# A SIMPLE PROOF OF BURNSIDE'S CRITERION FOR ALL GROUPS OF ORDER $n$ TO BE CYCLIC 

SIDDHI PATHAK


#### Abstract

This note gives a simple proof of a famous theorem of Burnside, namely, all groups of order $n$ are cyclic if and only if $(n, \phi(n))=1$, where $\phi$ denotes the Euler totient function.


## 1. Introduction

The question of determining the number of isomorphism classes of groups of order $n$ has long been of interest to mathematicians. One can ask a more basic question: For what natural numbers $n$, is there only one isomorphism class of groups of order $n$ ? Since we know that there exists a cyclic group of every order, this question reduces to finding natural numbers $n$ such that all groups of order $n$ are cyclic. The answer is given in the following well-known theorem by Burnside [1]. Let $\phi$ denote the Euler function.

Theorem 1.1. All groups of order $n$ are cyclic if and only if $(n, \phi(n))=1$.
Many different proofs of this fact are available. Practically all of them are inaccessible to the undergraduate student since they use Burnside's transfer theorem and representation theory [2]. Here, we would like to give another proof of this theorem which is elementary and uses only basic Sylow theory. Throughout this note, $n$ denotes a positive integer and $C_{n}$ denotes the cyclic group of order $n$.

## 2. Groups of order $p q$

Let $p$ and $q$ be two distinct primes, $p<q$. In this section, we investigate the structure of groups of order $p q$. The two cases to be considered are when $p \mid q-1$ and $p \nmid q-1$.

First, let us suppose that $p \nmid q-1$. In this case, every group of order $p q$ is cyclic. Indeed, let $G$ be a group of order $p q$. Let $n_{p}$ be the number of $p$-Sylow subgroups and $n_{q}$ be the number of $q$-Sylow subgroups of $G$. Then, according to Sylow's theorem,

$$
n_{q} \equiv 1 \bmod q \text { and } n_{q} \mid p
$$

Since $p<q, n_{q}=1$. Thus, the $q$-Sylow subgroup, say $Q$, is normal in $G$. Again by Sylow's theorem,

$$
n_{p} \equiv 1 \bmod p \text { and } n_{p} \mid q
$$

Since $q$ is prime, either $n_{p}=1$ or $n_{p}=q$. But $p \nmid q-1$. Hence, $n_{p}=1$. Thus, the $p$-Sylow subgroup, say $P$, is also normal in $G$. Also, since the order of non-identity elements of $P$ and $Q$ are co-prime, $P \cap Q=\{e\}$. Thus, if $a \in P$ and $b \in Q$,

[^0]then consider the element $c:=a b a^{-1} b^{-1} \in G$. The normality of $Q$ implies that $a b a^{-1} \in Q$ and hence, $c \in Q$. On the other hand, the normality of $P$ implies that $b a^{-1} b^{-1} \in P$ and hence, $c \in P$. Thus, $c \in P \cap Q=\{e\}$. Therefore, the elements of $P$ and $Q$ commute with each other. This gives us a group homomorphism,
$$
\Psi: P \times Q \rightarrow G
$$
such that $\Psi(a, b)=a b$. Since, $P \cap Q=\{e\}, \Psi$ is injective. $|P \times Q|=|G|$ implies that $\Psi$ is also surjective and hence, an isomorphism. As $P$ and $Q$ are cyclic groups of distinct prime order, $P \times Q$ is cyclic and so is $G$. Therefore, if $p \nmid q-1$, then all groups of order $p q$ are cyclic.

Now, suppose $p \mid q-1$. We claim that in this case, there exists a group of order $p q$ which is not cyclic.

Note that since $p \mid q-1$, there exists an element in $\operatorname{Aut}(\mathbb{Z} / q \mathbb{Z})$ of order $p$, say $\alpha_{p}$. To see this, note that

$$
\operatorname{Aut}(\mathbb{Z} / q \mathbb{Z}) \simeq(\mathbb{Z} / q \mathbb{Z})^{*} \simeq C_{q-1},
$$

and a cyclic group of order $n$ contains an element of order $d$, for every divisor $d$ of $n$. Thus, we get a group homomorphism, say $\theta$, from $C_{p}$ to $\operatorname{Aut}(\mathbb{Z} / q \mathbb{Z})$ by sending a generator of $C_{p}$ to $\alpha_{p}$. Denote $\theta(u)$ by $\theta_{u}$. Clearly, $\theta$ is a non-trivial map. We define the semi-direct product, $C_{p} \ltimes_{\theta} C_{q}$ as follows:

As a set, $C_{p} \ltimes_{\theta} C_{q}:=\left\{(u, v): u \in C_{p}\right.$ and $\left.v \in C_{q}\right\}$. The group operation on this set is defined as

$$
\begin{equation*}
(u, v) \cdot\left(u^{\prime}, v^{\prime}\right)=\left(u u^{\prime}, \theta_{u}(v) v^{\prime}\right) . \tag{1}
\end{equation*}
$$

One can check that this operation is indeed associative and makes $C_{p} \ltimes_{\theta} C_{q}$ into a group. To see that this group is non-abelian, consider $(u, v)$ and $\left(u^{\prime}, v^{\prime}\right)$ in $C_{p} \ltimes_{\theta} C_{q}$. Thus,

$$
\left(u^{\prime}, v^{\prime}\right) \cdot(u, v)=\left(u^{\prime} u, \theta_{u^{\prime}}\left(v^{\prime}\right) v\right)
$$

which is not equal to $(u, v) \cdot\left(u^{\prime}, v^{\prime}\right)$ as evaluated in (1) since $\theta$ is non-trivial. Thus, if $p \mid q-1$, then there exists a group of order $p q$ which is not abelian, in particular, not cyclic.

Remark. In fact, given any group $G$ of order pq, one can show that it is either cyclic or isomorphic to the semi-direct product constructed above. Thus, if $p \mid q-1$, there are exactly two isomorphism classes of groups of order pq.

## 3. Proof of the only if part

Suppose all groups of order $n$ are cyclic, i.e, there is only one isomorphism class of groups of order $n$. Since $\mathbb{Z} / p^{2} \mathbb{Z}$ and $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ are 2 non-isomorphic groups of order $p^{2}$, we see that $n$ is squarefree.

Proof. Let us note that if $n=\prod_{i=1}^{k} p_{i}$ where, $p_{1}, \ldots, p_{k}$ are distinct primes and $p_{1}<\cdots<p_{k}$, then $(n, \phi(n))=1 \Longleftrightarrow p_{i} \nmid\left(p_{j}-1\right)$, for all $1 \leq i<j \leq k$.

Now, suppose $n$ is squarefree and $(n, \phi(n))>1$, i.e, there exists a $p_{i}$ such that $p_{i} \mid\left(p_{j}-1\right)$ for some $1 \leq i<j \leq k$. As seen in the earlier section, there exists a group, $\mathcal{G}$ of order $p_{i} p_{j}$ that is not cyclic. Thus, $\mathcal{G} \times C_{n / p_{i} p_{j}}$ is a group of order $n$ and is not cyclic. This contradicts our assumption that all groups of order $n$ are cyclic. Hence, $n$ and $\phi(n)$ must be coprime.

## 4. Proof of the if part

The condition that $(n, \phi(n))=1$ helps us to infer that it is enough to consider only those $n$ that are squarefree.

Our proof hinges upon the following crucial lemma.
Lemma 4.1. Let $G$ be a finite group such that every proper subgroup of $G$ is abelian. Then either $G$ has prime order, or $G$ has a non-trivial, proper, normal subgroup i.e, $G$ is not simple.

Proof. Let $G$ be a group of order $n$. By a maximal subgroup of $G$, we will mean a nontrivial proper subgroup $H$ of $G$ such that, for any subgroup $H^{\prime}$ of $G$ that contains $H$, either $H^{\prime}=G$ or $H^{\prime}=H$ itself.

Let $M$ denote a maximal subgroup of $G$. Let $|M|=m$. Suppose $M=\{e\}$,i.e, $G$ contains no nontrivial proper subgroup. Sylow's first theorem thus implies that the order of $G$ must be prime.

Suppose $n$ is not prime. Hence, $m \geq 2$. Let $N_{G}(M)$ denote the normalizer of $M$ in $G$. Recall that

$$
N_{G}(M)=\left\{g \in G: g M g^{-1}=M\right\} .
$$

If $M$ is normal in $G$, then clearly $G$ is not simple. Therefore, let us suppose that $M$ is not normal. Hence, $N_{G}(M) \neq G$. Since $M \subseteq N_{G}(M)$ and $M$ is maximal, $N_{G}(M)=M$. Let the number of conjugates of $M$ in $G$ be $r, r>1$. The number of conjugates of a subgroup in a group is equal to the index of its normalizer. Therefore,

$$
\begin{aligned}
r & =\left[G: N_{G}(M)\right] \\
& =[G: M] \\
& =\frac{n}{m} .
\end{aligned}
$$

Let $\left\{M_{1}, \cdots, M_{r}\right\}$ be the set of distinct conjugates of $M$. Suppose $M_{i} \cap M_{j} \neq\{e\}$ for some $1 \leq i<j \leq r$. Let $K_{1}:=M_{i} \cap M_{j}$. Since $M_{i}$ and $M_{j}$ are abelian by hypothesis,

$$
\begin{equation*}
K_{1} \triangleleft M_{i}, K_{1} \triangleleft M_{j} . \tag{2}
\end{equation*}
$$

Therefore $K_{1}$ is normal in the group generated by $M_{i}$ and $M_{j}$. Since conjugates of maximal subgroups are themselves maximal, the group generated by $M_{i}$ and $M_{j}$ is $G$. Thus, $K_{1}$ is normal in $G$ and hence $G$ is not simple.

