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Abstract 

The ground conditions prevailing on the day of a cricket match is an important confounding 

variable that results in the majority of cricket analyses requiring qualification. We present a 

Bayesian method for estimating the value of ground conditions in the absence of a direct 

measure. We use dynamic programming techniques to estimate models of both the first and 

second innings and we outline an application for each model. We extract a proxy variable for 

risk from our first-innings model and we use this variable to successfully estimate the trade-off 

between scoring rate and the probability of survival for individual batsmen. This enables us to 

decompose a batsman’s performance into ability and strategic nous. Our second-innings model 

gives an estimate of a team’s probability of winning at any point in the second innings of the 

match. We use this variable in conjunction with our ground-conditions variable to outline a 

new method for adjusting the target score in rain-affected matches. We introduce a simple 

metric for comparing the performance of various rain rules and we find that our proposed rule 

outperforms the incumbent Duckworth/Lewis method.  
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CHAPTER 1 

Overview of the thesis 

This thesis consists of four main chapters, distinct from one other by the nature of the 

theories and methods used, yet with each chapter possessing a close relationship with the other 

three chapters. It is intended that the thesis can be read as both a comprehensive piece of work 

and as individual chapters telling their own story. The purpose of this chapter is to discuss the 

nature of the individual chapters and explain their interdependencies: Later chapters depend on 

earlier chapters for their data needs, while earlier chapters depend on later chapters in order to 

properly justify their very existence. 

Two ultimate goals of this thesis are to determine the abilities of various batsmen in 

One Day Internationals (ODIs) in a variety of game situations and to subsequently test their 

strategic optimality by assessing the likely outcomes of the decisions that they make 

concerning risk. Batsmen certainly have a variety of abilities and, given their ability, they have 

different strengths and weaknesses. This could be detailed down to the level of whether a 

batsman is proficient at playing a particular shot to a particular type of delivery; however, this 

thesis is primarily concerned with the rate at which a batsman is able to substitute between their 

scoring rate and their probability of survival. We show that this marginal rate of transformation 

is crucial in determining the optimal strategy for a given batsman in a given situation.  
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A separate goal is to assess the fairness of a selection of the various target-adjustment 

rules that have been used in ODI cricket over its history. We propose an alternative method and 

we show that our new method outperforms the incumbent Duckworth/Lewis method. 

In any data analysis, there will be a set of variables that explain an outcome with some 

amount of random error. In some cases we do not necessarily have the values of all of these 

variables and if we are missing any important variables the analysis can be significantly 

distorted. This may be because the researcher is using a data set that was not collected 

particularly for their analysis or because the variable is very difficult to quantify, among other 

reasons. Cricket provides an excellent example of a variable that is difficult to quantify: the 

ease of batting due to the conditions. 

On any given day, the weather and pitch conditions as well as the size and shape of the 

boundaries can have a significant influence on the size of scores that both teams are able to 

achieve. This is very important for our analysis as we need to separate out the variation of 

player and team scores caused by variation in skill from that caused by variation in conditions, 

in order to properly assess performance and strategy. Chapter 4 explains the reasons behind the 

difficulty in estimating conditions directly on any given day but a more pressing problem is 

that, even if such estimates are possible, they are not included in the data set obtained for the 

purposes of this thesis. In Chapter 4 we develop a method of indirectly estimating the value of 

this conditions variable. We use information from the distribution of first-innings scores and its 

relationship to the probability of winning to infer a Bayesian distribution of conditions for each 

match in our data set. This important variable is then included in our subsequent analyses in 

Chapters 5, 6 and 7. 
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In Chapter 5, we model the scoring rates and survival rates of batting teams in all 

possible game situations for the purpose of predicting the likely outcomes from any given state. 

We employ a dynamic programming approach by applying these modeled scoring and survival 

rates to the possible endpoints of the innings and solving by backwards induction until we have 

a complete set of predictions covering all possible game situations. A key variable in this 

modeling is the conditions estimate derived in Chapter 4, which enables us to predict outcomes 

assuming many different conditions. 

