RELATIONS BETWEEN CERTAIN POWER SERIES AND
FUNCTIONS INVOLVING ZEROS OF ZETA FUNCTIONS

M. RAM MURTY' AND SIDDHI PATHAK

ABSTRACT. We study infinite series of the form

— A

>

n=1 B(’I’L)
where A(t), B(t) € CJ[t] are polynomials and 0 < = < 1. We relate these
series to other series involving zeros of the Riemann zeta-function. We also

discuss functional relations between such power series and the zeros of other
zeta-functions.

1. Introduction

In 1735, Euler proved that for k£ € N,

=1 21i)** B
)= = P

where By, is the k-th Bernoulli number given by the generating function

t . Btk

et —1 k!
k=0
Thus, the Bernoulli numbers are rational numbers and we conclude that ((2k) €
72¥ Q. The nature of ¢(2k + 1) however is still shrouded in mystery even though
spectacular breakthroughs have been made by Apéry [A] in 1978 who showed

that ¢(3) ¢ Q and by Rivoal [R] in 2000 who showed that for infinitely many k,
C(2k+1) € Q.
It is thus natural to inquire whether we can evaluate explicitly a series of the
form
> o W
n=1 B(TL)

where A(t), B(t) € C[t] are polynomials with deg A < deg B and natural con-
ditions are imposed to ensure that the series converges. We may consider more
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generally power series of the form
o0
A
n=1 (n)
with || < 1. The goal of this paper is to investigate these series and relate them

to series of the form
Alp)
Y 3
2 5(y) ®

where the sum is over non-trivial zeros of the Riemann zeta-function. There is
nothing special about the Riemann zeta-function. One could replace it with any
other L-function or more generally, a suitable element of the Selberg class. Such
a connection was first discovered in a recent paper by S. Gun, M. R. Murty and
P. Rath [GMR1] but their focus was on the transcendental nature of such sums.
Here, our focus will be more on establishing a curious functional relation between
sums of the form (2) and (3).

Returning momentarily to series of the form (1) and (2), we can identify certain
cases when these can be evaluated explicitly. For example, if A(t) € Q[t], B(t) €
Q[t] where B(t) has simple rational roots, S. D. Adhikari, N. Saradha, T. N.
Shorey and R. Tijdeman [ASST] showed that (1) can be written as a linear form
in logarithms of algebraic numbers with algebraic coefficients, and so by Baker’s
theory [B], the sum is transcendental provided it is not zero. They also discussed
the transcendence of linear combinations of sums of the form (2) when z € Q (
see Corollary 4.1 of [ASST] as well as Corollary 3.1).

If B(t) does not have simple rational roots, the situation becomes more com-
plicated, as can be inferred by the fact that ((3) or generally ((2k + 1) fall into
this category. The first serious investigation of such series was initiated by M. R.
Murty and C. Weatherby [MW1] as well as S. Gun, M. R. Murty and P. Rath
[GMR2]. In [MW1], the authors study (among other things)

Aln
%B@L; (4)

and derive general results and explicit evaluations. In particular, Euler’s evalua-
tion of ((2k) is a special case of their work. A stunning example is given by the
following:

1 o e2mVD/A-1
= 5
%A?ﬂ +Bn+C /D (eQW\/ﬁ/A —QCOS(WB/A)e”‘/E/A—I—1> ©)

is transcendental if A, B,C € Z and —D = B> —4AC < 0.
More generally, one can evaluate explicitly

1
7% (An2 + Bn +C)"
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and deduce transcendence results [MW2]. A critical role is played by a theorem of

Nesterenko [N] that states that 7 and e™V'D are algebraically independent. Thus,
(5) is a transcendental number.

The essential idea animating much of the work in [MW1] and [MW?2] is the
following. Writing A(X)/B(X) as a partial fraction, (and assuming for now that
B(X) has only simple zeros) we are led to sums of the form

Zniai (6)

nezZ

where the a; are roots of B(X). This is mcot ma; deduced from the classical
cotangent expression

1
tmz = — 7. 7
ot Tz Zn—i—z’ z ¢ (7)
nez
Of course, we must make some assumptions about the «; and also understand
the convergence in (6) and (7) as a limit:

> fn) = Jim > f(n).