Therefore, we suppose that all the conjugates of $M$ intersect trivially. Let $V:=$ $\cup_{i=1}^{r} M_{i}$. Then,

$$
\begin{aligned}
|V| & =r(m-1)+1 \\
& =n-\left[\frac{n}{m}-1\right]<n .
\end{aligned}
$$

Thus, $\exists y \in G, y \notin V$.
If $G$ is a cyclic group generated by $y$ (of composite order), then the subgroup of $G$ generated by $y^{k}$ for any $k \mid n, k \neq 1, n$ is a non-trivial normal subgroup. So we can assume that the group generated by $y$ is a proper subgroup of $G$. Let $L$ be a maximal subgroup containing the subgroup of $G$ generated by $y$. Since, $y \notin V, L \neq M_{i} \forall 1 \leq i \leq r$. If $L$ is normal in $G$, then $G$ is clearly not simple. Therefore, suppose that $L$ is not normal in $G$.

Let the number of conjugates of $L$ in $G$ be $s, s>1$. Let $\left\{L_{1}, \cdots, L_{s}\right\}$ be the set of distinct conjugates of $L$ in $G$. If any two distinct conjugates of $L$ or a conjugate of $L$ and a conjugate of $M$ intersect non-trivially, then the corresponding intersection is a normal subgroup of $G$ by an argument similar to the one given above. Thus, $G$ is not simple. Hence, it suffices to assume that

$$
\begin{align*}
M_{i} \cap M_{j} & =\{e\},  \tag{3}\\
M_{i} \cap L_{q} & =\{e\},  \tag{4}\\
L_{p} \cap L_{q} & =\{e\}, \tag{5}
\end{align*}
$$

for all $1 \leq i<j \leq r$, for all $1 \leq p<q \leq s$.
Let $|L|=l, l \geq 2$. Since $L$ is not normal in $G$ but is maximal, $N_{G}(L)=L$. Thus, the number of conjugates of $L$ in $G$ is

$$
\begin{aligned}
s & =\left[G: N_{G}(L)\right] \\
& =[G: L] \\
& =\frac{n}{l} .
\end{aligned}
$$

Let $W:=\cup_{p=1}^{s} L_{p}$. By (3), (4) and (5),

$$
\begin{aligned}
|V \cup W| & =r(m-1)+s(l-1)+1 \\
& =n-\frac{n}{m}+n-\frac{n}{l}+1 \\
& =2 n-n\left(\frac{1}{m}+\frac{1}{l}\right)+1 \\
& \geq 2 n-n+1 \\
& >n,
\end{aligned}
$$

since $m, l \geq 2$. But $V \cup W \subseteq G$. Therefore, $|V \cup W| \leq n$. This is a contradiction. Hence, $G$ must have a nontrivial proper normal subgroup.

We will now prove that if $(n, \phi(n))=1$, then all groups of order $n$ are cyclic. As seen earlier, we are reduced to the case when $n$ is squarefree.

Proof. We will proceed by induction on the number of prime factors of $n$. For the base case, assume that $n$ is prime. Lagrange's theorem implies that any group of prime order is cyclic. Thus, the base case of our induction is true.

Now suppose that the result holds for all $n$ with at most $k-1$ distinct prime factors, for some $k>1$. Let $n=p_{1} \cdots p_{k}$ for distinct primes $p_{1}, \cdots, p_{k}$ and $p_{1}<p_{2}<\ldots<p_{k}$. Since $k \geq 2$, Sylow's first theorem implies that $G$ has nontrivial proper subgroups. Let $P$ be a proper subgroup of $G$. Hence, $|P|$ has fewer prime factors than $k$. Therefore, by induction hypothesis, $P$ is cyclic and hence abelian. Thus, every proper subgroup of $G$ is abelian. By Lemma 4.1, $G$ has a nontrivial proper normal subgroup, say $N$. The induction hypothesis implies that $G / N$ is cyclic. Therefore, $G / N$ has a subgroup of index $p_{i}$ for some $1 \leq i \leq k$. Let this subgroup be denoted by $\mathfrak{H}$. By the correspondence theorem of groups, all subgroups of $G / N$ correspond to subgroups of $G$ containing $N$. Let the subgroup of $G$ corresponding to $\mathfrak{H}$ via the above correspondence be $H$, i.e, $\mathfrak{H}=H / N$. Since $G / N$ is abelian, $\mathfrak{H} \triangleleft G / N$ and hence, $H \triangleleft G$. By the third isomorphism theorem of groups,

