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Abstract. In a written correspondence with A. Livingston, Erdős conjectured that for any
arithmetical function f , periodic with period q, taking values in {−1,1} when q ∤ n and
f(n) = 0 when q ∣ n, the series ∑∞

n=1 f(n)/n does not vanish. This conjecture is still open
in the case q ≡ 1 mod 4 or when 2φ(q) + 1 ≤ q. In this paper, we obtain the characteristic
function of the limiting distribution of L(k, f) for any positive integer k and Erdős function
f with the same parity as k. Moreover, we show that the Erdős conjecture is true with
“probability” one.

Distribution of values of L-series; Non-vanishing of values of L-series; Moments of values
of L-series; Erdős’s conjecture.

1. Introduction

Inspired by Dirichlet’s theorem that L(1, χ) ≠ 0 for a non-principal Dirichlet character χ,
Sarvadaman Chowla [8] initiated the study of non-vanishing of the series

∞

∑
n=1

f(n)

n

for any periodic arithmetical function f whenever the above series converges. Since then,
this question has been extensively studied by many authors in a variety of settings (see, for
example [26], [18], [17], [7] etc.). Most of the study is concentrated around the case when f
is supported on the coprime residue classes modulo q. However, very little is known otherwise.

Possibly the simplest example of an investigation in this scenario is the following conjecture
made by Erdős in a written correspondence with A. Livingston [16].

Conjecture 1. Let q be a positive integer. Let f be an arithmetical function, periodic with
period q such that

f(n) =

⎧⎪⎪
⎨
⎪⎪⎩

±1 if q ∤ n,

0 if q ∣ n.

Then the series ∑∞n=1 f(n)/n ≠ 0, whenever it converges.

For any periodic function f , one can define the L-series

L(s, f) ∶=
∞

∑
n=1

f(n)

ns
,

which converges absolutely for R(s) > 1. Using the theory of the Hurwitz zeta-function, this
series can be analytically continued to the entire complex plane except for a simple pole at
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s = 1 with residue 1
q ∑

q
a=1 f(a). Thus, we see that the series L(1, f) = ∑∞n=1 f(n)/n converges

if and only if ∑
q
a=1 f(a) = 0. Hence, for the sake of brevity, we say that a rational valued

function f on the integers, periodic with period q is an Erdős function mod q if f(n) ∈ {−1,1}
when q ∤ n and f(n) = 0 otherwise and ∑

q
a=1 f(a) = 0.

Erdős functions may be viewed as non-multiplicative analogues of quadratic Dirichlet char-
acters. For a fundamental discriminant D, let χD be the quadratic character modulo ∣D∣ given
by the Kronecker symbol, i.e,

χD(n) ∶= (
D

n
).

In 1951, S. Chowla and P. Erdős [9] proved that the limit as N tends to infinity of the
frequencies

#{D ∶ ∣D∣ ≤ N, L(1, χD) ≤ x}

N
exists for all real x and is a continuous distribution function. In the 1960s, Barban [3,
4] calculated moments of L(1, χD) for all integer orders k > 0 and thus, showed that the
characteristic function of the corresponding distribution has the form

∞

∑
k=0

r(k)

k!
(it)k.

Here

r(k) =
∞

∑
n=1,
n odd

φ(n) τk(n
2)

n3
,

where τk(n) is the kth divisor function, i.e., number of ways of writing n as a product of k
natural numbers. This was also obtained by P. D. T. A. Elliott [11, Theorem 22.1] exploiting
the multiplicative nature of quadratic characters. More specifically, Elliott proved that

Theorem 1.1. There is a distribution function F (z) so that

νx(D;h(−D) ≤
ez

π

√
D) = F (z) +O(

√
log logx

logx
)

holds uniformly for all real z and real x ≥ 9. F (z) has a probability density, may be differen-
tiated any number of times and has the characteristic function

∏
p

⎛

⎝
(

1

p
+

1

2
(1 −

1

p
))

1−it

+
1

2
(1 −

1

p
)(1 +

1

p
)

−it
⎞

⎠

which belongs to the Lebesgue class L(−∞,∞).

