
A SIMPLE PROOF OF BURNSIDE’S CRITERION FOR ALL

GROUPS OF ORDER n TO BE CYCLIC
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Abstract. This note gives a simple proof of a famous theorem of Burnside,

namely, all groups of order n are cyclic if and only if (n, φ(n)) = 1, where φ

denotes the Euler totient function.

1. Introduction

The question of determining the number of isomorphism classes of groups of
order n has long been of interest to mathematicians. One can ask a more basic
question: For what natural numbers n, is there only one isomorphism class of
groups of order n? Since we know that there exists a cyclic group of every order,
this question reduces to finding natural numbers n such that all groups of order n
are cyclic. The answer is given in the following well-known theorem by Burnside
[1]. Let φ denote the Euler function.

Theorem 1.1. All groups of order n are cyclic if and only if (n, φ(n)) = 1.

Many different proofs of this fact are available. Practically all of them are in-
accessible to the undergraduate student since they use Burnside’s transfer theorem
and representation theory [2]. Here, we would like to give another proof of this
theorem which is elementary and uses only basic Sylow theory. Throughout this
note, n denotes a positive integer and Cn denotes the cyclic group of order n.

2. Groups of order pq

Let p and q be two distinct primes, p < q. In this section, we investigate the
structure of groups of order pq. The two cases to be considered are when p | q − 1
and p - q − 1.

First, let us suppose that p - q − 1. In this case, every group of order pq is
cyclic. Indeed, let G be a group of order pq. Let np be the number of p-Sylow
subgroups and nq be the number of q-Sylow subgroups of G. Then, according to
Sylow’s theorem,

nq ≡ 1 mod q and nq | p.
Since p < q, nq = 1. Thus, the q-Sylow subgroup, say Q, is normal in G. Again by
Sylow’s theorem,

np ≡ 1 mod p and np | q.
Since q is prime, either np = 1 or np = q. But p - q − 1. Hence, np = 1. Thus, the
p-Sylow subgroup, say P , is also normal in G. Also, since the order of non-identity
elements of P and Q are co-prime, P ∩ Q = {e}. Thus, if a ∈ P and b ∈ Q,
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then consider the element c := aba−1b−1 ∈ G. The normality of Q implies that
aba−1 ∈ Q and hence, c ∈ Q. On the other hand, the normality of P implies that
ba−1b−1 ∈ P and hence, c ∈ P . Thus, c ∈ P ∩Q = {e}. Therefore, the elements of
P and Q commute with each other. This gives us a group homomorphism,

Ψ : P ×Q→ G,

such that Ψ(a, b) = ab. Since, P ∩ Q = {e}, Ψ is injective. |P × Q| = |G| implies
that Ψ is also surjective and hence, an isomorphism. As P and Q are cyclic groups
of distinct prime order, P ×Q is cyclic and so is G. Therefore, if p - q − 1, then all
groups of order pq are cyclic.

Now, suppose p | q− 1. We claim that in this case, there exists a group of order
pq which is not cyclic.

Note that since p | q − 1, there exists an element in Aut(Z/qZ) of order p, say
αp. To see this, note that

Aut(Z/qZ) ' (Z/qZ)
∗ ' Cq−1,

and a cyclic group of order n contains an element of order d, for every divisor d of
n. Thus, we get a group homomorphism, say θ, from Cp to Aut(Z/qZ) by sending
a generator of Cp to αp. Denote θ(u) by θu. Clearly, θ is a non-trivial map. We
define the semi-direct product, Cp nθ Cq as follows:

As a set, Cp nθ Cq := {(u, v) : u ∈ Cp and v ∈ Cq} . The group operation on
this set is defined as

(u, v).(u′, v′) = (uu′, θu(v)v′). (1)

One can check that this operation is indeed associative and makes Cp nθ Cq into a
group. To see that this group is non-abelian, consider (u, v) and (u′, v′) in CpnθCq.
Thus,

(u′, v′).(u, v) = (u′u, θu′(v′)v),

which is not equal to (u, v).(u′, v′) as evaluated in (1) since θ is non-trivial. Thus,
if p | q− 1, then there exists a group of order pq which is not abelian, in particular,
not cyclic.

Remark. In fact, given any group G of order pq, one can show that it is either
cyclic or isomorphic to the semi-direct product constructed above. Thus, if p | q−1,
there are exactly two isomorphism classes of groups of order pq.

