
ON A CONJECTURE OF LIVINGSTON

SIDDHI PATHAK

Abstract. In an attempt to resolve a folklore conjecture of Erdös, Livingston con-
jectured the Q̄-linear independence of logarithms of certain algebraic numbers. We
disprove this conjecture, highlighting that a new approach is required to settle Erdös’s
conjecture.

1. Introduction

In a written communication with Livingston, Erdös [5] conjectured the following:

Conjecture 1. (Erdös) Let q be a positive integer and f be an arithmetical function,
periodic with period q. If f(n) ∈ {−1, 1} when q - n and f(n) = 0 otherwise, then

∞∑
n=1

f(n)

n
6= 0,

whenever the series is convergent.

In 1965, Livingston [5] attempted to resolve the above conjecture. He predicted that
to settle Conjecture 1, one would first have to prove:

Conjecture 2. (Livingston) Let q ≥ 3 be a positive integer. The numbers{
log

(
2 sin

aπ

q

)
: 1 ≤ a < q

2

}
and π

when q is odd, and {
log

(
2 sin

aπ

q

)
: 1 ≤ a < q

2

}
, π and log 2

when q is even, are linearly independent over the field of algebraic numbers.

The above statement does not depend on the branch of log considered, as the values
would only differ by an integer multiple of 2πi.

In this paper, we disprove Livingston’s conjecture in the case when q is not prime
and show that the conjecture is true when q is prime. More precisely, we prove the
following theorems:
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Theorem 1.1. Conjecture 2 does not hold for q ≥ 6 and q not prime. In fact, for a
composite positive integer q ≥ 6, the numbers{

log

(
2 sin

aπ

q

)
: 1 ≤ a < q

2

}
are Q-linearly dependent.

Theorem 1.2. Let p be an odd prime. The numbers{
log

(
2 sin

aπ

p

)
: 1 ≤ a ≤ p− 1

2

}
and π

are Q̄-linearly independent. Thus, Conjecture 2 is true when the modulus p is prime.

In both the above theorems, log denotes the principal branch. As a corollary of
Theorem 1.2, we have

Corollary 1. Let p be an odd prime and f be an arithmetical function, periodic with
period p such that f(n) ∈ {−1, 1} when p - n and f(n) = 0 otherwise. Assume that∑p

a=1 f(a) = 0. Then, only one of the following is true, either
∞∑
n=1

f(n)

n
6= 0,

or
p−1∑
a=1

f(a) cot

(
aπ

p

)
=

p−1∑
a=1

f(a) cos

(
2πab

p

)
= 0,

for 1 ≤ b ≤ (p− 1)/2.

Remark. Conjecture 2 holds for q = 4 because the set {1 ≤ a < q/2} is a singleton,
namely, a = 1 and

log

(
2 sin

π

4

)
= log

√
2 6= 0.

2. Preliminaries

This section introduces some notation and fundamental results to be used in the later
part of the paper.

2.1. L-series attached to a periodic arithmetical function. Let q be a positive
integer and f be an arithmetical function that is periodic with period q. We define

L(s, f) =

∞∑
n=1

f(n)

ns
.

Let us observe that L(s, f) converges absolutely for <(s) > 1. Since f is periodic,

L(s, f) =

q∑
a=1

f(a)
∞∑
k=0

1

(a+ kq)s

=
1

qs

q∑
a=1

f(a)ζ(s, a/q),
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where ζ(s, x) is the Hurwitz zeta function. For <(s) > 1 and 0 < x ≤ 1, recall that the
Hurwitz zeta function is defined as

ζ(s, x) =
∞∑
n=0

1

(n+ x)s
.

In 1882, Hurwitz [4] proved that ζ(s, x) has an analytic continuation to the entire
complex plane except for a simple pole at s = 1 with residue 1. In particular,

ζ(s, x) =
1

s− 1
−Ψ(x) +O(s− 1),

where Ψ is the digamma function, which is defined as the logarithmic derivative of the
gamma function. This can be used to conclude that L(s, f) can be extended analytically
to the entire complex plane except for a simple pole at s = 1 with residue 1

q

∑q
a=1 f(a).