Predicting the likely outcome from any given state of a match is interesting in its own 

right, but the largest contribution of Chapter 5 is that it provides us with a new variable that we 

can use to proxy risk-taking by the batsman, the cost of a wicket. Since the outcome from any 

game situation can be predicted by the model, it is also possible to assess the size of the 

negative impact of losing an immediate wicket on the likely outcome. We define this variable 

as the cost of a wicket and this information is extremely useful for the research in Chapter 6, 

which requires some knowledge of the risk intentions of a batsman.  

Chapter 6 estimates production possibility frontiers (PPFs) for a selection of batsmen 

with the two “goods” being scoring rate (per ball) and probability of survival (per ball). On the 

surface, constructing PPFs are simple as it should be possible to look at our data and determine 

how often a player gets out when scoring at each rate and plotting these points on a graph. 

Upon closer inspection however, it is apparent that the probability of survival cannot be 

directly compared to the scoring rate in our data set. This is because, other than in rare cases 

where the batsman is run out having already completed at least one run, the batsman almost 

always scores zero runs from any ball that he is dismissed on. It therefore is the case that 
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running a regression of the binary variable survival on the continuous variable runs would lead 

to nonsense results as the number of runs scored from any ball where the batsman is dismissed 

is almost always zero.  

The problem can be considered in an alternative way. A dismissal, to a batsman, 

represents an unsuccessful event. It is not possible to determine directly from the data set how 

quickly the batsman was attempting to score from the ball that just happened to lead to his 

downfall. He may have been playing some very aggressive shots or he may simply have been 

bowled a ball that was too good for him despite a defensive mindset, but all the data show is an 

outcome of zero runs, dismissed. To solve this problem it is necessary to consider the likely 

approach of the batsman as he faces each ball. He will be intent on taking a particular amount 

of risk each time the bowler runs in to bowl, but in the absence of data collected through a 

mind-reading device it is not possible to determine what the thoughts of the batsman were on 

any given delivery. The approach that we choose is to take the cost-of-a-wicket variable that 

was derived in Chapter 5 and use it as a proxy for the amount of risk taken by the batsmen. 

This has limited accuracy when considered ball-by-ball as batsmen do not necessarily engage 

in perfect strategy and may very well occasionally take high levels of risk when the cost of a 

wicket is very high and low levels of risk when the cost of a wicket is very low. However, 

when considering a batsman’s behaviour on average over all the balls the he has faced, it is 

reasonable to assume that he has taken more risk when the cost of a wicket is lower. It is then 

possible to separately determine the relationships between the cost of a wicket and scoring rates 

as well as the cost of a wicket and the probability of survival. The predicted scoring rate and 

probability of survival for each value of cost of a wicket are then joined together to form the 
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points of the PPF for each player. As we are interested in a batsman’s natural ability and 

strategic nous under a variety of ground conditions, the information from Chapter 4 is an 

important input into Chapter 6. 

Finally, in Chapter 7 we develop a target-adjustment rule to be used in the event of 

match overs being lost due to rain. We construct a probability-preserving rule that we believe is 

conceptually superior to all previous such rules, with the largest improvement being the 

addition of a variable for the prevailing ground conditions, as calculated in Chapter 4. This 

enables the observed conditions on the day of a match to be specifically used as an input 

variable in the implementation of our rule. We show that our method compares favourably with 

the existing Duckworth/Lewis rule, which implicitly assumes that all variation in first-innings 

score is due to ground conditions. 
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CHAPTER 2 

A review of the relevant literature 

The statistical analysis of sports has rapidly grown in popularity in recent years, perhaps 

owing in part to the successful methods of Oakland Athletics general manager Billy Beane, 

who used previously unknown or unappreciated measures of performance to transform an 

under-resourced baseball team into one that was competitive with much higher-spending clubs. 

