which we deduce
er(n) = −A(r, n)−

∑
p|N

er(p)A(p, n).
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We summarise our discussion in the following table:

Table 1: Values of the basis functions er at coprime and prime arguments

n with (n,N) = 1 p ||N p2|N

er(n) = −A(r, n)−
∑
p|N

er(p)A(p, n) er(p) =

{
−1 if p | r,
0 otherwise.

er(p) =


−vp(N)−

1

p− 1
if vp(r) ≥ vp(N),

−vp(r) if vp(r) < vp(N).

Thus, we have proved:

Theorem 2.1. Let N ≥ 2 be a composite integer. Then the functions er, as ‘r’ ranges over
free residue classes (mod N), form a basis of the Okada space O(N). For a free residue class r,
er(r) = 1 and er(b) = 0 if b 6= r is free. For each prime p | N , the value er(p) is given by (9) and
(10) depending on whether p ||N or p2 | N respectively. Finally, for every n coprime to N , we
have

er(n) = −A(r, n)−
∑
p|N

er(p)A(p, n)

Here A(r, n) is given by (6).

As the set {er : r (mod N) is free} forms a basis of the Okada space O(N), any function f
mod N for which L(1, f) = 0 can be expressed as

f(n) =
∑
r free

f(r) er(n). (11)

We apply this deduction in sections that follow.

3. Computing the numbers A(r, n)

The numbers A(p, n) and A(r, n) when n is coprime to N make an appearance in the explicit
basis constructed in Theorem 2.1. More specifically, for any n coprime to N , we can rewrite (11)
using Theorem 2.1, as:

f(n) = −
∑
r free

f(r)A(r, n)−
∑
p|N

A(p, n)

∑
r free

f(r)er(p)

 .

The inner sum in the second sum above equation can be recognized as f(p) using (11). Therefore,
we have

f(n) = −
∑
r free

f(r)A(r, n)−
∑
p|N

f(p)A(p, n).

Thus, the numbers A(r, n) for all free residue classes r warrant explicit computation and careful
study, which we initiate below.

The calculation of the sum A(r, n) is straightforward in one particular case.
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Theorem 3.1. Let n be coprime to N . Suppose that r (mod N) is a free residue class satisfying
vp(r) < vp(N) for every prime p | N . Writing (r,N) = t, we have

A(r, n) =

1/t if n ≡ r/t (mod N/t)

0 otherwise.
(12)

Proof. Recall that

A(r, n) =
∑

m∈M(r,n)

1

m
,

where M(r, n) is the set of all m ∈ M such that mn ≡ r (mod N). Since n is coprime to
N , this means that t|m and writing m = tm′, we have m′n ≡ r/t (mod N/t). The condition
vp(r) < vp(N) for every prime p | N translates to the fact that the prime divisors of N/t are the
same as the prime divisors of N .

Now m′ is in the monoid generated by the prime divisors of N . Thus, our condition on vp(r)
implies that the only solution of the congruence m′n ≡ r/t mod (N/t) is m′ = 1. This means
that n ≡ r/t (mod N/t). This proves (12). �

The following useful corollaries can be extracted from Theorem 3.1.

Corollary 3.2. Let N = pk with k ≥ 2 for a prime p. Let r (mod N) be a non-zero free residue
class. If t = (r,N), then

A(r, n) =

1/t if n ≡ r/t (mod N/t)

0 otherwise.

Corollary 3.3. If p2|N for some prime p, then

A(p, n) =

1/p if n ≡ 1 (mod N/p)

0 otherwise.
(13)

A natural question is to evaluate A(p, n) for primes p such that p ||N . Again, following Okada’s
algorithm, we write m = pm′ and deduce m′n ≡ 1 (mod N/p). But this time, m′ being in the
monoid generated by the prime divisors of N , we see that it must be a power of p. In particular, n
has to be in the cyclic subgroup generated by pmodN/p, otherwise, A(p, n) = 0. Let u = up(N/p)
be the order of p (mod N/p). Let w be the unique number with 0 ≤ w < u such that pwn ≡ 1
(mod N/p). Then

A(p, n) =
1

p

∞∑
j=0

1

pw+ju
=

1

pw+1

pu

pu − 1
=
pu−w−1

pu − 1
.

We therefore deduce

A(p, n) =


pu−w−1

pu − 1
if n ∈ 〈p〉 in (Z/(N/p)Z)∗

0 otherwise.

(14)

This proves:
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Theorem 3.4. When n is coprime to N , the numbers A(p, n) are given by (13) and (14) corre-
sponding to the cases p2 | N and p ||N respectively.