$$
G / N / H / N \simeq G / H
$$

Since, $[G / N: \mathfrak{H}]=p_{i},[G: H]=p_{i}$. Thus, $G$ has a normal subgroup of index $p_{i}$, namely, $H$. Note that $H$ is cyclic. In particular,

$$
\begin{equation*}
H \simeq C_{a} \tag{6}
\end{equation*}
$$

where $a=p_{1} \cdots p_{i-1} p_{i+1} \cdots p_{k}$. Let $K$ be a $p_{i^{-}}$Sylow subgroup of $G$. Thus,

$$
\begin{equation*}
K \simeq C_{p_{i}} . \tag{7}
\end{equation*}
$$

Consider the map $\Phi: K \rightarrow \operatorname{Aut}(H)$ that sends an element $k \in K$ to the automorphism $\gamma_{k}$ where, $\gamma_{k}$ is conjugation by $k$. Since $H \triangleleft G, \gamma_{k}$ is a well-defined map from $H$ to $H$. Therefore, $\Phi$ is a well-defined group homomorphism. Since, $\operatorname{ker}(\Phi)$ is a subgroup of $K$ and $K$ has prime order, either $\operatorname{ker}(\Phi)=\{e\}$ or $\operatorname{ker}(\Phi)=K$. Suppose, $\operatorname{ker}(\Phi)=\{e\}$. Then, $\Phi(K)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$. By the induction hypothesis, $H$ is isomorphic to the cyclic group of order $|H|=$ $p_{1} \cdots p_{i-1} p_{i+1} \cdots p_{k}$. Thus,

$$
H \simeq \prod_{j=1, j \neq i}^{k} \mathbb{Z} / p_{j} \mathbb{Z}
$$

For any prime $p$,

$$
\operatorname{Aut}(\mathbb{Z} / p \mathbb{Z}) \simeq(\mathbb{Z} / p \mathbb{Z})^{*}
$$

Therefore,

$$
\operatorname{Aut}(H) \simeq \prod_{j=1, j \neq i}^{k}\left(\mathbb{Z} / p_{j} \mathbb{Z}\right)^{*}
$$

Hence,

$$
|\operatorname{Aut}(H)|=\prod_{j=1, j \neq i}^{k}\left(p_{j}-1\right)
$$

Thus, by Lagrange's theorem, $|K|$ divides $|\operatorname{Aut}(H)|$, i.e,

$$
p_{i} \mid \prod_{j=1, j \neq i}^{k}\left(p_{j}-1\right)
$$

Since $(n, \phi(n))=1$, we see that $p_{i} \nmid\left(p_{j}-1\right)$ for any $1 \leq i, j \leq k$. We thus arrive at a contradiction. Hence, $\operatorname{ker}(\Phi)=K$. Let $k \in \operatorname{ker}(\Phi)$ i.e, $\gamma_{k}$ is the identity homomorphism. Since $\operatorname{ker}(\Phi)=K, k h=h k$ for all $h \in H$ and for all $k \in K$. We now claim that $G \simeq H \times K$. To prove this claim, consider the map $\Psi: H \times K \rightarrow G$ sending a tuple $(h, k)$ to the product $h k$. Since the elements of $H$ and $K$ commute with each other, $\Psi$ is a group homomorphism. $H$ has no element of order $p_{i}$. Thus, $H \cap K=\{e\}$. This implies that $\Psi$ is injective and hence surjective as $|H \times K|=|G|$. Thus $\Psi$ is the desired isomorphism. By (6) and (7),

$$
G \simeq C_{n}
$$

Thus, every group of order $n$ is cyclic.

## Acknowledgement

The above proof was a result of a long discussion with Prof. M. Ram Murty. I would like to thank him profusely for his guidance and help in writing the note. I would also like to thank the referee for useful comments on an earlier version of this note.

## References

[1] J. Dixon, Problems in Group Theory, Dover Books, 1973, pg. 92, 2.55.
[2] W. R. Scott, Group Theory, Prentice Hall, 1964, pg. 217.
(Siddhi Pathak) Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada, K7L3N6.

E-mail address, Siddhi Pathak: siddhi@mast.queensu.ca


[^0]:    2010 Mathematics Subject Classification. 20D60, 20E99.
    Key words and phrases. Number of groups of a given order, cyclic groups, Sylow theory.