Thus,
∑∞

n=1
f(n)
n exists if and only if

∑q
a=1 f(a) = 0, which we will assume henceforth.

Let us also note that (2.1) helps us to express L(1, f) as a linear combination of
values of the digamma function. Therefore,

L(1, f) = −1

q

q∑
a=1

f(a)Ψ

(
a

q

)
. (1)

2.2. L(1, f) as a linear form in logarithm of algebraic numbers. For a function
f that is periodic with period q, define the Fourier transform of f as

f̂(k) :=
1

q

q∑
a=1

f(a)ζ−akq ,

where ζq = e2πi/q. This can be inverted using the identity

f(n) =

q∑
k=1

f̂(k)ζknq . (2)

Thus, the condition for convergence of L(1, f), i.e,
∑q

a=1 f(a) = 0 can be interpreted

as f̂(q) = 0. Substituting (2) in the expression for L(s, f) we have,

L(s, f) =

∞∑
n=1

1

ns

q−1∑
k=1

f̂(k)ζknq .

=

q−1∑
k=1

f̂(k)

∞∑
n=1

ζknq
ns

. (3)

The inner sum converges for s = 1. To see this, recall the partial summation or the
Abel summation formula that says:

Theorem. Let {an}n∈N be a sequence of complex numbers and f be a C1 function on
R>0. For x > 0, if A(x) :=

∑
n≤x an, then∑

1≤n≤x
anf(n) = A(x)f(x)−

∫ x

1
A(t)f ′(t)dt.
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For 1 ≤ k ≤ q − 1, let an = ζknq and f(x) = 1/x. Thus, A(x) =
∑

n≤x ζ
kn
q and the

partial summation formula gives us that

∑
1≤n≤x

ζknq
n

=
A(x)

x
+

∫ x

1

A(t)

t2
dt. (4)

Now, note that for 1 ≤ k ≤ q − 1,

q∑
n=1

ζknq = 0.

Hence, the partial sums, A(x) are bounded above by q for all x > 0. Therefore, the
integral in (4) is absolutely convergent as x tends to infinity. Thus, taking limit as x
goes to infinity in (4), we get the convergence of the inner sum in (3) and can conclude
that

L(1, f) = −
q−1∑
k=1

f̂(k) log(1− ζkq ), (5)

where log is the principal branch.

2.3. A simplified expression for L(1, χ). If χ is an even Dirichlet character modulo
a prime p, then according to (5) the expression for L(1, χ) is

L(1, χ) = −
p−1∑
k=1

χ̂(k) log(1− ζkp )

= −
b(p−1)/2c∑

k=1

χ̂(k)
[

log(1− ζkp ) + log(1− ζ−kp )
]

= −
b(p−1)/2c∑

k=1

χ̂(k) log
∣∣1− ζkp ∣∣2

= −
p−1∑
k=1

χ̂(k) log
∣∣1− ζkp ∣∣,

where χ̂ denotes the Fourier transform of χ as defined earlier. Let τ(χ) denote the
Gauss sum associated to χ, i.e,

τ(χ) =

p∑
a=1

χ(a)ζap . (6)
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Hence, the Fourier transform of χ can be evaluated as follows. For every (k, p) = 1,

χ̂(k) =
1

p

p−1∑
a=1

χ(a)ζ−akp

=
1

p

p−1∑
t=1

χ(−tk−1)ζtp

=
χ(−k)

p

p−1∑
t=1

χ(t)ζtp

=
χ(−k)

p
τ(χ).

Since χ is even, the expression for L(1, χ) becomes

L(1, χ) = −τ(χ)

p

p∑
k=1

χ(k) log |1− ζkp |. (7)

Another elementary but important fact about the Gauss sum (6) is that when χ is a
non-trivial Dirichlet character modulo p,

τ(χ) 6= 0. (8)

For a proof of the above fact, we refer the reader to [6], Theorem 5.3.3, pg. 76.

