A SIMPLE PROOF OF BURNSIDE’S CRITERION FOR ALL
GROUPS OF ORDER n TO BE CYCLIC

SIDDHI PATHAK

ABSTRACT. This note gives a simple proof of a famous theorem of Burnside,
namely, all groups of order n are cyclic if and only if (n,¢(n)) = 1, where ¢
denotes the Euler totient function.

1. Introduction

The question of determining the number of isomorphism classes of groups of
order n has long been of interest to mathematicians. One can ask a more basic
question: For what natural numbers n, is there only one isomorphism class of
groups of order n? Since we know that there exists a cyclic group of every order,
this question reduces to finding natural numbers n such that all groups of order n
are cyclic. The answer is given in the following well-known theorem by Burnside
[1]. Let ¢ denote the Euler function.

Theorem 1.1. All groups of order n are cyclic if and only if (n, ¢(n)) = 1.

Many different proofs of this fact are available. Practically all of them are in-
accessible to the undergraduate student since they use Burnside’s transfer theorem
and representation theory [2]. Here, we would like to give another proof of this
theorem which is elementary and uses only basic Sylow theory. Throughout this
note, n denotes a positive integer and C,, denotes the cyclic group of order n.

2. Groups of order pq

Let p and g be two distinct primes, p < ¢. In this section, we investigate the
structure of groups of order pg. The two cases to be considered are when p | ¢ — 1
and ptqg—1.

First, let us suppose that p f ¢ — 1. In this case, every group of order pq is
cyclic. Indeed, let G' be a group of order pq. Let n, be the number of p-Sylow
subgroups and n, be the number of ¢g-Sylow subgroups of G. Then, according to
Sylow’s theorem,

ng = 1 mod ¢ and ng | p.
Since p < g, ng = 1. Thus, the ¢-Sylow subgroup, say @, is normal in G. Again by
Sylow’s theorem,

n, = 1 mod p and ny, | g.
Since ¢ is prime, either n, =1 or n, = ¢. But p{ ¢ — 1. Hence, n, = 1. Thus, the
p-Sylow subgroup, say P, is also normal in G. Also, since the order of non-identity
elements of P and @ are co-prime, PN Q = {e}. Thus, if a € P and b € Q,
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then consider the element ¢ := aba~'b~! € G. The normality of @ implies that
aba™! € Q and hence, ¢ € Q. On the other hand, the normality of P implies that
ba='b~! € P and hence, c € P. Thus, c € PN Q = {e}. Therefore, the elements of
P and @Q commute with each other. This gives us a group homomorphism,

U:PxQ—G,

such that ¥U(a,b) = ab. Since, PN Q = {e}, VU is injective. |P x Q| = |G| implies
that W is also surjective and hence, an isomorphism. As P and @ are cyclic groups
of distinct prime order, P x @ is cyclic and so is G. Therefore, if p{ ¢ — 1, then all
groups of order pq are cyclic.

Now, suppose p | ¢ — 1. We claim that in this case, there exists a group of order
pq which is not cyclic.

Note that since p | ¢ — 1, there exists an element in Aut(Z/qZ) of order p, say
ay,. To see this, note that

AW(Z/qZ) ~ (Z/qZ)" ~ Cy-,

and a cyclic group of order n contains an element of order d, for every divisor d of
n. Thus, we get a group homomorphism, say 6, from C, to Aut(Z/qZ) by sending
a generator of C}, to a,. Denote §(u) by 6,. Clearly, 6 is a non-trivial map. We
define the semi-direct product, C, xg C, as follows:

As a set, Cp X9 Cy := {(u,v) : v € Cpand v € Cy} . The group operation on
this set is defined as

(u,v).(u',v") = (uv, 0 (v)V). (1)

One can check that this operation is indeed associative and makes C,, x4 C, into a
group. To see that this group is non-abelian, consider (u, v) and (v',v") in Cp, x4 Cy.
Thus,

(', 0").(u,v) = (v'u, O, (V' )v),

which is not equal to (u,v).(u’,v") as evaluated in (1) since 6 is non-trivial. Thus,
if p| ¢ —1, then there exists a group of order pg which is not abelian, in particular,
not cyclic.