3. Proof of the only if part

Suppose all groups of order n are cyclic, i.e, there is only one isomorphism class
of groups of order n. Since Z/p2Z and Z/pZ× Z/pZ are 2 non-isomorphic groups
of order p2, we see that n is squarefree.

Proof. Let us note that if n =
∏k
i=1 pi where, p1, . . . , pk are distinct primes and

p1 < · · · < pk, then (n, φ(n)) = 1 ⇐⇒ pi - (pj − 1), for all 1 ≤ i < j ≤ k.
Now, suppose n is squarefree and (n, φ(n)) > 1, i.e, there exists a pi such that

pi | (pj − 1) for some 1 ≤ i < j ≤ k. As seen in the earlier section, there exists a
group, G of order pipj that is not cyclic. Thus, G × Cn/pipj is a group of order n
and is not cyclic. This contradicts our assumption that all groups of order n are
cyclic. Hence, n and φ(n) must be coprime. �
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4. Proof of the if part

The condition that (n, φ(n)) = 1 helps us to infer that it is enough to consider
only those n that are squarefree.

Our proof hinges upon the following crucial lemma.

Lemma 4.1. Let G be a finite group such that every proper subgroup of G is abelian.
Then either G has prime order, or G has a non-trivial, proper, normal subgroup
i.e, G is not simple.

Proof. Let G be a group of order n. By a maximal subgroup of G, we will mean
a nontrivial proper subgroup H of G such that, for any subgroup H ′ of G that
contains H, either H ′ = G or H ′ = H itself.

Let M denote a maximal subgroup of G. Let |M | = m. Suppose M = {e},i.e,
G contains no nontrivial proper subgroup. Sylow’s first theorem thus implies that
the order of G must be prime.

Suppose n is not prime. Hence, m ≥ 2. Let NG(M) denote the normalizer of M
in G. Recall that

NG(M) = {g ∈ G : gMg−1 = M}.
If M is normal in G, then clearly G is not simple. Therefore, let us suppose that
M is not normal. Hence, NG(M) 6= G. Since M ⊆ NG(M) and M is maximal,
NG(M) = M . Let the number of conjugates of M in G be r, r > 1. The number
of conjugates of a subgroup in a group is equal to the index of its normalizer.
Therefore,

r = [G : NG(M)]

= [G : M ]

=
n

m
.

Let {M1, · · · ,Mr} be the set of distinct conjugates of M . Suppose Mi ∩Mj 6= {e}
for some 1 ≤ i < j ≤ r. Let K1 := Mi ∩Mj . Since Mi and Mj are abelian by
hypothesis,

K1 / Mi ,K1 / Mj . (2)

Therefore K1 is normal in the group generated by Mi and Mj . Since conjugates of
maximal subgroups are themselves maximal, the group generated by Mi and Mj is
G. Thus, K1 is normal in G and hence G is not simple.

Therefore, we suppose that all the conjugates of M intersect trivially. Let V :=
∪ri=1Mi. Then,

|V | = r(m− 1) + 1

= n−
[ n
m
− 1
]
< n.

Thus, ∃ y ∈ G, y /∈ V .
If G is a cyclic group generated by y (of composite order), then the subgroup

of G generated by yk for any k|n, k 6= 1, n is a non-trivial normal subgroup. So
we can assume that the group generated by y is a proper subgroup of G. Let
L be a maximal subgroup containing the subgroup of G generated by y. Since,
y /∈ V,L 6= Mi ∀ 1 ≤ i ≤ r. If L is normal in G, then G is clearly not simple.
Therefore, suppose that L is not normal in G.
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Let the number of conjugates of L in G be s, s > 1. Let {L1, · · · , Ls} be the set
of distinct conjugates of L in G. If any two distinct conjugates of L or a conjugate of
L and a conjugate of M intersect non-trivially, then the corresponding intersection
is a normal subgroup of G by an argument similar to the one given above. Thus,
G is not simple. Hence, it suffices to assume that

Mi ∩Mj = {e}, (3)

Mi ∩ Lq = {e}, (4)

Lp ∩ Lq = {e}, (5)

for all 1 ≤ i < j ≤ r, for all 1 ≤ p < q ≤ s.
Let |L| = l, l ≥ 2. Since L is not normal in G but is maximal, NG(L) = L.