In absence of an explicit evaluation of A(r, n), we explore alternative representations of these
numbers, which give us further insight into their nature. In [13] and [14], Okada required only
the rationality of the numbers A(r, n). To do so, he proved that if t = (r,N) and

St := {p - prime : p | N, p - (N/t)} = {p - prime : p | N, vp(r) ≥ vp(N)} , (15)

then

A(r, n) =
1

t

∏
p∈St

(
1− 1

pφ(N)

)−1 ∑
m∈Mt(N)

δ(r, n,m)

m
,

where Mt(N) =
{∏

p∈St
pα(p) : 0 ≤ α(p) < φ(N)

}
and

δ(r, n,m) =

{
1 if r ≡ mnt mod N,

0 otherwise.

In the theorem below, we obtain another expression for the numbers A(r, n) which appears
more viable to deduce their arithmetic properties.

Theorem 3.5. Let n be coprime to N and r (mod N) be a free residue class with t = (r,N).
Let St be the set defined in (15). Then

t A(r, n) =
1

φ(N/t)

∑
χ

χ(r/t)χ(n)
∏
p∈St

(
1− χ(p)

p

)−1
, (16)

where the summation runs over Dirichlet characters χ (mod N/t).

Proof. The congruence mn ≡ r (mod N) simplifies to m′n ≡ r/t (mod N/t) where m = tm′.
Since (r/t,N/t) = 1, we see that m′ must belong to Mt, the monoid generated by primes in St.
We can use Dirichlet characters (mod N/t) to sift our elements, to obtain

t A(r, n) =
1

φ(N/t)

∑
m′∈Mt

1

m′

∑
χ

χ(r/t)χ(m′n) =
1

φ(N/t)

∑
χ

χ(r/t)χ(n)
∏
p∈St

(
1− χ(p)

p

)−1
,

which proves the theorem. �

Theorem 3.5 gives an alternate proof of Theorem 3.1 because under the conditions of the latter
theorem, the set St is empty and the result is now immediate from the orthogonality of Dirichlet
characters. Another consequence of Theorem 3.5 is the corollary below.

Corollary 3.6. With t = (r,N), we have

|A(r, n)| ≤ 1

φ(t)
.

Proof. The sum on the right hand side of (16) is bounded by∏
p∈St

(
1− 1

p

)−1
≤ t

φ(t)

from which the corollary follows. �
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An additional noteworthy feature of Theorem 3.5 is that if n and m are coprime to N and we
write t = (r,N), then n ≡ m (mod N/t) implies A(r, n) = A(r,m). It is also worth noting that
A(r, n) = A(−r,−n) which is evident from the definition as well.

It is easy to deduce rationality of the numbers A(r, n) from Theorem 3.5 simply by noting that
the right hand side of (16) is invariant under Galois automorphisms. Our formula also makes
patently clear that the power of 2 in the denominator of A(r, n) emerges not only from the pres-
ence of φ(N/t) but also from primes p appearing in the product.

4. Applications of Theorem 2.1

As a consequence of the explicit basis obtained in Theorem 2.1, we can deduce non-vanishing of
L(1, f) and linear independence of values of the digamma function. Furthermore, the arithmetic
properties of the numbers A(r, n) seem to hold the key towards establishing variants of Erdős’s
conjecture. We discuss these results below.

4.1. Extension of the Baker-Birch-Wirsing theorem. In the 1960s, S. Chowla asked the
following question: suppose that f is a rational-valued function, periodic with an odd prime
period p satisfying (1) and f(p) = 0. Then is it true that L(1, f) 6= 0? This problem was
answered in the affirmative by Baker, Birch and Wirsing [2, Theorem 1] using Baker’s theory of
linear forms in logarithms of algebraic numbers. namely, they used the following theorem ( see
[1, Chapter 2]).

Theorem 4.1. Let α1, α2, · · · , αn be non-zero algebraic numbers such that log(α1), log(α2),
· · · , log(αn) are Q-linearly independent. Then 1, log(α1), log(α2), · · · , log(αn) are Q-linearly
independent.

More specifically, Baker, Birch and Wirsing proved that:

Theorem (Baker-Birch-Wirsing). Let f be a rational-valued function, periodic with period N
and not identically zero. Suppose that f(a) = 0 for every a satisfying 1 < (a,N) < N and that
(1) holds. Then L(1, f) 6= 0.

As a consequence of Okada’s Theorem 1.1 and the explicit basis we obtained in Theorem 2.1,
we deduce the following extension of the Baker-Birch-Wirsing theorem.

Theorem 4.2. If f ∈ F (0)(N) is such that f(r) = 0 for all free residue class r (mod N), then

L(1, f) 6= 0 unless f ≡ 0. Similarly, if f ∈ F (0)(N) is such that f(r) = 0 for all non-zero free
residue classes r (mod N), then L(1, f) = 0 if and only if f = f(N) eN .