Beane’s story was popularised by the book, Moneyball (Lewis, 2003), about his approach to the 

game.  

Strategies in a variety of sports have been studied. Romer (2003) uses a dynamic 

programming approach to estimate the value of possessing the ball in different parts of the field 

in American football, to compare the expected payoffs from running or kicking the ball. 

Klaassen and Magnus (2008) calculate the optimal strategy for serving in tennis. Hirotsu and 

Wright (2003) apply dynamic programming to determine the best strategy for the configuration 

of a football (soccer) team, including the optimal strategy for making substitutions during a 

match. Dynamic programming can be used to estimate strategies designed not necessarily to 

score directly, but to put one in a better position to score, increasing the probability of winning.  

Dynamic programming techniques are particularly suited to the analysis of cricket. The 

sequential nature of the game makes it, absent dynamic programming techniques, difficult to 

assess the current likelihood of each team winning, which in turn makes it difficult to 
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distinguish good strategies from poor ones. Cricket also has well-defined breaks and state 

variables, compared to sports that are controlled by the clock. This means that there are many 

non-arbitrary points of assessment. Cricket provides a rich array of data for a researcher to 

analyse; however, prior to the seminal paper on the topic of dynamic programming in cricket, 

by Clarke (1988), very little high-level research had been done. In particular, Clarke was 

surprised that Operations Research (OR) techniques had not been applied to cricket. He notes 

that “… lacking in the literature is the application of OR techniques to assist the cricketer with 

tactics. This seems strange given the role Britain and the Commonwealth have played in the 

origins and continued practice of both OR and cricket.” It is likely that technological 

advancements, particular in the capacity and speed of computers, have played a large role in the 

recent increase in complex analysis of cricket.
1
 

Clarke’s seminal paper involves estimating a scoring rate and a probability of dismissal 

and he presents different models for the first and second innings. In the first innings the 

assumed goal of a batting team is to maximise its expected total score and in the second innings 

it is to maximise the probability of achieving the target score.
2
 The model is set out under a 

dynamic programming framework, where the state space is divided into cells characterised in 

two dimensions by the number of balls and wickets remaining.  Considering only the average 

ability of recognised batsmen, a relationship is assumed between scoring rate and dismissal rate 

based mostly on educated guesses, rather than detailed analysis. Clarke notes that estimates 

could be based on either expert opinion or statistical analysis and in addition, they should take 

into account the pitch conditions. In Chapter 4 we outline an analytical method for estimating a 

                                                 
1
 Clarke notes that he was programming in BASIC on an IBM XT. 

2
 Maximising the expected total score is identical to our method, presented in Chapter 5, of maximising expected 

additional runs, as the past cannot be changed. 
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variable to represent ground conditions (including the pitch, outfield, weather and stadium size) 

and in subsequent chapters we show how the different conditions can affect a match. 

Clarke uses his first-innings model to estimate the optimal scoring rate in any situation 

by using numerical simulation to investigate the outcomes under different scoring rates. His 

results suggest (pp. 333) “teams should try to score slightly faster than they expect their 

average rate for the rest of the innings to be, and if wickets are lost, slow up, rather than the 

current practice of scoring slower than average and speeding up if wickets are not lost. Thus the 

generally accepted view of scoring slowly at the beginning of the innings is not optimal under 

this model”. Clarke also notes (pp. 334) that his model of the first innings can be used to 

compare various positions, such as “…is it better to be 1 for 50 or 3 for 80 after 25 overs?” 

In Chapter 6, we build on this approach using substantially more detailed methods of 

calculating the scoring rate and the dismissal rate and we apply the notion of choosing an 

optional scoring rate to an individual batsman, rather than to a partnership as is the case in 

Clarke’s paper. 