nez In|<N

By successive differentiation of (7) one can handle the case when B(X) has mul-
tiple roots as well. These considerations lead one to explicit evaluations of series
of the form (4). To go further into the study, one needs to invoke some alge-
braic number theory as well as a celebrated conjecture of Gelfond and Schneider,
namely that if o is an algebraic number with o # 0,1 and g is an algebraic
irrational number of degree d, then the d — 1 numbers

aﬂ,aﬁz,u- ,aﬁd_1 (8)

are algebraically independent. A result of Diaz [D] states that the transcendence
degree of the field generated by the numbers in (8) over Q is at least [(d + 1)/2].
When d = 2, this is the famous Gelfond-Schneider theorem resolving a problem
of Hilbert’s list of 23 problems presented at the 1900 congress of mathematics in
Paris. The case d = 3 was also known earlier and is due to Gelfond. Invoking
these results, we can deduce various transcendence theorems. We refer the reader
to [MW1] for precise details.

In [PP], the authors consider (1), where the sum is over n > 1:
S
n=1 B(Tl,)

and (via partial fractions) are led to the study of the series of the form

[e.e]

Zniai (9)

n=1
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and more generally
oo

1
>l 10
n=1 (n + ai)
The fundamental idea in their work is the recognition that (9) is essentially the
digamma, function ¥(«;) and (10) is related to the k-th derivative W) (a;). More
precisely, we have

and

) — 1 1
/) — - I
(2) ij,sznz:;(n—l—z n>

where « is Euler’s constant. The digamma function ¥(zx) appears in the constant
term of the Laurent series expansion of the Hurwitz zeta-function at s = 1. Recall
that for 0 < x < 1, the Hurwitz zeta-function

oo

1
((s,z) = Zm

n=0
has the expansion:

(s, 7) = i ~W(z) + O(s — 1),
Thus, one can prove without difficulty that
o~ A(n)
2 By
where B(t) has simple zeros ag,aq, -+ ,q, (say), is essentially a linear combi-

nation of ¥(«;) ( see Theorem 10 of [MS]). If the o, are rational numbers, a
classical theorem of Gauss discovered in 1813 shows that for (a,q) =1,

9 .
\Il(a> = —v —log2q — gcot e +2 Z cos 14 (log sin M), (11)
q q q

q 0<j<q/2

see for example [MS, pg. 300]. If however the zeros are neither simple, nor
rational then there are considerable difficulties in evaluating in “closed form” the
value of the sum and in ascertaining its algebraic or transcendental nature. For
instance, if the roots of B(t) are rational, but not simple, the value of the sum can
be given as a linear combination of special values of the Hurwitz zeta-function at
rational arguments. In [GMR2], the authors used the Chowla-Milnor conjecture
regarding the QQ-linear independence of

<<k73> I1<a<yg, (a7Q) =L

The nature of the Hurwitz zeta-function at irrational arguments is unknown and
(to our knowledge) there has been scant attention given to such questions.
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In this paper, we offer a new perspective on sums of the form (1) and (2)
and relate such a study to cognate sums involving the zeros of the Riemann
zeta-function. As will be explained below, one could replace the Riemann zeta-
function by any L-function or more generally by an element of the Selberg class.
To keep the prerequisites of this paper to a minimum, we do not do this here but
indicate in our concluding remarks what needs to be modified and what can be
expected.

Such sums involving zeros of the Riemann zeta-function are intricately con-
nected to the Laurent series expansion of its logarithmic derivative. A case in
point is Li’s criterion for the Riemann hypothesis obtained by X.-J. Li [Li] in
1997. More specifically, let

!

where the sum is over non-trivial zeros of the Riemann zeta-function. Then the
Riemann hypothesis is equivalent to the positivity of A, for all n € N. Further-
more, if
CI
¢
then it was shown in [BL] that

—=()

(s—1) (12)

n n
n n ifn i .
w== [ (T 1 towan )3+ 30 1 (M) a2 13)
=1 L\ =2 J
The study of 7;’s is highly important for a variety of reasons. They enter
into our understanding of Li’s criterion for the Riemann hypothesis to hold as
expressed by the formula (13) above. In this context, Coffey [Co| writes

Ap=1— g('y + log 4) + S1(n) + Sa(n),

where

and
" /n
SQ(n) = - Z . N1,
— \j
J
where 7);’s are as defined in (12). He shows that for n > 2,

1( (logn+~v+1)—1),

;( (logn+~v—1)+1) < Si(n) < 5

so that .
An = 5 nlogn + Sa(n) + O(n).
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Now, Bombieri and Lagarias [BL] have shown that to deduce the Riemann hy-
pothesis, it suffices to show that for any € > 0, there is a constant ¢(e) > 0 such
that

An > —c(e)e™,

for every n > 1. In other words, the Riemann hypothesis can be deduced from a
good estimate for S(n) involving the 7;’s.