Proof. Suppose that L(1, f) = 0. From (11), we have that f(n) =
∑

r free f(r) er(n). The
conclusions are now evident. �

In the Baker-Birch-Wirsing theorem, the support of f is contained in the coprime residue
classes (mod N) along with the zero residue class. In our theorem above, the support is con-
tained in the coprime residue classes (mod N) along with the residue classes p (mod N) as p
ranges over the prime divisors of N .

One can obtain the Baker-Birch-Wirsing theorem from Theorem 4.2. Indeed, suppose that f
is as in the Baker-Birch-Wirsing theorem. By Theorem 4.2, f(n) = f(N)eN (n) for all n ∈ Z. By
Okada’s theorem, if N is a prime, O(N) is empty. Thus, one can assume that N is not a prime.
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Let p be a prime divisor of N . Then, f(p) = 0, which implies that f(N) eN (p) = 0. However, it
can be seen from Table 1 that eN (p) 6= 0. Hence, f(N) = 0 implying that f is identically zero.

4.2. Extension of the Murty-Saradha theorem. In [11], the first author and N. Saradha
explored the connection between vanishing of the value L(1, f) and linear relations among values
of the digamma function, ψ(a/N) with 1 ≤ a ≤ N , by virtue of (2). Using the Baker-Birch-
Wirsing theorem, they showed:

Theorem (Murty-Saradha). The numbers ψ(a/N)+γ with 1 ≤ a < N , (a,N) = 1 are Q-linearly
independent.

Using Theorem 4.2, we obtain the following generalization.

Theorem 4.3. Let N > 1. Let the set S consist of the φ(N) + ω(N)− 1 numbers{
ψ
( a
N

)
+ γ : 1 ≤ a ≤ N, (a,N) = 1

}
together with all but one element of{

ψ
( p
N

)
+ γ : p - prime, p | N

}
.

Then the elements of S are linearly independent over Q.

Proof. Suppose that ∑
(a,N)=1

ca

(
ψ
( a
N

)
+ γ
)

+
∑
p|N

cp

(
ψ
( p
N

)
+ γ
)

= 0,

is a rational linear relation, with rational numbers ca for (a,N) = 1 and cp with p | N , with at
least one of the cp’s zero.

Define the function f , periodic modulo N as f(a) = ca when (a,N) = 1, f(p) = cp when p is
a prime such that p | N and f(N) = −

∑
(a,N)=1 ca −

∑
p|N cp. Then f satisfies (1) and

0 =
∑

(a,N)=1

(
ca ψ

( a
N

))
+
∑
p|N

(
cp ψ

( p
N

))
+

− ∑
(a,N)=1

ca −
∑
p|N

cp

ψ(1) =

N∑
a=1

f(a)ψ
( a
N

)
,

as ψ(1) = −γ. By (2), the above relation implies that L(1, f) = 0. Since f = 0 on all the non-zero
free residue classes, Theorem 4.2 implies that f(n) = f(N)eN (n) for all n ∈ Z.

If the number excluded from the set is ψ(p/N) + γ for some prime divisor p of N , then cp = 0.
That is, 0 = f(p) = f(N)eN (p). The value eN (p) 6= 0, which can be immediately seen from Table
1. Thus, we deduce that f(N) = 0, which in turn implies that f is identically 0. So the relation
among values of the set S was a trivial relation to begin with.
�

The above theorem leads to the natural question of whether all the numbers{
ψ
( a
N

)
+ γ : 1 ≤ a ≤ N (a,N) = 1

}
∪
{
ψ
( p
N

)
+ γ : p - prime, p | N

}
are Q-linearly independent. During the course of the proof of Theorem 4.3, we proved that
any Q-linear relation among the above numbers gives a function f , periodic mod N such that
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L(1, f) = 0 and f = f(N)eN and vice a versa. Thus, the function eN gives rise to an explicit
Q-linear relation among the above numbers, that is,∑

1≤a≤N, (a,N)=1

eN (a)
(
ψ
( a
N

)
+ γ
)

+
∑
p|N

eN (p)
(
ψ
( p
N

)
+ γ
)

= 0.

For an integer N ≥ 2, let

D(N) := Q-span of
{
ψ
( a
N

)
: 1 ≤ a ≤ N

}
,

D (0)(N) := Q-span of
{
L(1, f) : f ∈ F (0)(N)

}
, (17)

DS(N) := Q-span of numbers in S.