Clarke’s second-innings model is similar in formulation to his first-innings model, 

except that the variable to be maximised is the probability of winning, rather than the expected 

total. His conclusions from the first innings can also be generally applied to the second innings 

and he notes the existence of a second-innings advantage. 

The paper also suggests that the probability of winning, calculated in the second-innings 

model, could be useful in the event of a rain interruption. In particular, Clarke uses an example 

to illustrate the shortcomings of the Average Run Rate (ARR) method. The paper stops short of 
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advocating probability maintenance as a criterion for determining revised targets, simply 

stating that it could be used to assess the performance of existing methods. In Chapter 7 we 

describe and assess a range of possible methods and outline a procedure where a probability-of-

winning model could be directly employed in the target calculation. 

In concluding, Clarke suggests that the dynamic programming model has many 

potential uses, such as quantifying the effects of including extra batsmen in the team, providing 

captains, coaches, commentators and even bookmakers with better measures of how teams are 

performing during the match, and developing measures of player performance that “better 

reflect the demands of one-day cricket” (pp. 336). Indeed Clarke went on to undertake many of 

these analyses himself or with co-authors, as well as applying dynamic programming methods 

to other interesting aspects of cricket such as the use of a night-watchman in tests. See Bailey 

and Clarke (2006), Allsopp and Clarke (2004), Clarke and Norman (1999), Norman and Clarke 

(2010), Clarke and Norman (2003) for some more specific applications of Clarke’s dynamic 

programming work. 

Preston and Thomas (2000) present a dynamic programming model similar to Clarke 

(1988); however, they impose a functional form for the probability of dismissal, which they call 

the dismissal hazard. Most relevant to this thesis is their inclusion of a dummy variable for each 

match in their dataset. This allows them to generate a maximum likelihood estimator of the 

dismissal hazard with a different intercept for each match, in order to control for differences in 

ground conditions and other innings-specific variables such as team ability. We believe that this 

approach is likely to attribute too much of the variance in the hazard rate to the innings-specific 

variables and not enough to the error term, emphasising the importance to nearly all cricket 
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analyses of having a reliable, impartial estimate of ground conditions. This is the motivation for 

our Chapter 4. 

The results of Preston and Thomas suggest that, in contrast to the results of Clarke 

(1988), an approach of increasing aggression for a given number of wickets lost is the optimal 

strategy. They agree with Clarke that it is optimal to score at above the run rate required in 

earlier partnerships in the second innings. 

The two optimal strategy models presented so far have assumed some kind of 

relationship between scoring rate and dismissal rate. Clarke employed “guesstimates” of the 

relationship, and Preston and Thomas estimated the relationship by first assuming a functional 

form. Barr and Kantor (2004) plot the performances of individual players in scoring rate / 

dismissal rate space and assume a functional form for “curves of equal suitability” (pp. 1269), 

akin to indifference curves. There are two important limitations of their method. First, the 

indifference curve is not based on any particular analysis of what the optimal strategy should 

be, and second the performance of each player is represented by a single point. They compare 

their analysis to risk-return models used in financial analysis, noting the limitation that 

“…while optimal combinations of assets with attractive risk-return characteristics can be 

combined to form efficient frontiers in financial risk-return space, the batting characteristics of 

people cannot be combined” (pp. 1268). 

In Chapter 6 we outline a method of effectively creating frontiers in risk-return space: 

specifically, estimating the Production Possibility Frontier (PPF) of any batsman, where the 

scoring rate and survival rate (the complement of the dismissal rate) represent return and risk, 

respectively. These two components are estimated separately as functions of a proxy variable 
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for risk. This means that the assumption of a specific functional form for the relationship 

between scoring rate and survival rate is unnecessary, resulting in a much more flexible 

function. 