By Dirichlet’s class number formula, for D ≥ 4,

L(1, χ−D) =
π

√
D
h(−D).

Thus, Elliott’s theorem proves that the distribution function of the values L(1, χ−D) is smooth.
Further work in this context was carried out by A. Granville and K. Soundararajan [12] where
in they established the conjectures of Montgomery and Vaughan regarding the distribution
of the extreme values of L(1, χD).
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Pursuing the analogy of Erdős functions as non-multiplicative analogs of quadratic Dirich-
let characters, one may ask if certain properties of quadratic Dirichlet characters are also
satisfied by Erdős functions. In this paper, we follow the approach of Barban to understand
the distribution of special values of L-series attached to Erdős functions. For a positive in-
teger q, let Eq be the set of Erdős functions mod q. Note that the convergence condition

∑
q
a=1 f(a) = 0 implies that Eq is non-empty only when q ≥ 3 is odd.

Let Bm denote the mth Bernoulli number defined by the generating function

z

ez − 1
=

∞

∑
m=0

Bm
m!

zm.

For any positive integer n, let Pn denote the partially ordered set of partitions of n, i.e., for
partitions λ and η of n, η ≤ λ if the parts of η can be obtained by merging the parts of λ.

The symbol (
λ
η
) counts the number of ways in which parts of λ can be merged to obtain η.

For each λ ∈ Pn, we inductively define c(λ) as follows.

c((n)) ∶= 22nk((k − 1)!)2n((−1)nk+1
B2nk

2nk!
)

and

c(λ) = ((λ1,⋯, λm)) ∶= [22nk((k − 1)!)2n(
m

∏
i=1

(−1)λik+1
B2λik

2λik!
)] − ∑

η<λ

(
λ

η
)c(η). (1)

Then, using the method of moments, we show that

Theorem 1.2. Fix a positive integer k ≥ 1. For any integer r ≥ 1 and real x, let

E
(k)
2r+1 ∶= {f ∈ E2r+1 ∶ f is of the same parity as k}

and

Fr(x) ∶=
#{f ∈ E

(k)
2r+1 ∶ L(k, f) ≤ x}

#E
(k)
2r+1

.

Then, Fr(x) converges to a distribution F (x) at every point of continuity of the latter. More-
over, the corresponding characteristic function is entire and is given by

φ(t) =
∞

∑
n=0

M(2n)

(2n)!
(−t)n,

where

M(2n) ∶=
π2nk

((k − 1)!)2n 22n
( ∑
λ∈Pn

c(λ)).

The restriction on the parity of the functions is inherent in the nature of the value L(1, f) for
any periodic function f . Indeed, if f is a q-periodic rational valued function with ∑

q
a=1 f(a) =

f(q) = 0, then Gauss’s formula for the digamma function (see [16] for details) gives

L(1, f) =
−π

2q

q−1

∑
a=1

f(a) cot(
aπ

q
) +

2

q
∑

0<j≤q/2

log sin
πj

q

q−1

∑
a=1

f(a) cos(
2πaj

q
).

Therefore, when f is odd, the second term in the above expression vanishes and L(1, f) sim-
plifies to an algebraic multiple of π. On the other hand, if f is not odd, then L(1, f) is a
linear form in logarithms of algebraic numbers making it intractable, especially in order to
use the method of moments. Another difficulty that arises in studying the nature of these
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values as opposed to those of Dirichlet L-functions is the absence of multiplicativity among
the coefficients. Thus, the probabilistic method of Elliott does not apply to this scenario.