Note that every element of the form ψ(a/N) + γ for 1 ≤ a < N is in D (0)(N). Indeed, if

f (mod N) is defined as f(a) = 1, f(N) = −1 and f(b) = 0 if b 6≡ a,N mod N , then f ∈ F (0)(N),

−NL(1, f) = ψ(a/N) + γ is in D (0)(N). Thus, DS(N) ⊆ D (0)(N) ⊆ D(N). An alternate
formulation of Theorem 4.3 is that

dim DS(N) = φ(N) + ω(N)− 1. (18)

The Murty-Saradha theorem implies that dim D(N) ≥ φ(N). For N > 1, Theorem 4.3 im-
proves the Murty-Saradha bound to give dim D(N) ≥ φ(N) + ω(N) − 1. On the other hand,
the fact that er ∈ O(N) for any free residue class r (mod N) implies that L(1, er) = 0, which
translates to

ψ
( r
N

)
= −

∑
(a,N)=1

er(a)ψ
( a
N

)
−
∑
p|N

er(p)ψ
( p
N

)
by (2). Therefore, the numbers ψ(a/N) when (a,N) = 1 together with ψ(p/N) for p | N span
D(N). Hence, we have that

φ(N) + ω(N)− 1 ≤ dim D(N) ≤ φ(N) + ω(N).

4.3. Linear independence of digamma values. The preceding discussion naturally leads one
to ask whether DS(N) = D (0)(N) and whether D (0)(N) = D(N). Towards answering these
questions, define the linear map L : F (N)→ D(N) given by

L (f) = − 1

N

N∑
a=1

f(a)ψ
( a
N

)
.

Observe that if f ∈ F (0)(N), then by (2), L (f) = L(1, f). Therefore, we also have the linear

map L (0) : F (0)(N) � D (0)(N), with L (0) = L
∣∣
F (0)(N). Moreover, the Okada space O(N) is

precisely ker(L (0)). Therefore, by the rank and nullity theorem of linear algebra, we obtain that

dim O(N) + dim D (0)(N) = dimF (0)(N) = N − 1.

By Theorem 2.1, dim O(N) = N − φ(N)− ω(N), giving us

dim D (0)(N) = φ(N) + ω(N)− 1.

Now, DS(N) ⊆ D (0)(N), with both the vector spaces having equal dimension from (18). Thus,

DS(N) = D (0)(N).
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This proves the following.

Theorem 4.4. Let N ≥ 2. Then the set S defined in Theorem 4.3 forms a basis for the Q-vector
space D (0)(N) defined in (17).

It will be of significant interest to find a constructive proof of the above theorem.

The question that remains to be addressed is whether the containment D (0)(N) ⊆ D(N), or
equivalently, O(N) ⊆ ker(L ) is strict. By considering the dimensions of the spaces involved, it

is clear that exactly one of the two, D (0)(N) ⊆ D(N) or O(N) ⊆ ker(L ) is strict.

To begin with, observe that all non-zero elements of D (0)(N) are transcendental. Indeed, by

(3), any element of D (0)(N) can be expressed as a linear form in logarithms of (1− e2πia/N ) for

1 ≤ a < N with coefficients in Q(e2πi/N ) and by Baker’s theorem, any non-vanishing linear form
in logarithms of algebraic numbers is transcendental.

Note that every element of D(N) can be expressed as a sum of an element from D (0)(N) and

a rational multiple of γ. Indeed, if α = (−1/N)
∑N

a=1 ca ψ(a/N) ∈ D(N), then

α = − 1

N

N−1∑
a=1

ca

(
ψ
( a
N

)
+ γ
)

+
1

N

(
N∑
a=1

ca

)
γ = L(1, f) +

1

N

(
N∑
a=1

ca

)
γ

by (2), for the function f ∈ F (0)(N) defined as f(a) = ca when 1 ≤ a < N and f(N) =

−
∑N−1

a=1 ca. Therefore,

D(N) = D (0)(N) + γQ,

and the question of whether the above sum is a direct sum depends on whether γ is an element
of D (0)(N).

More specifically, a non-zero complex number α is said to be a Baker period if α can be ex-
pressed as a linear form in logarithms of algebraic numbers with algebraic coefficients. Then by
(3), all non-zero elements of D (0)(N) are recognized as Baker periods.

Suppose we have D (0)(N) = D(N), which means that γ ∈ D (0)(N) is a Baker period and
hence, is transcendental.

However, a conjecture of Kontsevich and Zagier [6] predicts that γ is not a Baker period.

Thus, under the assumption of this conjecture, one would obtain that D (0)(N) ( D(N) and
ker(L ) = O(N). In other words, the only Q-linear relations among the digamma values

ψ
( a
N

)
with 1 ≤ a ≤ N,

arise from the vanishing of the value L(1, f). Moreover, in this case, a generating set for such
relations is given by the functions {er : r (mod N) - free}.