Remark. In fact, given any group G of order pq, one can show that it is either
cyclic or isomorphic to the semi-direct product constructed above. Thus, if p | ¢—1,
there are exactly two isomorphism classes of groups of order pq.

3. Proof of the only if part

Suppose all groups of order n are cyclic, i.e, there is only one isomorphism class
of groups of order n. Since Z/p?Z and Z/pZ x Z/pZ are 2 non-isomorphic groups
of order p?, we see that n is squarefree.

Proof. Let us note that if n = Hle p; where, p1,...,p, are distinct primes and
p1 <--- <pg, then (n,¢(n)) =1 <= pif(p; — 1), forall 1 <i<j<k.

Now, suppose n is squarefree and (n,¢(n)) > 1, i.e, there exists a p; such that
pi | (pj — 1) for some 1 < i < j < k. As seen in the earlier section, there exists a
group, G of order p;p; that is not cyclic. Thus, G x C},/p,p, is a group of order n
and is not cyclic. This contradicts our assumption that all groups of order n are
cyclic. Hence, n and ¢(n) must be coprime. O
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4. Proof of the if part

The condition that (n,¢(n)) = 1 helps us to infer that it is enough to consider
only those n that are squarefree.
Our proof hinges upon the following crucial lemma.

Lemma 4.1. Let G be a finite group such that every proper subgroup of G is abelian.
Then either G has prime order, or G has a non-trivial, proper, normal subgroup
i.e, G is not simple.

Proof. Let G be a group of order n. By a maximal subgroup of G, we will mean
a nontrivial proper subgroup H of G such that, for any subgroup H’ of G that
contains H, either H' = G or H' = H itself.

Let M denote a maximal subgroup of G. Let |M| = m. Suppose M = {e},i.e,
G contains no nontrivial proper subgroup. Sylow’s first theorem thus implies that
the order of G must be prime.

Suppose n is not prime. Hence, m > 2. Let Ng(M) denote the normalizer of M
in G. Recall that

Ng(M)={geG:gMg~' = M}.

If M is normal in G, then clearly G is not simple. Therefore, let us suppose that
M is not normal. Hence, Ng(M) # G. Since M C Ng(M) and M is maximal,
Ng(M) = M. Let the number of conjugates of M in G be r, r > 1. The number
of conjugates of a subgroup in a group is equal to the index of its normalizer.
Therefore,

Let {My,---, M.} be the set of distinct conjugates of M. Suppose M; N M; # {e}
for some 1 <7 < j < 7. Let K; := M; N M;. Since M; and M; are abelian by
hypothesis,

Ky aM; ;Kl <]Mj. (2)

Therefore K is normal in the group generated by M; and M. Since conjugates of
maximal subgroups are themselves maximal, the group generated by M; and M; is
G. Thus, K; is normal in G and hence G is not simple.

Therefore, we suppose that all the conjugates of M intersect trivially. Let V :=
Ur_; M;. Then,

Vi=r(m-1)+1

=n-— {ﬁ — 1} <n.
m
Thus, 3 ye G,y ¢ V.

If G is a cyclic group generated by y (of composite order), then the subgroup
of G generated by y* for any k|n, k # 1,n is a non-trivial normal subgroup. So
we can assume that the group generated by y is a proper subgroup of G. Let
L be a maximal subgroup containing the subgroup of G generated by y. Since,
ye V,L#+ M; V1<i<r. IfLisnormal in G, then G is clearly not simple.
Therefore, suppose that L is not normal in G.
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Let the number of conjugates of L in G be s, s > 1. Let {Ly, -+, Ls} be the set
of distinct conjugates of L in G. If any two distinct conjugates of L or a conjugate of
L and a conjugate of M intersect non-trivially, then the corresponding intersection
is a normal subgroup of G by an argument similar to the one given above. Thus,
G is not simple. Hence, it suffices to assume that