A large fraction of the academic literature on cricket analysis has been devoted to the 

question of the fairest way to adjust the second-innings target score in a match shortened 

because of weather. Papers in this literature include Duckworth and Lewis (1998, 2004, 2005), 

Preston and Thomas (2002), Jayadevan (2002), Carter and Guthrie (2004, 2005) and Manage et 

al. (2010). The Manage et at paper uses Receiver Operating Characteristic (ROC) curves to 

assess the accuracy of the different rain rules. A common factor in their approach and our 

analysis in Chapter 7 is the method of creating artificial abandonments in fully completed 

games in order to assess the predictive power of each rule. The ROC method plots the 

sensitivity (true positive rate) versus the specificity (1 - false positive rate) in order to 

determine the trade-off between the two. Their paper gives two examples where the ROC 

curves are used: umpiring decisions and rain rules. While we find their method interesting, we 

do not believe that this is the most appropriate way to assess different rain rules, preferring 

instead to calculate a simple Correct Prediction Percentage (CPP) as outlined in Chapter 7. 

The four main chapters of this thesis are substantial improvements on the existing 

models. A variable for ground conditions, calculated in Chapter 4, would be an excellent 

addition to most of the models in the existing literature. We use the ground conditions variable 

to create more accurate dynamic programmes to estimate first-innings future run-scoring and 

the probability of winning in the second innings in Chapters 5 and 7, respectively. We develop 

an advanced estimation strategy for determining the PPF of a batsman in scoring rate and 
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survival rate space, which crucially allows us to divide his performance into two components – 

ability and strategic nous. Finally, we propose a new rain rule that takes into account the 

ground conditions and assess the performance of our rule against a selection of previously used 

rules in Chapter 7. 
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CHAPTER 3 

A description of cricket in an economic framework 

3.1  Introduction 

In some countries, it is almost impossible for a child to grow up without gaining at least 

a basic understanding of the game of cricket, even if they have never played the game. Despite 

this, while cricket is immensely popular in many countries, there are many parts of the world 

where cricket has not yet achieved a strong following and the nuances of the game can be a 

complete mystery to those who are not cricket fans. This short chapter has two goals. First, in 

Section 3.2 we provide a brief description of the game, containing the necessary rules and 

strategic knowledge required for proper understanding of the chapters to follow. This section 

should be unnecessary for readers who are familiar with the game of cricket. Second, in 

Section 3.3 we outline how this thesis will conceptualise the essential components of cricket as 

a strategic economics game. This provides an insight into the thinking behind the way that we 

model the game in subsequent chapters. 

3.2  The game of cricket and our necessary assumptions 

Cricket is a two-innings sequential game where one of the teams (Team 1) bats first, 

attempting to score as many “runs” as possible. It is then Team 2’s turn to bat and their goal is 
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to beat the score achieved by Team 1. Note that a coin toss at the start of the game determines 

which team will bat first. There are many forms of the game of cricket; in this thesis we focus 

on One Day International (ODI) cricket, where each team faces a maximum of 300 legitimate 

balls during their innings. A team’s innings has two constraints - the 300-ball limit and a 

maximum of ten wickets (outs). When either of these constraints is reached, or in the case of 

the second innings the target score is achieved, the innings is terminated. Each batsman bats 

only once during a match and the game requires that two batsman be batting at any one time, 

which becomes impossible once 10 of the 11 players are out. 

Before we can consider creating a model of the game of ODI cricket, we need to set out 

the framework upon which our model will be built. It is important to identify the different 

stages of the game, define the variables involved in determining the outcomes and make the 

necessary simplifying assumptions that enable the model to be efficiently built. 