Unconditionally, we obtain an infinite collection of natural numbers M such that D (0)(M) (
D(M). Towards this result, we prove the proposition below.

Proposition 4.5. For two integers M , N ≥ 2 that are coprime, D (0)(M) ∩ D (0)(N) = {0}.
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Proof. Suppose that 0 6= δ ∈ D (0)(M) ∩ D (0)(N). Then there exists f ∈ F (0)(M) and g ∈
F (0)(N) such that L(1, f) = L(1, g) = δ. Using (3), we have

L(1, f) = −
M−1∑
a=1

f̂(a) log
(

1− e2πia/M
)

= L(1, g) = −
N−1∑
a=1

ĝ(a) log
(

1− e2πia/N
)
.

Let A ⊆ {1, 2, · · · ,M − 1} and B ⊆ {1, 2, · · · , N − 1} be such that

SM :=
{

log(1− e2πia/M ) : a ∈ A
}

and SN :=
{

log(1− e2πib/N ) : b ∈ B
}

are maximal Q-linearly independent subsets of{
log(1− e2πia/M ) : 1 ≤ a ≤M − 1

}
and

{
log(1− e2πib/N ) : 1 ≤ b ≤ N − 1

}
respectively. Thus, we can write

L(1, f) =
∑
a∈A

ca log
(

1− e2πia/M
)
, L(1, g) =

∑
b∈B

db log
(

1− e2πib/N
)
,

and L(1, f) = L(1, g) gives a non-trivial Q-linear relation among the numbers in TM and TN .
Therefore, by Baker’s theorem (Theorem 4.1), there exists a non-trivial Q-linear relation among
the above numbers. That is, there exist integers na and nb, not all zero, such that∏

a∈A

(
1− e2πia/M

)na

=
∏
b∈B

(
1− e2πib/N

)nb

= α. (19)

Now the left hand side of (19) is an element in Q(e2πi/M) whereas the right hand side belongs

to Q(e2πi/N ). Since gcd(N,M) = 1, Q(e2πi/M ) ∩ Q(e2πi/N ) = Q. Therefore, α is rational, in
particular, it is a rational integer.

Furthermore, the product on the left hand side can only be divisible by prime factors of M
and the product on the right hand side can only be divisible by prime factors of N . By the
coprimality of M and N , we deduce that α = ±1. Thus,∏

a∈A

(
1− e2πia/M

)2na

=
∏
b∈B

(
1− e2πib/N

)2nb

= 1

gives a non-trivial Q-linear relation among the numbers in SM as well as SN , which is a contra-
diction. �

As a direct consequence of the above proposition, we obtain the following theorem.

Theorem 4.6. Suppose there exists an integer N ≥ 2 such that D (0)(N) = D(N). Then for

every positive integer M ≥ 2 which is coprime to N , D (0)(M) ( D(M).

Proof. If D (0)(M) = D(M) and D (0)(N) = D(N) for two coprime integers M and N , then

{0} ( D (0)(M) ∩D (0)(N) as γ ∈ D(N) ∩ D(M). This contradicts Proposition 4.5. �

This theorem proves that there exists an integer N0 ≥ 2 such that for all integers M ≥ 2
coprime to N0, D (0)(M) ( D(M).

Now D (0)(N) consists of Baker-periods. Thus, if γ is not a Baker period, then

D(N) = D (0)(N)⊕ γQ.
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By Theorem 4.3, this gives that the elements of S ∪ {γ} form a basis for the space D(N).

An alternate basis for D(N) is obtained in the theorem below. We note a few useful properties
of the digamma function before proceeding. The digamma function satisfies a (generalized)
distributional relation (see for example, formula (24) in [9]) of the form

ψ(x) = logm+
1

m

m−1∑
j=0

ψ

(
x+ j

m

)
,

for any natural number m. If we put x = 1, and m = N , we see that

ψ(1) = logN +
1

N

N−1∑
j=0

ψ

(
1 + j

N

)
,

and whence {
ψ(1)− logN

}
N =

N∑
j=1

ψ

(
j

N

)
.

On partitioning the sum on the right hand side according to the gcd (j,N) and applying Möbius
inversion, we deduce:∑

(a,N)=1

ψ(a/N) =
∑
d|N

µ(d)
N

d

(
ψ(1)− log

N

d

)
= ψ(1)φ(N)−

∑
d|N

µ(d)
N

d
log

N

d
. (20)

We are now ready to prove:

Theorem 4.7. If γ is not a Baker period, then the following φ(N) + ω(N) numbers

S̃ =
{
ψ
( a
N

)
, log p : (a,N) = 1 and p | N

}
form a basis for the Q-vector space D(N).