Although some progress has been made towards Conjecture 1, it remains open in the cases
q ≡ 1 mod 4 or q > 2φ(q)+1. Conjecture 1 follows from a theorem of Baker, Birch and Wirsing
[1] when q is prime. It was proved for q < 2φ(q)+1 by T. Okada [22] and for q ≡ 3 mod 4 by M.
Ram Murty and N. Saradha [20]. In 2015, T. Chatterjee and M. Ram Murty [6] approached
Conjecture 1 from a density theoretic perspective. They showed that if

S(x) ∶= #{q ≡ 1 mod 4, q ≤ x ∶ Erdős’s conjecture holds for q},

then

lim
x→∞

S(x)

x/4
≥ 0.82.

This can be interpreted as the Erdős conjecture being true for at least 82% of q ≡ 1 mod 4,
which is the best possible lower bound using their methods. In this paper, we use an alternate
approach and improve on their result by proving that

Theorem 1.3. Let q ≥ 3 be an odd positive integer. Let Eq be the set of Erdős functions mod

q and Vq ∶= {f ∈ Eq ∶ L(1, f) = 0}. Then,

lim
x→∞

{( ∑
3≤q≤x,
q odd

#Vq)/( ∑
3≤q≤x,
q odd

#Eq)} = 0.

This shows that Conjecture 1 is true with “probability” one.

Another aspect of this question is the non-vanishing of special values of L(s, f) for an Erdős
function f at positive integers greater than 1. In this direction, we ask the following question.

Question 1.4. Let q > 2 and k > 1 be integers and f be an Erdős function mod q. Then is it
true that L(k, f) ≠ 0?

Remark 1.5. Let f be an Erdős function mod q and k > 1 be an integer. Suppose that
L(k, f) = 0. Then observe that

∣f(1)∣ = ∣
∞

∑
n=2

f(n)

nk
∣ ≤ ζ(k) − 1.

This implies that 2 ≤ ζ(k), i.e., k < 2. This establishes that L(k, f) ≠ 0 for any Erdős function
f if k ≥ 2. Thus, Erdős’s conjecture is interesting when k = 1.

2. Preliminaries

In this section, we introduce the results to be used later.

2.1. L-series attached to periodic functions. Let q be a fixed positive integer and Q
denote the algebraic closure of Q. Consider f ∶ Z→ Q, periodic with period q. Define

L(s, f) =
∞

∑
n=1

f(n)

ns
.
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Observe that L(s, f) converges absolutely for R(s) > 1. Since f is periodic,

L(s, f) =
q

∑
a=1

f(a)
∞

∑
k=0

1

(a + kq)s

=
1

qs

q

∑
a=1

f(a)ζ(s, a/q),

where ζ(s, x) is the Hurwitz zeta-function. For R(s) > 1 and 0 < x ≤ 1, the Hurwitz zeta-
function is defined as

ζ(s, x) =
∞

∑
n=0

1

(n + x)s
.

In 1882, Hurwitz [15] obtained the analytic continuation and functional equation of ζ(s, x).
He proved:

Theorem 2.1. The Hurwitz zeta-function, ζ(s, x) extends analytically to the entire complex
plane except for a simple pole at s = 1 with residue 1. In particular,

ζ(s, x) =
1

s − 1
−Ψ(x) +O(s − 1), (2)

where Ψ is the Digamma function, which is the logarithmic derivative of the gamma function.

Thus, ∑∞n=1 f(n)/n exists whenever ∑
q
a=1 f(a) = 0, which we will assume henceforth. This

makes L(s, f) an entire function. Moreover, L(1, f) can be expressed as a combination of
values of the Digamma function. Using (2) we get,

L(1, f) = −
1

q

q

∑
a=1

f(a)Ψ(
a

q
). (3)

Taking the logarithmic derivative of the identity Γ(x)Γ(1−x) = π/ sin(πx), we obtain that

Ψ(x) −Ψ(1 − x) = π cot(πx).