A generalized version of the n;-coefficients appear in our analysis of sums of the
form (3). In particular, let so be a pole of logarithmic derivative of the Riemann
zeta-function, i.e, sg = 1, —2n for some n € N or p for a non-trivial zero p of
((s). We define the generalized n;-coefficients by

_g(s):M+an(so) (S—So)j, (14)
=0

q 5 — 50

where R(sg) is the residue at s = sg of — (’/(. It is easy to see that R(sp) = 1
if s9 = 1 and R(sg) = —1 if s9 = —2n for some n € N. If sg = p for some
non-trivial zero p of the Riemann zeta-function, —R(p) is simply the order of
the zero p and there is a folklore conjecture that the non-trivial zeros of ((s) are
simple and thus, R(p) = —1. When so = 1, these are the classical n-coefficients
defined by Laurent series expansion of — (’/¢ around s = 1 as given in (12).
These generalized n-coeflicients enter into formulas stated in Theorem 1.3 below
in a fundamental way if B(t) has a simple zero at sy which also happens to be
either 1 or a zero of ((s). In order to understand these coefficients concretely,
we derive an integral representation and a limit formula for these constants in a
more general setting.

Proposition 1.1. Let

[e%¢} n
f(s):= Z s

be a Dirichlet series, absolutely convergent on $(s) > 1. Suppose that for any
A >0,

S(@):=> an=dz+ E(x), (15)

n<x

E(z) = O((IO;)A) (16)

Then, by partial summation, f(s) can be analytically continued to ®(s) > 1, with
a possible simple pole at s = 1 and one can write its Laurent series expansion
around s =1 as

for some 6 € R and

F) = 2+ Dm0 (s 1)
=0
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Then,
< E(t
miLp=o+ [~
and for j > 1,
_1\J foo ) .
ni(1, f) = ( j1!) /1 Eg> <(logt)j —j(logt)ﬂ—1> dt. (17)

Further, for j > 1,

1) = S iy [ ] (s

n<x
Thus, the generalized n;-coefficients defined in the context of —¢’/( by (14)
are nothing but 7;(so) := n;(so, —¢’/¢) in the above notation.

On the other hand, the constants 7;(1,() (known as Stieltjes constants) were
first introduced by Stieltjes (see [Na, pg.161]), who proved that

1i(1,0) = (‘.”j{ i |50 0% ”>j] _ QogaP ™ b

J! o0 | £~ j+1

in a letter to Hermite in 1885. This formula seems to have been rediscovered by
Briggs and Chowla in 1955 (see [Na, pg. 163]). Clearly, this result can be stated
in a more general setting, as is seen in Proposition 1.1.

Since this paper focuses on the logarithmic derivative of the Riemann zeta-
function, we will use 7;(so) for n;(so, —¢'/¢) and n; for n;(1, —¢'/{) to simplify
notation. For the sake of clarity, we state the special case for f(s) = —¢'/((s)
separately below.

Proposition 1.2. Let n; be as defined in (12). Let A(n) denote the von-Mangoldt
function defined by

e _ . a N
A(n):{lng if n=p% a>1, (18)

0 otherwise.

Then, for j > 1,

) {1 [ A<n><1ogn>j] _ (loga)™! L

n<x

The main theorem of this paper is the following.

Theorem 1.3. Let x > 1 and A(t), B(t) € C[t] with B(t) having simple zeros,
ay, a9, -+ ap. First suppose that none of the «; equal 1, a non-trivial zero of

¢(s) or —2n (n € N).
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Then, if x is not a prime power,
A(p) 2L A(=2n) (1N zAQ1)
25" * 2 B () ~BQ)

_ ZA&:(Z 2 - ;Aix%g(ai), (19)

n<x

where

A(t)_ i
B~ ar

Now, suppose a1 = py, a non-trivial zero of {(s) and none of the oj, 2 < j <r
are equal to 1, p or —2n. Then,