2.4. Baker’s theorem about linear forms in logarithm of algebraic numbers.
We will also use an important theorem of Baker (see [1], Theorem 2.1, pg. 10) concerning
linear forms in logarithms of algebraic numbers, namely,

Theorem 2.1. If α1, α2, · · · , αn are non-zero algebraic numbers such that logα1, logα2,
· · · , logαn are linearly independent over the rationals, then 1, logα1, logα2, · · · , logαn
are linearly independent over the field of all-algebraic numbers.

2.5. Matrices of the Dedekind type. Let M be an n × n matrix with complex
entries. Let mi,j denote the (i, j)-th entry of M. Then, M is said to be of Dedekind
type if there exists a finite abelian group, G = {x1, x2, · · · , xn} and a complex valued
function f on G such that

mi,j = f(x−1i xj),

for all 1 ≤ i, j ≤ n. We will use the following well-known theorem regarding matrices
of the Dedekind type:

Theorem 2.2. Let M be an n× n matrix of the Dedekind type. For a character χ on
G ( a homomorphism of G into C∗), define

Sχ :=
∑
s∈G

f(s)χ(s).

Then the determinant of M is equal to ∏
χ

Sχ,
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where the product runs over all characters of G. Thus, M is invertible if and only if

Sχ 6= 0,

for all characters χ of G.

For a proof of the above theorem and an exposition on properties of matrices of the
Dedekind type, we refer the reader to [7]. The determinant of a matrix of the Dedekind
type is often referred to as a Dedekind determinant.

3. The approach of Livingston

Let f be an Erdös function, i.e, f(n) = ±1 when q - n and f(n) = 0 whenever q|n.
The condition for the existence of L(1, f) implies that

q∑
a=1

f(a) =

q−1∑
a=1

f(a) = 0. (9)

As seen earlier, L(1, f) can be written as a linear combination of the values of the
digamma function. Gauss (see [3], pg. 35-36) proved the following formula for 1 ≤ a < q:

Ψ

(
a

q

)
= −γ − log q − π

2
cot

(
aπ

q

)
+

r∑
b=1

{
cos

(
2πab

q

)
log

(
4 sin2 πb

q

)}
+ (−1)a log 2

1 + (−1)q

2
, (10)

where r := b(q − 1)/2c.
Substituting (10) in (1), we have

L(1, f) =
−1

q

[ q−1∑
a=1

f(a)

{
γ + log q +

π

2
cot

(
aπ

q

)
−

r∑
b=1

{
cos

(
2πab

q

)
log

(
4 sin2 πb

q

)}
+ (−1)a log 2

1 + (−1)q

2

}]
.

On simplifying the above expression using (9), we get

L(1, f) =
−π
2q

q−1∑
a=1

f(a) cot

(
aπ

q

)

+
2

q

r∑
b=1

{[ q−1∑
a=1

f(a) cos

(
2πab

q

)]
log

(
2 sin

πb

q

)}
− Tq, (11)

where

Tq =


log 2
q

(
q−1∑
k=1

(−1)kf(k)

)
if q is even

0 otherwise.
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Let us note that the numbers

cot

(
aπ

q

)
and cos

(
2πab

q

)
are algebraic for 1 ≤ a < q and 1 ≤ b < q. Since f(a) ∈ Q̄ and f(q) = 0, we are led to
deduce that L(1, f) is an algebraic linear combination of

π, log

(
2 sin

π

q

)
, log

(
2 sin

2π

q

)
, · · · , log

(
2 sin

(q − 1)π

2q

)
together with log(2) when q is even. This led Livingston to predict that if Conjecture 1
were to be true, the above numbers should be linearly independent over Q̄. At this point,
we make the following key observation - to conclude Conjecture 1 as an implication of
Conjecture 2, one is still required to prove that the resulting relation is non-trivial.
That is, if f is an Erdös function, not identically zero, then at least one of

q−1∑
a=1

f(a) cot

(
aπ

q

)
, (12)

or
q−1∑
a=1

f(a) cos

(
2πab

q

)
, 1 ≤ b ≤ r (13)

or Tq is not zero. This question is not addressed by Conjecture 2 and hence, Livingston’s
conjecture is not sufficient to settle the conjecture of Erdös.