Therefore, if f is an odd function, we can pair the terms corresponding to a and q − a in (3)
to get that

L(1, f) =
π

q

(q−1)/2

∑
a=1

f(a) cot(
aπ

q
),

as cot(π(1 − x)) = − cotπx, f(q − a) = −f(a) and cot(π/2) = 0. Similarly, L(k, f) can be
evaluated if k and f have the same parity, i.e., if both k and f are either odd or even. In
particular,

L(k, f) = −
(−1)k

(k − 1)! qk

(q−1)/2

∑
a=1

f(a)(
d(k−1)

dz(k−1)
(π cotπz)∣

z=a/q

). (4)

For a proof of the above fact, we refer the reader to [19, Theorem 10].

2.2. Higher dimensional Dedekind sums. In the course of evaluating moments of L(k, f),
we also encounter a generalization of the higher dimensional Dedekind sums which were
introduced by D. Zagier [27]. These sums, studied by A. Bayad and A. Raouj [2], are defined
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as follows. For i = 0,⋯, d, let a0 be a positive integer, a1,⋯, ad be positive integers co-prime
to a0 and m0,⋯,md be non-negative integers. Define

C(ai ; a0,⋯, âi,⋯, ad ∣mi ; m0,⋯, m̂i,⋯,md)

∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1

a
mi+1
i

∑
ai−1
k=1

d

∏
j=0,
j≠i

( dmj

dzmj (cot z))∣
z=πkaj/ai

, if ai ≥ 2,

0 if ai = 1.

(5)

Here x̂n means that the term xn is omitted. It can be shown that the number given by (5)
is in fact rational. For a proof of this fact and further properties of the higher dimensional
Dedekind sums, see [27] and [2]. Moreover, these sums satisfy a reciprocity law given by:

Theorem 2.2. [2, Theorem 2.0.2] Let d be a positive integer, a0,⋯, ad be pairwise positive
integers and m0,⋯,md be non-negative integers. Let Bn denote the nth Bernoulli number.
Assume that the integer M = d +m0 +⋯ +md is even. Then we have

d

∑
i=0

(−1)mi mi! ∑

l0,⋯,l̂i,⋯,ld≥0

l0+⋯+l̂i+⋯+ld=mi

(
d

∏
j=0
j≠i

a
lj
j

lj !
)

×C(ai ; a0,⋯, âi,⋯, ad ∣mi ; m0 + l0,⋯, m̂i + li,⋯,md + ld)

=

⎧⎪⎪
⎨
⎪⎪⎩

−(R + (−1)d/2) if all mi are zero,

−R otherwise,

where 1

R =
(−1)M/2 2M

∏
d
i=0 a

mi+1
i

∑
j0,⋯,jd≥0

j0+⋯+jd=M/2

d

∏
i=0

a2jii Ai,ji

and

Ai,ji =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

B2ji

(2ji−1−mi)!(2ji)
if ji is an integer ≥ (mi + 1)/2,

(−1)mi mi! if ji = 0,

0 otherwise.

2.3. Partial sum lemma. We will use the following elementary exercise from [23, Problem
70, pg. 16].

Lemma 2.3. Let the sequences an and bn satisfy the conditions:

bn > 0, n = 1,2,⋯ ; b1 + b2 + b3 +⋯ + bn +⋯ diverges;

and

lim
n→∞

an
bn

= s.

Then

lim
n→∞

a1 + a2 +⋯ + an
b1 + b2 +⋯ + bn

= s.

1The minus sign in front of the right hand side is missing in the statement of [2, Theorem 2.0.2] but is
evident from the proof.
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3. Proof of Theorems

3.1. Proof of Theorem 1.2. Our proof is based on the following lemma from [5, Theorem
30.2, pg. 390].

Lemma 3.1. Suppose the distribution of X is determined by its moments, that the Xn have
moments of all orders and that limnE[Xr

n] = E[Xr] for r = 1,2,⋯. Then Xn ⇒ X, i.e.,
the distribution of Xn converges to the distribution of X wherever the distribution of X is
continuous.