A(p) S A(=2n) (1\* A1)
2 B * 2B () B(1)

pPF#P0
(5= A) s
= — Z)\mo‘ <Z o ) — Z)\iﬂﬁa Z(ai) - (20)
7 n<lzx i#1
A @
xf0 Z + A1z no(po) + Az log x.
— PO — &y
1#1
Similarly, if cn = —2m for some m € N and none of the aj, 2 < j < r are equal

to 1, p or —2n, then,

A(p) = A(=2n) (1\*" zA(1)
250"+ 2 B () - %o

p
n#m
=— Z Aix™ ( Z /:gi)) - Z )\ix“ig(ai) + (21)
i n<ae i#1

A 2m + o

and when a1 =1 and none of the a;, 2 < j <1 are equal to 1, p or —2n, then,

Az _ _
g 2m <Z ’ ) + A 272 o (=2m) + Az~ *™ log

A(p) > A(=2n) 1\ Ai
2 5" " 2 Bm) ) 2 i
= Zm“(z 1:5:?) - Z/\z'l‘aig(ai) + Mzno(l) + A zlogz.  (22)
i n<lx i#1

Generally, if B(t) has a subset of zeros which are equal to 1 or a zero of ((s),

one modifies (19) in the appropriate way.
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If © is a prime power, then the sum

Aln
> )

on the right hand side of (19), (20), (21) and (22) is replaced by
A 1A
§~ A | 14

ni 2 i

n<x
2. Preliminaries

In our discussion, a fundamental role is played by:

Lemma 2.1. If z > 1, z # p™ (p prime) then

A(n) ¢ xl=s P A
- > — 23
P e A R prid Db Bl wornped (23)
n<x P n=1
provided s # 1, s # p, s # —2n for any n € N.
If s =1, a non-trivial zero pg of ((s) or —2m for some m € N, then the right

hand side of (23) should be replaced by

_ [o N, Y
p—1 x2n1

x
1) +1 —  —
wl0) +logz T >

P n=1

or .

pl=po P~ PO T —2n=po

?70(Po)+10g33+1_p0 p%p-ﬂo—i_nl 2n+po’

or

x1+2m $p+2m o0 x—2n+2m

7]0(—2m)+logw—|—1+2m— p+2m+ — 2n —2m’
’ nm

respectively.

If z = p™, the left hand side must be corrected by the term A(z)/2.

Proof. This follows by the standard method of contour integration. The state-
ment of the first part is found in several places (e.g. [IK, pg. 566] where we
caution the reader that there is a typo in (25.21) in which the second “=" sym-
bol on the right hand side should be a minus sign). Since no proof is available in
the English language, we now give it.

We use Perron’s formula in the following form [T, pg. 60]. Let

) =28 o =R(s) > 1,

n=1
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where a,, = O(®(n)), ®(n) is increasing and assume
>l o
(1—-0)"

for some o >0, as 0 — 17. If ¢ > 0 and o + ¢ > 1, z is not an integer and N is
the nearest integer to x, we have

Gn 1 fetir x® x¢
&n _ - L4 ol — =~
=nt 2 e fls+w) w ™ (T(U +c— 1)a>+
®(2z)z' 7 logx O(N)xl=e
o( . Lo )

If z is an integer, then

r—1
1 c+iT w c
afZ"‘ Qg - f(s+w)$—dw + O(aj>+
n w

— 2xs 27 Jo_ir T(oc+c—1)°
®(2x)x' =7 log x O(x)x™7

for any T' > 0. We apply this to

Syt

n=1
Since A(n) is supported on prime powers, we deduce

A(n) 1 c+iT CI P ¢
- _ 5 L d o
ng; ns 2772'/6_@ C(S+w) w w+ 0 T(oc+c—1)* +
=% log? x log(N) zt=°
o 75) o (F )

if z is not a prime power, whereas if x is a prime power, the last term is replaced

by
x % logx
ol ———).
(=)

Here ¢ is chosen so that ¢+ o0 > 1.

The integral is evaluated using Cauchy’s residue theorem as follows. If R
denotes the oriented rectangle with vertices ¢ —¢T', c+4i1T', —U +4T and —U —iT,
with U large and unequal to an integer, then by the residue theorem,

1 ¢’ z?
5 R<—<(s+w)>wdw
C/

C

—2n—s

U
x
+nz_:1 2n+ s

P~
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because

C/ xw
has poles at w =0, 1 —s, p— s and —2n — s with [S(p)] < T and n < U in
the rectangle R. We want to let T, U — oo but before we do that, we need
to estimate the line integrals along the other three edges of the rectangle. Of
course, we must choose T' so that it is not the ordinate of a zero of ((s). But
these estimates are quite standard (see [Mu, Exercise 7.2.4]).