Remark. If f is allowed to take values in Q̄ and q is odd, then there exist a plethora
of examples of functions f that are not identically zero but for which (12) and (13) are
both zero for all 1 ≤ b ≤ r. These are given by the following theorem from [2]:

Theorem 3.1. Let q ≥ 3 be a natural number. Then all odd, algebraically-valued
functions f , periodic mod q, for which L(1, f) = 0 are given by the totality of linear
combinations with algebraic coefficients of the following

⌊
1
2(q − 3)

⌋
functions:

fl(n) = (−1)n−1
(

sinnπ/q

sinπ/q

)l
, for l = 3, 5, · · · , (q − 2) (14)

when q is odd and

fl(n) = (−1)n−1
(

cosnπ/q

cosπ/q

)(
sinnπ/q

sinπ/q

)l
for l = 3, 5, · · · , (q − 1)

when q is even. The functions are linearly independent and take values in Q(ζq), i.e,
the q-th cyclotomic field.

Each fl in the above theorem is an odd function. Since cos(2πab/q) is an even function
for 1 ≤ a < q, (13) is zero for all 1 ≤ b ≤ r. Tq = 0 as q is odd. Thus,

L(1, f) =
−π
2q

q−1∑
a=1

f(a) cot

(
aπ

q

)
,

which is zero by Theorem 3.1.
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4. Proof of the main theorems

We make a useful observation before proceeding with the proofs. If q is a positive
integer and 1 ≤ a < q/2, then

2 sin
aπ

q
=
eiaπ/q − e−iaπ/q

i
= ie−iaπ/q(1− ζaq ), (15)

where ζq = e2πi/q. Since

sin
aπ

q
> 0,

for 1 ≤ a < q/2 and log denotes the principal branch,

log

(
2 sin

aπ

q

)
= log

(∣∣1− ζaq ∣∣)+ i0 = log

(∣∣1− ζaq ∣∣)
= log

(∣∣1− ζ−aq ∣∣) = log

(
2 sin

(q − a)π

q

)
. (16)

4.1. Proof of Theorem 1.1. We prove the linear dependence of the numbers{
log

(
2 sin

aπ

q

)
: 1 ≤ a < q

2

}
by giving an explicit Q-relation among them.

Proof. Before proceeding, we note that by (16), it suffices to exhibit a relation among
logarithms of cyclotomic numbers. Now, since q is not prime, there is a divisor d of q
such that d 6= 1, q. For such a divisor d, we have the following polynomial identity in
C[X,Y ]:

Xq/d − Y q/d =

q/d∏
j=1

(
X − ζjq/dY

)
,

where ζq/d = e2πid/q. Substituting X = 1 and Y = ζaq for (a, q) = 1, we have

1− e2πia/d =

q/d∏
j=1

(
1− e2πi(dj/q+a/q)

)
=

q/d∏
j=1

(
1− e2πi(a+dj)/q

)
Thus, taking absolute values of both sides of the above equation gives us(∣∣1− ζaq/dq

∣∣) =

q/d∏
j=1

(∣∣1− ζ(a+dj)q

∣∣).
Taking logarithms of both sides, we obtain the following Q-linear relation

log

(∣∣1− ζaq/dq

∣∣)− q/d∑
j=1

log

(∣∣1− ζ(a+dj)q

∣∣) = 0,
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for all 1 ≤ a < q and (a, q) = 1 and d|q, d 6= 1, q. Hence, using (16), we have

log

(
2 sin

(
aq

d

π

q

))
−

q/d∑
j=1

log

(
2 sin

(a+ dj)π

q

)
= 0. (17)