Thus, we first show that

M(n) ∶= lim
r→∞

m2r+1(n) = lim
r→∞

∑
f∈E

(k)
2r+1

L(k, f)n

#E
(k)
2r+1

is finite. In order to show that the limiting distribution is determined by its moments, we use
a general theorem from [5, Theorem 30.1, pg. 388] stated below.

Theorem 3.2. Let µ be a probability measure on the line having finite moments αk =

∫
∞

−∞
xkµ(dx) of all orders. If the power series ∑∞k=0 αk r

k/k! has a positive radius of con-
vergence, then µ is determined by its moments.

To begin with, we evaluate

mq(n) ∶=
∑
f∈E

(k)
q
L(k, f)n

#E
(k)
q

,

for any non-negative integer n in terms of sums of the form (5). By (4),

∑

f∈E
(k)
q

L(k, f)n

=
(−1)kn

((k − 1)!)
n
qkn

(q−1)/2

∑
a1,⋯,an=1

n

∏
j=1

(
d(k−1)

dz(k−1)
(π cotπz)∣

z=aj/q

) ∑

f∈E
(k)
q

f(a1)⋯f(an),

=
(−1)kn πk

((k − 1)!)
n
qkn

(q−1)/2

∑
a1,⋯,an=1

n

∏
j=1

(
d(k−1)

dz(k−1)
(cot z)∣

z=aj/q

) ∑

f∈E
(k)
q

f(a1)⋯f(an).

Note that if f ∈ E
(k)
q then −f ∈ E

(k)
q . Thus, if n is odd, the inner sum becomes zero by

pairing terms corresponding to f and −f . Therefore, mq(n) = 0 when n is odd.
Henceforth, let n be even and p(n) denote the number of partitions of n. The above sum

can be partitioned into p(n) many sums according to the equality of the indices a1,⋯, an. In
particular, for a partition λ = (λ1,⋯, λm) of n, the inner sum becomes

∑

f∈E
(k)
q

f(a1)
λ1⋯f(am)

λm , (6)

where 1 ≤ a1,⋯, am ≤ q − 1 are all distinct. Clearly, the above sum is #E
(k)
q when λl is even

for all 1 ≤ l ≤ m. Now, without loss of generality, suppose that λ1 is odd. Since even and

odd functions are determined by their values on 1 ≤ a ≤ r, for any f ∈ E
(k)
q , there is a unique

f− ∈ E
(k)
q such that

f−(n) =

⎧⎪⎪
⎨
⎪⎪⎩

f(n) if n ≠ a1,

−f(n) if n = a1,
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for 1 ≤ n ≤ r. Pairing up the terms corresponding to f and f− in (6), we obtain that

∑

f∈E
(k)
q

f(a1)
λ1⋯f(am)

λm =

⎧⎪⎪
⎨
⎪⎪⎩

#E
(k)
q , if λ1,⋯, λm are even,

0 otherwise.

Thus, only those terms corresponding to partitions consisting of even parts survive and one
can write

∑

f∈E
(k)
q

L(k, f)n

=
πk

((k − 1)!)
2n

22n q2kn
∑

λ=(λ1,⋯,λm),
λ∈Pn

q−1

∑
′

a1,⋯,am=1

m

∏
j=1

(
d(k−1)

dz(k−1)
(cot z)∣

z=aj/q

)

2λj

,

where ∑
′

denotes that the sum is taken over distinct 1 ≤ a1,⋯, am ≤ q − 1. The inner sum
can be expressed in terms of generalized higher dimensional Dedekind sums as follows. For
any positive integer u, define

S
(u)
q,k ∶= q C(q ; 1,1,⋯,1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2u times

∣0 ; k − 1,⋯, k − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2u times

).

With the notation as in Section 1, define S
(η)

q,k inductively as follows. S
(n)
q,k ∶= S

(n)
q,k and for any

λ = (λ1,⋯, λm),

S
(λ)
q,k ∶= S

(λ1)
q,k ⋯S

(λm)
q,k − ∑

η≤λ

(
λ

η
) S

(η)

q,k . (7)

Thus, we have that

mq(2n) =
πk

((k − 1)!)
2n

22n q2kn
{ ∑
λ∈Pn

S
λ
q,k}.