The key point is to know for this suitable choice of T', we have

!
‘ - Cé_(s +w)‘ = O(log®T)
which leads to the final estimate of
0 z¢ log? T
T logx

for the horizontal line integrals. For the vertical line integral, we have an estimate

of
logU T
0< s xT)

as seen in [Mu, pg. 392]. We let U — oo first and then let 7' — oo to deduce the
final result. This completes the proof of Lemma 2.1 if s # 1, p or —2n for n € N.

If s =1, pp or —2m for some m € N, we take limits of both sides as s — 1, pg
or —2m. We illustrate this using the case of s = 1 since the analysis for s = pg or
—2m is similar. Taking the limit of right-hand side of (23) as s — 1, we obtain

1 o0 p—2n—1 ) pl—s C/
S i (T t)

p—1

Now, using (14) at so = 1, R(sp) =1 and

rl=s -1
= 1 o1 —
[ — s o_q tlsz+ (1—ys),

we see that the limit evaluates to 19(1)+log z and thus, Lemma 2.1 is proved. O

Incidentally, 19(1) = —v and this is not difficult to see because

C(S):s_%jL’y%—O(s—l).

3. Proofs of the Propositions

In this section, we give proofs of the Propositions in Section 1.
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3.1. Proof of Proposition 1.1. Let

Then the usual partial summation method gives,
> S(x)
f(s):.s/1 o) dz

_ ds +s/ S(x)—éa:dx'
1

s—1 s+l

By our hypothesis, the integral on the right hand side converges absolutely for
R(s) > 1. Thus, we can derive the Laurent expansion at s = 1 using this integral.
Writing E(x) = S(z) — dx, we find

* E(x) E(z) & logx ;
5/1 assﬂd =((s—1) +1/ Z (s — 1) dz

7=0

® Fz) & og )’ i
-/ Eiz)Z( >]<§g o 1t s

o0

/ E(x Z logx (s—l)jdx

j=
*FE
:/ B@) gy
1 x

S o [7ED (o sty ) an

4!

J=1

the interchange of summation and integral being justified by the absolute con-
vergence of the integral at s = 1. Thus, we see that an integral representation
for the Laurent series coefficients at s = 1 of a general Dirichlet series can be
obtained.

On the other hand, analysis with the help of partial summation gives

3 eallosn)”_ St (oge)” / "5 <(logt) —j(logt)j_1> it

x 2

n<x

J z J z =1
_ S(z) (log x) 45 / (loi t) dt— 6 / (logt) b+
1 1

x t

/j E;(zt) ((log 1) — j(logt)jl> .
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by (15). Hence, we deduce that

) an(k;g L (loj.g_f)i + /1 Eff) <(10gt)J — j(log t)“) dt +
(W - 5(logm)j> + &(x),
where ~ g
£(z) = / t(;t)((logt)j _ j(logt)j_1> dt.

Note that £(z) is the tail of a convergent integral by (16) and since j > 1
and therefore, tends to zero as x — oo. Moreover, the third term on the right
hand side also goes to zero as x — oo by (15). On comparison with (17), the
proposition is proved.

3.2. Proof of Proposition 1.2. Let A(n) denote the von-Mangoldt function
given by (18). Recall that

_ C—/(s) _ Z A(n)

s )
g n=1 n

for R(s) > 1 and that

S o e
=0

Let

P(x) = ZA(n)

n<x

Then the prime number theorem (see [Mu, Theorem 4.2.9]) gives
P(x) =z + E(x),
with
E(z) = O(x exp (—c (logx)l/lo)),

for some positive constant ¢. Thus, we can apply Proposition 1.1 to obtain the
result.

4. Proof of the Main Theorem

First suppose that z is not a prime power. Without loss of generality, we
may assume that B(t) is monic. For the moment, we suppose that B(t¢) has
only simple zeros and none of which are equal to a non-trivial zero or a pole of
the Riemann zeta-function, or —2n for some natural number n. We write using

partial fractions
A(t) A
- 24
O 2
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where \; = A(a;)/B’(«;). Then

R Oy

pP—

We analyze the inner sum using the lemma: by (23),

P C/ xl—a e x—?n—a A(n)
2 e T Ot Tt N e e
P n=1 n<lx

We put a = oy, multiply by \;x® and sum over the i to get

APyl L TAD (e A
X g = - S led + Ty - o (D) +

n<x

00 o \i
;x i (ZQn—i-ai)'

i

Note that using (24),

This proves that
Alp) , | A(=2n) (1)
25" * 2 B (m)

xA(1) o A(n) il
- S - T (XA - > A )

n<lx

An appropriate modification gives the case when x is a prime power where we

need to add

%A(Q?) (Z Ai).-

If we assume that deg A < deg B — 2, then one can deduce from the partial

fraction decomposition of A(X)/B(X) that ), \; = 0.