M; 0 Mj = {e}, (3)
M; N Lg = {e}, (4)
L,N Ly = {e}, (5)

foralll<i<j<r foralll<p<qg<s.
Let |L| =1, 1 > 2. Since L is not normal in G but is maximal, Ng(L) = L.
Thus, the number of conjugates of L in G is

s = [G : Ng(L)]
=[G : 1]

~I=

Let W :=U;_;L,. By (3), (4) and (5),
[VUW|=r(m—-1)+s(l—1)+1

n n
=n—-—+n—-+1
m l

1 1
:2n—n(—+7)—|—1

m
>2n—n+1
>n,
since m,l > 2. But VUW C G. Therefore, |V UW| < n. This is a contradiction.
Hence, G must have a nontrivial proper normal subgroup. (I

We will now prove that if (n, ¢(n)) = 1, then all groups of order n are cyclic. As
seen earlier, we are reduced to the case when n is squarefree.

Proof. We will proceed by induction on the number of prime factors of n. For the
base case, assume that n is prime. Lagrange’s theorem implies that any group of
prime order is cyclic. Thus, the base case of our induction is true.

Now suppose that the result holds for all n with at most £ — 1 distinct prime
factors, for some k > 1. Let n = p;---pi for distinct primes pi,---,pr and
p1 < p2 < ... < pg. Since k > 2, Sylow’s first theorem implies that G has nontrivial
proper subgroups. Let P be a proper subgroup of G. Hence, |P| has fewer prime
factors than k. Therefore, by induction hypothesis, P is cyclic and hence abelian.
Thus, every proper subgroup of G is abelian. By Lemma 4.1, G has a nontrivial
proper normal subgroup, say N. The induction hypothesis implies that G/N is
cyclic. Therefore, G/N has a subgroup of index p; for some 1 < ¢ < k. Let
this subgroup be denoted by $). By the correspondence theorem of groups, all
subgroups of G/N correspond to subgroups of G containing N. Let the subgroup
of G corresponding to $) via the above correspondence be H, i.e, § = H/N. Since
G/N is abelian, $<G/N and hence, H < G. By the third isomorphism theorem of
groups,

G/N / H/N ~ G/H.
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Since, [G/N : 9] = p;, [G : H] = p;. Thus, G has a normal subgroup of index p;,
namely, H. Note that H is cyclic. In particular,

H~C,, (6)
where a = py -+ - p;—1piy1 - - - k- Let K be a p;- Sylow subgroup of G. Thus,
K~ C,,. (7)

Consider the map ® : K — Aut(H) that sends an element k € K to the auto-
morphism v, where, v is conjugation by k. Since H < G, 7, is a well-defined map
from H to H. Therefore, ® is a well-defined group homomorphism. Since, ker(®)
is a subgroup of K and K has prime order, either ker(®) = {e} or ker(®) = K.
Suppose, ker(®) = {e}. Then, ®(K) is isomorphic to a subgroup of Aut(H).
By the induction hypothesis, H is isomorphic to the cyclic group of order |H| =
P1°*Pi—1Pi+1 - Pk- Thus,

k
H~ [] z/piz.
J=1,j#i
For any prime p,
Awt(Z/pZ) ~ (Z/pZ)*.

Therefore,
k
Auwt(H)~ [[ @/p;z).
=1
Hence,
k
Aw(H) = ] -1
J=1,j#i
Thus, by Lagrange’s theorem, |K| divides |Aut(H)]| , i.e,
k
| T[] w;—1.
J=1,j#i

Since (n,¢(n)) = 1, we see that p; { (p; — 1) for any 1 < ¢,5 < k. We thus arrive
at a contradiction. Hence, ker(®) = K. Let k € ker(®) i.e, v is the identity
homomorphism. Since ker(®) = K, kh = hk for all h € H and for all k € K. We
now claim that G ~ H x K. To prove this claim, consider the map ¥ : H x K — G
sending a tuple (h, k) to the product hk. Since the elements of H and K commute
with each other, ¥ is a group homomorphism. H has no element of order p;. Thus,
HNK = {e}. This implies that ¥ is injective and hence surjective as |H x K| = |G|.
Thus ¥ is the desired isomorphism. By (6) and (7),

G ~(C,.

Thus, every group of order n is cyclic. O
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