Thus, the number of conjugates of L in G is

s = [G : NG(L)]

= [G : L]

=
n

l
.

Let W := ∪sp=1Lp. By (3), (4) and (5),

|V ∪W | = r(m− 1) + s(l − 1) + 1

= n− n

m
+ n− n

l
+ 1

= 2n− n(
1

m
+

1

l
) + 1

≥ 2n− n+ 1

> n,

since m, l ≥ 2. But V ∪W ⊆ G. Therefore, |V ∪W | ≤ n. This is a contradiction.
Hence, G must have a nontrivial proper normal subgroup. �

We will now prove that if (n, φ(n)) = 1, then all groups of order n are cyclic. As
seen earlier, we are reduced to the case when n is squarefree.

Proof. We will proceed by induction on the number of prime factors of n. For the
base case, assume that n is prime. Lagrange’s theorem implies that any group of
prime order is cyclic. Thus, the base case of our induction is true.

Now suppose that the result holds for all n with at most k − 1 distinct prime
factors, for some k > 1. Let n = p1 · · · pk for distinct primes p1, · · · , pk and
p1 < p2 < ... < pk. Since k ≥ 2, Sylow’s first theorem implies that G has nontrivial
proper subgroups. Let P be a proper subgroup of G. Hence, |P | has fewer prime
factors than k. Therefore, by induction hypothesis, P is cyclic and hence abelian.
Thus, every proper subgroup of G is abelian. By Lemma 4.1, G has a nontrivial
proper normal subgroup, say N . The induction hypothesis implies that G/N is
cyclic. Therefore, G/N has a subgroup of index pi for some 1 ≤ i ≤ k. Let
this subgroup be denoted by H. By the correspondence theorem of groups, all
subgroups of G/N correspond to subgroups of G containing N . Let the subgroup
of G corresponding to H via the above correspondence be H, i.e, H = H/N . Since
G/N is abelian, H / G/N and hence, H /G. By the third isomorphism theorem of
groups,

G/N

/
H/N ' G/H.
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Since, [G/N : H] = pi, [G : H] = pi. Thus, G has a normal subgroup of index pi,
namely, H. Note that H is cyclic. In particular,

H ' Ca, (6)

where a = p1 · · · pi−1pi+1 · · · pk. Let K be a pi- Sylow subgroup of G. Thus,

K ' Cpi . (7)

Consider the map Φ : K → Aut(H) that sends an element k ∈ K to the auto-
morphism γk where, γk is conjugation by k. Since H / G, γk is a well-defined map
from H to H. Therefore, Φ is a well-defined group homomorphism. Since, ker(Φ)
is a subgroup of K and K has prime order, either ker(Φ) = {e} or ker(Φ) = K.
Suppose, ker(Φ) = {e}. Then, Φ(K) is isomorphic to a subgroup of Aut(H).
By the induction hypothesis, H is isomorphic to the cyclic group of order |H| =
p1 · · · pi−1pi+1 · · · pk. Thus,

H '
k∏

j=1,j 6=i

Z/pjZ.

For any prime p,

Aut(Z/pZ) ' (Z/pZ)∗.

Therefore,

Aut(H) '
k∏

j=1,j 6=i

(Z/pjZ)∗.

Hence,

|Aut(H)| =
k∏

j=1,j 6=i

(pj − 1).

Thus, by Lagrange’s theorem, |K| divides |Aut(H)| , i.e,

pi

∣∣∣∣ k∏
j=1,j 6=i

(pj − 1).

Since (n, φ(n)) = 1, we see that pi - (pj − 1) for any 1 ≤ i, j ≤ k. We thus arrive
at a contradiction. Hence, ker(Φ) = K. Let k ∈ ker(Φ) i.e, γk is the identity
homomorphism. Since ker(Φ) = K, kh = hk for all h ∈ H and for all k ∈ K. We
now claim that G ' H×K. To prove this claim, consider the map Ψ : H×K → G
sending a tuple (h, k) to the product hk. Since the elements of H and K commute
with each other, Ψ is a group homomorphism. H has no element of order pi. Thus,
H∩K = {e}. This implies that Ψ is injective and hence surjective as |H×K| = |G|.
Thus Ψ is the desired isomorphism. By (6) and (7),

G ' Cn.
Thus, every group of order n is cyclic. �
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