Finally, when B(t) has a zero at 1, pp or —2m, the terms in the summation have
to be adjusted appropriately. Since the analysis of the three cases is identical, we
demonstrate this in the case a1 = 1, a; is not 1, p or —2n for j = 2,--- ,r. For

x not a prime power, Lemma 2.1 gives

2.

p

> $—2n—1 Aln
:n0(1)+logm+z 1 —Zil)
n=1 n<lx

Pl

p—1
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Thus, modifying the previous argument for «; as above, we get
Alp) , = A(=2n) (1" Ai

;B(p)m +;B(—2n) x . 2:1—04Z

=— Aix™ A O" i A A zlog x.

zi: x (Z naz> Z % () + Mxno(l) + A\ xlogx

n<z 1#1

This completes proof of the main theorem.

5. Connections with other L-series

As noted in [GMR1], our study of series of the form (3) can be expanded to
the realm of the Selberg class. Before amplifying the general setting, let us focus
on two specific cases.

If y is a non-principal Dirichlet character mod ¢ which is even ( that is x(—1) =
1), then our earlier discussion extends mutatis mutandis to this case also with
only one minor modification. Since L(s, x) does not have a pole at s = 1, the
analog of Lemma 2.1 becomes

S A _ oS

— S
n<z P P

P X .—2n—s

T
25
+;2n+s ( )

where the second sum on the right hand side is over the non-trivial zeros of
L(s,x). Our main theorem modified to deal with this case becomes

Alp) RS A2 (1)
§B<p> +§B<—2n><x>

:_Zmaz(z > ZM (e, X),

n<x

if 2 is not a prime power. As noted earlier, if x is a prime power, the sum

A(n)x(n
> (n)x(n)

ns
n<x

must be replaced by

S A | 1A) ()

ni 2 i
n<x

Since the method of contour integration employed in the proof of Lemma 2.1 goes
through with little change, we leave the details to the reader.

If x is an odd character, the analogous derivation needs some modification but
only in one step. The trivial zeros of L(s, x) are now at the negative odd integers
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—1, =3, =5, - -+ so that the last term on the right hand side of (25) changes to
x—Qn—l—s

:02n+1+s

and the analog of Theorem 1.3 becomes

L Raemn(s)

B(p)

:_2/\3’%(2 n)Xn) ZAx az, X),

n<x

for x > 1, x not a prime power. If x is a prime power, we need to make the same
modification as we made earlier.

These theorems extend smoothly to elements of the Selberg class. We will not
adumbrate the properties of this class here, but refer the reader to the exposition
in [GMRI1] where the authors study sums of the form

Z A(p) 2P
B
~ Blp)
when p runs over the non-trivial zeros of a fixed element F' of the Selberg class.
The essential point to note is that the nature of the second term in the appropriate

analogue of (25) is determined by the trivial zeros of F'(s). These sums will often
not be of the form

>\ A(-2 —1) 1\ & A(-n) (1)
Sacai) Saca ) ~Xam() @
ot B(—2n) B —2n —1) ot B(—n)\z
because these terms are determined by the nature of I'-factors in the functional
equation of F'(s). Only in special cases does the second term on the left-hand

side of the analogue of (25) take such a simple form. For instance, if the I'-factor
in the functional equation is

F<;) P<S‘2H) or I(s),

then the second term on the left-hand side is one of the expressions in (26) re-
spectively.

We have already seen the first two cases of these I'-factors arising in the case
of L(s,x) with x even or odd. The case of I'(s) emerges if F'(s) is the L-function
attached to a Hecke eigenform. This case leads to an expression of the form

> a(3)

n=1
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In these formulas, we have assumed that © > 1. One could analyze the case
x — 17 and derive corresponding results.