To understand the asymptotic behaviour of mq(2n) as q →∞, we use the explicit evaluation

of S
(u)
q,k using Theorem 2.2. Thus,

S
(u)
q,k =

q−1

∑
t=1

(
dk−1

dzk−1
(cot z))∣

2u

z=πt/q

=

⎧⎪⎪
⎨
⎪⎪⎩

−q (R + (−1)u) if k = 1,

−q R otherwise,

where

R =
(−1)uk 22uk

q
∑

j0,⋯,j2u
j0+⋯+j2u=uk

αj0,⋯,j2u q
2j0 ,

for αj0,⋯,j2u ∈ Q given by Theorem 2.2. In particular, S
(u)
q,k is a polynomial in q of degree 2uk

with leading coefficient −(−4)ukαuk,0,⋯,0, given explicitly by Theorem 2.2. Thus,

S
(u)
q,k ∼ (22uk ((k − 1)!)

2u
(−1)uk+1

B2uk

(2uk)!
) q2uk, as q →∞.
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Using this, (7) and the definition of c(λ) (1), we get that

S
(λ)
q,k ∼ c(λ) q2nk,

as q tends to infinity. Hence,

M(2n) = lim
q→∞

mq(2n) =
π2nk

((k − 1)!)2n 22n
( ∑
λ∈Pn

c(λ)).

Since the limit as q tends to infinity of mq(2n) exists, by Lemma 3.1, there exists a limiting
distribution F (x) whose odd moments are zero and even moments are given by M(2n). Thus,
the characteristic function of F (x) is given by

φ(t) ∶=
∞

∑
n=0

M(2n)

(2n)!
(it)2n.

By Lemma 3.1 and Lemma 3.2, it suffices to show that φ(t) has positive radius of convergence.
In fact, we prove that it is entire.

Let ζ(s) = ∑∞n=1 1/ns for R(s) > 1 be the Riemann zeta function. In 1737, Euler showed
that

ζ(2m) = (−1)m+1
B2m (2π)2m

(2m)! 2
.

Since ζ(2m + 2) < ζ(2m),

∣
B2m+2

(2m + 2)!
∣ < ∣

B2m+2 π
2

(2m + 2)!
∣ < ∣

B2m

(2m)!
∣.

Hence,

c(λ) ≤ ∣22nk((k − 1)!)2n(
m

∏
i=1

(−1)λik+1
B2λik

(2λik)!
)∣ ≤ 22nk((k − 1)!)2n∣

B2k

(2k)!
∣

m

.

and thus,

M(2n) =
π2nk

((k − 1)!)2n 22n
( ∑
λ∈Pn

c(λ)) ≤
(2π)2nk

22n
p(n) ∣

B2k

(2k)!
∣

n

=
p(n)

2n
(
ζ(2k)

2
)

n

,

where p(n) denotes the number of partitions of n. In 1918, Hardy and Ramanujan [13] showed
that

p(n) ∼
1

(4
√

3)n
exp(π

√
2n

3
) as n→∞.

Now using Stirling’s formula and the asymptotics for p(n), we obtain that

(
M(2n)

(2n)!
)

1/2n

≪ e−c logn,

for a positive constant c. Therefore, applying the root test gives that the radius of convergence
of φ(t) is infinite. This proves the theorem.
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3.2. Proof of Theorem 1.3. Let q ≥ 3 be odd and Eq be the set of all Erdős functions mod
q. Let r ∶= (q − 1)/2. We define a relation on this set as follows. For f, g ∈ Eq,

f ∼ g ⇐⇒ f(a) = g(a), ∀1 ≤ a ≤ q, (a, q) ≠ 1.