Proof. We first observe that log p ∈ D (0)(N) for p | N . Indeed, if f ∈ F (p) ⊆ F (N) such that
L(s, f) = (1− p1−s)ζ(s), then L(1, f) = log p.

As observed earlier, if γ is not a Baker period, then D (0)(N) ( D(N) and thus, dim D(N) =

φ(N)+ω(N). It therefore suffices to show that D(N) is contained in the Q-span of elements in S̃.

Let α ∈ D(N) be α = −N−1
∑N

a=1 ca ψ(a/N). We can re-write the element α as

α = − 1

N

(
N−1∑
a=1

ca ψ
( a
N

)
+

(
−
N−1∑
a=1

ca

)
ψ(1)

)
− 1

N

(
N∑
a=1

ca

)
ψ(1).

The first term in the above summation is L(1, f) when f is defined as f(a) = ca for 1 ≤ a < N

and f(N) = −
∑N−1

a=1 ca. Hence, α = L(1, f) + ((
∑N

a=1 ca)/N) γ.

By Lemma 1 of [14], there is a function g ∈ F (N), supported only on the coprime residue
classes (mod N) and functions gp ∈ F (N/p) for each prime p | N such that

L(s, f) = L(s, g) +
∑
p|N

(
1− p

ps

)
L(s, gp).
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Let ρgp = pN−1
∑N/p

a=1 g(a) be the residue of L(s, gp) as s = 1. Then we get

L(1, f) = L(1, g) +
∑
p|N

ρgp log p.

In other words, L(1, f) is contained in the Q-span of S̃. By (20), ψ(1) also belongs to the span

of S̃. Hence, α is in the Q-span of S̃, which proves the theorem. �

4.4. Variant of the Erdős conjecture. Erdős’s conjecture (Conjecture 1.2) is perhaps the
most tantalizing question in the context of non-vanishing of L(1, f) which remains unresolved.
In [15], it was proved by the second author that the conjecture holds with ‘probability’ 1, that
is, for 100% of Erdős functions f , L(1, f) 6= 0. Despite several independent approaches, the case
N ≡ 1 mod 4 of the conjecture is still open.

In order to gain insight into the problem, it is prudent to study generalized variants of the
Erdős conjecture. With the help of exhaustive computer search, Sz. Tengely [20, Theorem 1]
found an explicit example of a function f , periodic modulo 36 with f(n) = ±1 for all n ∈ Z
such that L(1, f) = 0. A proof of this fact using the distribution relation (4.3) was given by
Kh. Pilehrood and T. Pilehrood in [17]. Moreover, Tengely showed that N = 36 is the smallest
period for which such a function f exists. This raises the interesting question: can we classify N
for which there exist functions f (mod N) with f(n) = ±1 for all n ∈ Z such that L(1, f) = 0.
Such a function f will give rise to relations of the form

N∑
n=1

f(a)ψ(a/N) = 0, f(a) = ±1, 1 ≤ a ≤ N,
N∑
a=1

f(a) = 0. (21)

Since f(n) = ±1 and
∑N

a=1 f(a) = 0, N has to necessarily be even for (21) to hold. In this
direction, we have the following theorem.

Theorem 4.8. Suppose that N ≥ 2 is even. If N ≡ 2 mod 4, then for any function f (mod N)
such that f(n) = ±1 for all n ∈ Z, L(1, f) 6= 0.

Proof. Let N = 2M with M odd. Suppose to the contrary that there exists f ∈ O(N) with
f(n) = ±1. Using the basis derived in Theorem 2.1, we have f(n) =

∑
r−free f(r) er(n). In

particular, f(2) =
∑

r−free f(r) er(2).

We are in the case 2 ||N . By Table 1, er(2) = −1 when 2 | r and 0 otherwise. Hence,

f(2) = −
∑

r−free,
2|r

f(r).

The number of even free residue classes is (N/2) − 1 = M − 1, which is even. Therefore, the
right hand side of the above equation will be even, whereas the left hand side is odd, leading to
a contradiction.
�

This theorem can alternatively be proved by an argument similar to the proof of Erdős’s con-
jecture when N ≡ 3 mod 4 by the first author and N. Saradha in [12, Theorem 7]. We relegate
the investigation of the case N ≡ 0 mod 4 of the variant of Erdős’s conjecture to future research.
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Following arguments along the same lines as that of [15, Theorem 1.3], we show that for 100%
of functions f mod N , relations of the type (21) do not exist. More specifically,

Theorem 4.9. For an even integer N ≥ 2, let

EN :=
{
f ∈ F (0)(N) : f(n) ∈ {−1, 1} for all n ∈ Z

}
VN := {f ∈ EN : L(1, f) = 0} .