As noticed in [GMR1], one can investigate the case 0 < x < 1 of the series
A
Z (p) 2P
~ B(p)

in a similar manner. By the method used in the proof of Lemma 2.1, one can
show that if s #£ 0, 1, 3, 5, --- and 1/x is not a prime power, then

n<l/x

B CI LL‘_S
= -9+ +zp:

_ o9 _
P x2n+1 s

+212n+1—8'

p—s

An appropriate adjustment of the left hand side is needed if 1/x is a prime power.
Clearly, similar results can be derived for elements of the Selberg class.

What these results suggest is a method (perhaps) to analyze relations that may
exist among special values of logarithmic derivative of the Riemann zeta function.
If we consider (say) L(s, x) with x even, then one could explore any rational linear
combination of special values of the logarithmic derivatives of L(s, x) as x varies.
These investigations we relegate to a future occasion.

6. Concluding Remarks

Our study here opens a new line of investigation regarding on the one hand
sums of the form (1) and generally (2) relating them to sums of the form (3)
expressing a functional relation. On the other hand, this relation involves linear
forms in logarithms as well as the 7;-coefficients of a general kind.

Scattered throughout the literature are various (seemingly unrelated) inves-
tigations and it is hoped that these disparate researches can be brought into a
cohesive unity that will illuminate our understanding about these sums and per-
haps shed some light on the Riemann hypothesis.

To give one example of related results in the literature, we state here a fasci-
nating formula found by Thara, Murty and Shimura [IMS].
Let K be an algebraic number field and write

[e.e]

Ck(s) = p
* n=1 "

Gnp
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for its Dedekind zeta function. Let x be a primitive Dirichlet character. Modify-
ing the (confusing) notation of [IMS], we define

[e.9]

anx(n)
LK(Sv X) - Z nT
n=1
It is well-known that Lg (s, x) extends to an entire function if x # xo, the prin-
cipal character. Define yx to be the constant term divided by the residue of the

Laurent expansion of (x(s) at s = 1. Set
vk +1, if X = Xxo,
VK,X -

L (1, .
nglvig if X 7& X0>

and define for z > 1,

Pr () = ! Z (NxM - 1>X(NP) log(Np).

Then, for z > 1,

* ! i
Viex = Oxlogr — ry () + —— ; p(1—p)

!/

+ SF(2) + S Fs() + 2 Fa(a),

where §,, = 1 or 0 depending on whether x = xo or not, p runs over non-trivial
zeros of Lk (s,x), a is the number of real places of K where y is unramified, a’ is
the number of real places of K where y is ramified, 11 = a + a’ (resp. 73) is the
total number of real (resp. complex) places of K and

z+1 2 r+1
F =1 1
1(@) =log g + o= log ——
x? 2 2x
F: =1 1
3($) ng2—1+$—10g3:—|—1’
and
1
Fo() = log —— + -8~

r—1 x—-1

see [IMS, Theorem 1]. This formula can be deduced by our general methodology
discussed in earlier sections of this paper. The novelty here is the meaning of the
expression on the right hand side.

Related to this, the authors in [IMS] also derive the following. Let dx be the
discriminant of K, F) be the conductor of x and put d, = |dx|N(Fy). Let

1
QR = 3 logd,
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and

a+r a +r
Brx — < 5 2>(’y+log47r)—< 5 2)('y+10g7r).

Then,
. 1
TKx = Z 1—p —ak,x — BKy-
p

In particular, one deduces that for > 1, x algebraic,

1 zf —1
* —
e ﬂf—lzp:p(l—p)

is a linear form in logarithms of algebraic numbers. Baker’s theory implies that
this is a transcendental number if it is non-zero, related to the theme of [GMR1].

This raises a series of cognate questions, the foremost being the non-vanishing
of L (1, x). Indeed, in [MM], it was shown that if K = Q and x is the quadratic
character associated to the imaginary quadratic field Q(v/—d) (d > 0), such that
L'(1,x) = 0, then €7 is transcendental. The vanishing or non-vanishing of L'(1, x)
has received very little attention in the literature and these remarks indicate that
the problem is worthy of serious study.

We also signal the importance of related themes discovered by A. P. Guinand
[G] and his doctoral student I. C. Chakravarty [C]|. Special cases of the functional
relation we derived in this paper can be found in [G], where curiously the author
assumes the Riemann hypothesis. They also study the “secondary zeta-functions”

defined as
>

>0

where 7 runs through the imaginary parts of the non-trivial zeros of ((s). They
derive analytic continuation and functional equation of such series.

These researches reveal that there are further patterns to explore and embrace
into a larger theory. We relegate this to the future.
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