One can easily check that ∼ is an equivalence relation. Before proceeding, we prove the
following proposition.

Proposition 3.3. There exists at most one Erdős function f in every equivalence class of Eq
under ∼, such that L(1, f) = 0.

Proof. Suppose f, g ∈ Eq are such that L(1, f) = L(1, g) = 0. Thus, by (3) and the convergence
condition, we have

q

∑
a=1
(a,q)=1

f(a)[Ψ(
a

q
) + γ] = −

q

∑
a=1
(a,q)≠1

f(a)[Ψ(
a

q
) + γ]

= −

q

∑
a=1
(a,q)≠1

g(a)[Ψ(
a

q
) + γ]

=

q

∑
a=1
(a,q)=1

g(a)[Ψ(
a

q
) + γ].

Therefore, we obtain
q

∑
a=1
(a,q)=1

[f(a) − g(a)] [Ψ(
a

q
) + γ],

which is a Q-linear relation among the numbers

Ψ(a/q) + γ, 1 ≤ a ≤ q, (a, q) = 1.

But these numbers are Q-linearly independent as proven in [20, Theorem 4]. Hence, f = g. �

Therefore, it suffices to count the number of equivalence classes of Eq under ∼. In order
to count these, note that each equivalence class differs from the other based on the values of
functions on Nq ∶= {a ∶ 1 ≤ a < q, (a, q) ≠ 1}. At each point in this set, an Erdős function can
take either 1 or −1, with the only restriction that

#{a ∈ Nq ∶ f(a) = 1} = #{a ∈ Nq ∶ f(a) = −1} =
q − 1 − φ(q)

2
.

Owing to this, two cases arise. For simplicity of notation, let nq ∶= (q − 1 − φ(q))/2 and recall
that r = (q − 1)/2.

(a) r ≥ nq: In this case, the number of a ∈ Nq where a function takes the value 1 ranges
from 0 to nq. Thus, the total number of equivalence classes is

∣Eq/ ∼ ∣ =

nq

∑
k=0

(
nq
k
) = 2nq .

(b) r < nq: Let j ∶= nq − r. Then, the number of a ∈ Nq where a function takes the value 1
has to be at least j. Hence, the number of equivalence classes is

∣Eq/ ∼ ∣ =

nq

∑
k=j

(
nq
k
) < 2nq .
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Therefore, in either case ∣Vq ∣ ≤ 2(q−1−φ(q)). Now, note that

∣Eq ∣ = (
2r

r
).

Using the bounds by [25], one has
√

2π n(n+
1
2
) e−n < n! <

√
2π en(n+

1
2
) e−n,

for all n ∈ N, we get that

(
2r

r
) =

(2r) !

(r!)2
≥

√
2π (2r)(2r+1/2) e−2r

(
√

2π e r(r+1/2) e−r)
2
=

√
2 22r r2r

√
r

√
2π e2 r2r r

=
22r

e2
√
π
√
r
.

Thus,

( ∑
3≤q≤x,
q odd

#Vq)/( ∑
3≤q≤x,
q odd

#Eq) ≪
∑r≤x 22r−φ(2r+1)

∑r≤x(2
2r/

√
r)

≪
∑r≤x 22r−(2r/(log log r))

∑r≤x(2
2r/

√
r)

because by [14, pg. 217],

lim inf
n→∞

φ(n) log logn

n
= e−C .

Therefore, by Lemma 2.3, the right hand side tends to zero as x →∞. This proves Theorem
1.3.

4. Conclusion

Theorem 1.2 leads to various natural questions regarding the distribution function F (x).
For example, the continuity of F , the rate of convergence in distribution as well as the tail
of the distribution are but a few problems arising out of our study. Another direction is to
understand the distribution of L(k, f) without any restriction on the parity of Erdős functions.
In this course, one is led to study the analogue of higher dimensional Dedekind sums for the
digamma function. Since these investigations are far afield from our current focus, we relegate
them to future research.
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