Since we want a linear relation among{
log

(
2 sin

aπ

q

)
: 1 ≤ a < q

2

}
,

we will replace log(2 sin(bπ/q)) by log(2 sin((q−b)π/q)) whenever b ≥ q/2. This is valid
by (16). Now, we make the following observations. Suppose that there exists a k such
that 1 ≤ k < q/2 and

k ≡ a+ dj ≡ a+ dl mod q,

for some 1 ≤ j, l ≤ q/d and j 6= l. This implies that q|d(j− l), which is impossible since
(j − l) < q/d. Thus,

a+ dj 6≡ a+ dl mod q, (18)

for 1 ≤ j, l ≤ q/d and j 6= l. Similarly,

−(a+ dj) 6≡ −(a+ dl) mod q, (19)

for 1 ≤ j, l ≤ q/d and j 6= l. Suppose there exists a k such that 1 ≤ k < q/2 and

k ≡ a+ dj ≡ −(a+ dl) mod q,

for 1 ≤ j, l ≤ q/d and j 6= l. Thus, q|(2a+d(j+ l)). Since d|q, we have d|(2a+d(j− l)),
i.e, d|2a. But (a, q) = 1. Hence, (a, d) = 1, which implies that d|2. We assumed that
d 6= 1, q. Therefore, d = 2. As a result, we have

a+ dj 6≡ −(a+ dl) mod q, (20)

for 1 ≤ j, l ≤ q/d and j 6= l unless d = 2.
Thus, for (a, q) = 1, d|q and 2 < d < q, (17) along with (18), (19) and (20) give us a

non-trivial Q-relation, namely,

Ra,d :=
∑

1≤k<q/2

αk log

(
2 sin

kπ

q

)
= 0,

where αk is determined as follows:

αk = −1 if

{
either (aq/d mod q) < q/2, k 6≡ aq/d mod q & k ≡ ±(a+ dj) mod q

or (aq/d mod q) ≥ q/2, k 6≡ −(aq/d) mod q & k ≡ ±(a+ dj) mod q,

for some 1 ≤ j ≤ q/d,

αk = 1 if

{
either (aq/d mod q) < q/2, k ≡ aq/d mod q & k 6≡ ±(a+ dj) mod q

or (aq/d mod q) ≥ q/2, k ≡ −(aq/d) mod q & k 6≡ ±(a+ dj) mod q,

for some 1 ≤ j ≤ q/d and

αk = 0, otherwise.

To see that the above relation is non-trivial for q not prime and q ≥ 6, note that at
least one of the following scenarios happens- either (aq/d mod q) < q/2, in which case for
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k ≡ aq/d mod q, αk = ±1, or (aq/d mod q) ≥ q/2, in which case for k ≡ −(aq/d) mod q,
αk = ±1.

Hence, the numbers under consideration in Conjecture 2 are Q-linearly dependent.
As a result, Livingston’s conjecture is false when q is not prime and q ≥ 6. �

4.2. Proof of Theorem 1.2. We use the theory of Dedekind determinants developed
in [7] to prove that Conjecture 2 is true when the modulus q is prime.

Proof. Let p be an odd prime. Our aim is to prove that the numbers{
log

(
2 sin

aπ

p

)
: 1 ≤ a ≤ p− 1

2

}
and π

are Q̄-linearly independent.
Suppose, to the contrary, that the above numbers have a Q̄-linear relation among

them. Thus, there exist algebraic numbers β0, β1, · · · , βr, not all zero, such that

β0π +
r∑

a=1

βa log

(
2 sin

aπ

p

)
= 0, (21)

where r = (p − 1)/2. If β0 6= 0, then (21) does not hold by the following Lemma from
[8]:

Lemma 4.1. If c0, c1, · · · , cn are algebraic numbers and α1, α2, · · · , αn are positive
algebraic numbers with c0 6= 0, then

c0π +

n∑
j=1

cj logαj 6= 0.

Thus, β0 must be zero. Now, if the numbers{
log

(
2 sin

aπ

p

)
: 1 ≤ a ≤ p− 1

2

}
are Q-linearly independent, then by Baker’s Theorem 2.1, the above numbers are also Q̄-
linearly independent. This contradicts our assumption, and hence, the above numbers
must satisfy a Q-linear relation. Thus, there exist b1, b2, · · · , br such that

r∑
a=1

ba log

(
2 sin

aπ

p

)
= 0. (22)

On clearing denominators, we can assume that

ba ∈ Z, 1 ≤ a ≤ (p− 1)

2
.