Then |VN | ≤ 2N−φ(N)−ω(N) and

lim
M→∞

∑
2≤N≤M,
N - even

|VN |

∑
2≤N≤M,
N - even

|EN |
= 0.

Proof. Define an equivalence relation ∼ on EN by setting f ∼ g iff

f(r) = g(r), for all free residue classes r mod N.

By Theorem 2.1, if f ∈ O(N), then for all g ∈ EN , g 6= f and g ∼ f , g 6∈ O(N). Indeed, if g ∼ f
and g ∈ O(N), then for any n ∈ Z,

g(n) =
∑
rfree

g(r) er(n) =
∑
rfree

f(r) er(n) = f(n).

Thus, the number of functions in VN is at most equal to the number of equivalence classes,
|EN/ ∼ |.

Furthermore, |EN | =
(
N
N/2

)
as the condition (1) forces every f ∈ EN to take the values 1 and

−1 equally often. Let nr = N − φ(N)− ω(N) be the number of free residue classes mod N . We
consider two cases.

(a) nr < N/2 : The number of free residue classes where f ∈ EN can take the value 1 ranges
from 0 to nr. Hence,

|EN/ ∼ | =
nr∑
j=0

(
nr
j

)
= 2nr .

(b) nr ≥ N/2 : The number of free residue classes where f ∈ EN can take the value 1 ranges
from nr − (N/2) to N/2. Thus,

|EN/ ∼ | =
N/2∑

j=nr−(N/2)

(
nr
j

)
≤ 2nr .

In either case, we obtain that |VN | ≤ 2N−φ(N)−ω(N).

Now we use the bounds

φ(N)� N

log logN
and

(
N

N/2

)
� 2N√

N

from [10, Theorem 2.9] and [15, pg. 11] together with the following standard fact (see [18,
Problem 70, pg. 16]): let an and bn be sequences satisfying the conditions that bn > 0 for all
n ∈ N, b1 + b2 + · · · diverges and limn→∞ an/bn = s. Then

lim
n→∞

a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn

= s.
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Taking aN = 2
N−

(
N

log logN

)
and bN = 2N/

√
N gives the theorem. �

Thus, relations of the type (21) are ‘rare’.

The existence of a function f (mod 36) ∈ O(36) with f(n) = ±1 for all n ∈ Z insinuates that
it is worth investigating if Conjecture 1.2 also has a counterexample.

5. The Okada space O(N) as a rational representation

For every h coprime to N , let σh : F (N)→ F (N) be the linear operator given by σh(f)(n) :=
f(hn). One can easily check that this defines a linear action of the group (Z/NZ)∗ on F (N), or
in other words, we have a rational linear representation of the group (Z/NZ)∗,

ρ : (Z/NZ)∗ → GL (F (N))

with ρ(h)(f) := σh(f). Define ta ∈ F (N) by

ta(n) =

{
1 if a ≡ n mod N,

0 otherwise,

so that {ta : a mod N} forms a standard basis for the vector space F (N) and σh(ta) = tha, where
the subscripts are interpreted as residue classes modulo N . Thus, if χρ is the character of the
representation ρ, then

χρ(h) = Tr (σh) =
N∑

m=1,
m(1−h)≡0 mod N

1.

Furthermore, as a consequence of standard theory of representations of finite groups (see [19,
Chapter 12]), the space F (N) can be decomposed into irreducible representations.

The Okada space can be identified as an important subrepresentation of ρ. Indeed, a crucial
step in the proof of the Baker-Birch-Wirsing theorem is the following lemma (see [2, Lemma 2]).

Lemma. Suppose f ∈ F (0)(N) is such that L(1, f) = 0. Then L(1, σh(f)) = 0 for every 1 ≤ h ≤
N with (h,N) = 1.

In other words, if f ∈ O(N), then σh(f) ∈ O(N) for each coprime residue class h (mod N).
Therefore, we obtain the representation

ρ(0) : (Z/NZ)∗ → GL (O(N)) (22)

defined as ρ(0)(h)(f) := σh(f).

The action of ρ(0) on the basis elements from Theorem 2.1 can be written down precisely.

Proposition 5.1. Fix a residue class h (mod N), with h 6≡ 1 mod N . Let h (mod N) be such
that hh ≡ 1 mod N . If r 6≡ hl mod N for any prime l | N , then

σh(er) = ehr +
∑
p|N

er(p) ehp. (23)

If r ≡ hl mod N for some prime l | N , then

σh(ehl) = −ehl. (24)
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Proof. Since the functions er for a free residue class ‘r’ form a basis for O(N), σh(er) ∈ O(N)
when (h,N) = 1. Let r (mod N) be a free residue class. By equation (11),

σh(er) =
∑
a free

er(ha) ea.