Since log denotes the principal branch and sin aπ/p ∈ R>0, (22) gives us the multi-
plicative relation -

r∏
a=1

(
2 sin

aπ

p

)ba
= 1.
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Using (15), this relation can be interpreted as a relation among roots of unity and
cyclotomic numbers, i.e,

r∏
a=1

(
ie−iaπ/p(1− ζap )

)ba
= 1.

The above relation can be further simplified by raising both sides of the equation to

the 4p-th power. Since (ie−iaπ/p)
4p

= 1, we are now left with the simpler multiplicative
relation,

r∏
a=1

(
1− ζap

)Ba = 1, (23)

where Ba := 4pba and each factor in the product belongs to the cyclotomic field, Q(ζp).
Let G be the group Z/pZ∗

/
{±1}. Let c ∈ G and σc be the unique automorphism of

Q(ζp) such that

σc(ζp) = ζcp.

The action of σc−1 on (23) gives us

r∏
a=1

(
1− ζac−1

p

)Ba
= 1.

On taking log of the above equation, we obtain the relation

r∑
a=1

Ba log

(
2 sin

ac−1π

p

)
= 0, (24)

for all 1 ≤ a ≤ r and 1 ≤ c ≤ r.
Define an r × r matrix M whose (a, c)th entry is

log

(
2 sin

ac−1π

p

)
.

Thus, (24) can be rewritten as a matrix equation, i.e,

Mv = 0,

where v the r×1 column vector with the ath-entry being Ba. Since (22) was a non-trivial
relation, v 6= 0. This is possible only if the determinant of M, det M = 0.

Let MT denote the transpose of M. Notice that MT is a matrix of the Dedekind
type with f : G→ C given by

f(a) = log

(
2 sin

aπ

p

)
,

where G is as defined above. As mentioned in Theorem 2.2, MT is invertible if and only
if

Sχ :=
r∑

a=1

f(a)χ(a) 6= 0,

for all characters χ of the group G.
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Observe that all characters of the group G are precisely the even Dirichlet characters
modulo p. Thus, for a non-trivial even Dirichlet character χ, we can use (16) to express
Sχ as:

Sχ =
r∑

a=1

χ(a) log

(
2 sin

aπ

p

)

=

r∑
a=1

χ(a) log

(∣∣1− ζap ∣∣)

=
1

2

p−1∑
a=1

χ(a) log

(∣∣1− ζap ∣∣)
= − p

2τ(χ)
L(1, χ̄),

where the last equality follows from (7) and (8). By a famous theorem of Dirichlet,

L(1, χ̄) 6= 0.

Therefore, Sχ 6= 0 when χ is a non-trivial character on G.
Let χ0 be the trivial character on G, i.e, χ0 is the trivial Dirichlet character modulo

p. Then the factor Sχ0 is

Sχ0 =
r∑

a=1

f(a)

=

r∑
a=1

log

(
2 sin

aπ

p

)

=
r∑

a=1

log

(∣∣1− ζap ∣∣)

=
1

2
log

( p−1∏
a=1

∣∣1− ζap ∣∣)
=

1

2
log p 6= 0,

where the last equality can be derived by noting that

1−Xp

1−X
=

p−1∑
j=0

Xj =

p−1∏
a=1

(1− ζapX),

substituting X = 1 and taking absolute values of both sides. Thus, Sχ0 6= 0.
Hence, MT , and in turn, M is invertible. Therefore v = 0, which is a contradiction.

This proves the theorem. �

Proof of Corollary 1. Suppose that
∞∑
n=1

f(n)

n
= L(1, f) = 0.
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From Theorem 1.2, we see that Conjecture 2 is true in the case under consideration.
Thus, the relation obtained from (11), namely,

0 =
−π
2q

q−1∑
a=1

f(a) cot

(
aπ

q

)

+
2

q

r∑
b=1

{[ q−1∑
a=1

f(a) cos

(
2πab

q

)]
log

(
2 sin

πb

q

)}
− Tq, (25)

where

Tq =


log 2
q

(
q−1∑
k=1

(−1)kf(k)

)
if q is even

0 otherwise,

is a trivial relation. This proves the corollary.
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