Now consider the case when r 6≡ hl mod N , for any prime l | N . If ha (mod N) is free, then
er(ha) = 0 unless ha ≡ r mod N , when it is equal to 1. By the condition on r, hr (mod N) is
free, and so we get that the coefficient of ehr is 1. On the other hand, if ha ≡ p mod N for some
p | N , then er(p) is the coefficient of ehp. This gives equation (23).

Now suppose r ≡ hl mod N , for some l | N . Then σh(er) =
∑

a free ehl(ha) ea. Observe that

ha (mod N) either represents a free residue class or a prime divisor of N . If ha (mod N) is free,
then ehl(ha) is zero unless l ≡ a mod N , which contradicts the fact that a is free. If ha ≡ p
(mod N) for a prime p | N , then the coefficient of ea becomes ehl(p). Thus, we have

σh(ehl) =
∑
p|N

ehl(p) ehp,

If p ||N , then ehl(p) = −1 if p = l and 0 otherwise. Similarly, if p2 | N , vp(N) ≥ 2, vp(hl) = 1 if
p = l and 0 otherwise. Therefore, in both the cases, we obtain (24). �

One can use this basis to write down the character of the representation ρ(0).

Proposition 5.2. Let ρ(0) be the rational representation defined in (22) and χρ(0) be its character.
Then

χρ(0)(h) =



φ(N) + ω(N)− 1 if h = 1,

−ω(N) + 1 if h ≡ −1 mod N, 2|N, N > 4,

−ω(N) if h ≡ −1 mod N, (2, N) = 1 or N = 2, 4,

∑
p|N

er(p)−
∑
p|N,

h2≡1 mod N
p

1 +
∑

r free,
r(1−h)≡0 mod N

1 otherwise.

Proof. Fix a residue class h (mod N) with (h,N) = 1 and h 6≡ 1 mod N . Since σh : O(N) →
O(N) is a linear transformation, one can write a matrix, say Ah, for σh with respect to the basis
{er : r (mod N) - free}. Then χρ(h) = Tr(Ah), can be calculated as a sum of the diagonal terms
in Ah, that is, the sum of the coefficient of er in σh(er).

Suppose r ≡ hl mod N , with l varying over prime divisors of N . Then by (24), σh(er) will
contribute towards tr (Ah) if and only if

r ≡ h2r mod N ⇐⇒ hl(1− h2) ≡ 0 mod N ⇐⇒ h ≡ h mod
N

l
.

Now assume that r 6≡ hl mod N for any prime l | N , in which case, σh(er) is given by (23). Thus,
we have a non-zero contribution from coefficient of er to tr (Ah) if either r ≡ hp mod N for some
p | N or if r ≡ hr mod N . If h ≡ −1 mod N , then there are no such free classes r (mod N)
unless N is even and r = N/2. The proposition now follows. �
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Since ρ(0) is a subrepresentation of ρ, Maschke’s theorem implies that there exists a (Z/NZ)∗-
invariant complement of O(N) in F (N). That is, there exists a subspace I (N), invariant under
the action of (Z/NZ)∗, such that

F (N) = O(N)⊕I (N).

6. Concluding Remarks

The values ψ(a/N) are naturally related to the Euler-Lehmer constants, γ(a,N) introduced
by Lehmer [7] as analogs of Euler’s constant γ for arithmetic progressions. In particular, we have
the relationship (see [7, Theorem 7])

γ(a,N) = − 1

N

(
ψ
( a
N

)
+ logN

)
,

Thus, our results regarding the vector spaces spanned by the digamma values also have implica-
tions for vector spaces spanned by the Euler-Lehmer constants, which have been independently
studied.

There have been earlier researches into the structure of the space D (0)(N), most notably [2],
[11], [12], [14], [13], [16] and [4]. In the latter paper, the problem was studied through the lens of
the Bass theorem [3] (as corrected by Ennola [5]) giving relations among the so-called cyclotomic

numbers (1− e2πia/N ).

In this paper, we have initiated a new approach to study the space D (0)(N) by constructing an

explicit basis for O(N). We have underlined that D (0)(N) ⊆ D(N) and the question of whether
this is a proper containment is equivalent to the question of whether Euler’s constant γ is a Baker
period. In other words, is γ a special value L(1, f) for some periodic arithmetical function f?

Most likely, it is not and so we conjecture that D (0)(N) is a proper subspace of D(N).
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