3.2.1  The stages of a One Day International match 

An international team usually has at least 12 players present at the venue of the match, 

from which 11 are chosen to play in the match. We treat the available players as fixed as the 

squad has generally been selected to play a series rather than an individual match. Following 

this assumption, there are 603 stages in a One Day International, as outlined in Table 3.1. 
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Table 3.1: Stages of the Game 

Stage Number(s) Description of Stage 

1 The naming of the teams 

2 The decision at the toss 

3 - 302 Balls 1 to 300 of the first innings 

303-602 Balls 1 to 300 of the second innings 

603 The declaration of the result 

3.2.2  The decisions required at each stage 

A One Day International begins with the naming of the teams (Stage 1). This must be 

determined before the coin toss and therefore constitutes its own separate stage. A captain will 

select 11 players from his available squad based on the relative strengths and weaknesses of his 

squad and the opposition squad, player fitness, weather conditions and pitch conditions among 

other factors. Another consideration is the bat-first or field-first decision that he wants to make 

if he wins the toss, weighed against his expectation of the opposition captain’s decision if the 

outcome is reversed. A captain is unlikely to want to select such a team that would be severely 

weakened if the result of the toss goes against him. 

Once the coin toss has taken place, the game is in Stage 2. The captain winning the toss 

must decide if his team’s interests are best served by electing to bat first or field first. The same 

factors from Stage 1 that could influence his decision apply again. 

Stages 3 to 602 constitute the actual playing of the game - Stages 3 to 302, the first 

innings, and Stages 303 to 602, the second innings. Before each ball is bowled three decisions 

are made: The fielding captain decides where he wants to place his fielders, acting within the 
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restrictions imposed on him at the time;
3
 the bowler decides the type of delivery that he is 

going to bowl to the batsman; and the batsman facing the next ball decides how aggressive he 

wants to be.  

The first two decisions are based on the expected amount of risk-taking of the batsman 

and the desired amount of risk for the bowling side. For example, the fielding captain may 

suspect that the batsman is very aggressive and is going to try to hit the ball out of the park for 

six runs. In response to this, he may position as many fielders as possible on the boundary and 

instruct the bowler to bowl a ball of full length, as it is difficult for the batsman to get his bat 

underneath this type of delivery. This would be the fielding captain’s best chance of preventing 

a six. However, the fielding captain might be willing to concede a six in exchange for an 

increased likelihood of getting the batsman out, in which case he may position his field and 

instruct his bowler differently.  

The batsman’s decision should depend on the game situation, the strengths and 

weaknesses of the bowler he is facing and the placement of the fielders (who must already be 

positioned before the bowler runs in to bowl). The batsman’s approach is most likely a set of 

conditional behaviours, based on all the types of ball that he could get from the bowler he is 

facing. In the example above it was the case that the batsman would be prepared to try to hit 

every ball with maximum power. We often see this behaviour towards the end of an innings, 

where wickets tend to be relatively less valuable as the 300-ball limit becomes the constraint 

more likely to end the innings. In other game situations, the batsman may be intent on 

                                                 
3
 The laws of cricket restrict the fielding captain from placing his nine available fielders (it is clearly defined 

where two of the fielders, the wicket-keeper and the bowler, will be positioned) in certain combinations. These 

restrictions are not constant throughout an innings. 
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defending balls which are well-bowled and only attempting to hit the poor balls with power. 

This decision regarding the amount of risk to be taken will be shown to be critical to the work 

to be presented in subsequent chapters. 

In Stages 3 to 602 there are a number of decisions which are made periodically by the 

batting and fielding captain, although not at every stage. In Stage 3 the batting captain must 

decide which two members of his team will be the first two batsmen and the fielding captain 

must decide which member of his team will bowl the first over (a set of six balls). The fielding 

captain must repeat this decision after every six balls and he is constrained by the restriction 

that each bowler may bowl a maximum of ten overs. The batting captain must make a decision 

at the fall of every wicket other than the ninth or tenth wicket, as he must decide which player 

from his team will be the next batsman. There is no decision to be made at the fall of the ninth 

wicket as there will only one batsman who has not yet batted and at the fall of the tenth wicket 

there is no more batting to be done. Generally speaking, the first five or six batsmen are of 

similar ability and are ordered according to the strategic preference of the captain, while the 

ability of the remaining batsmen is lesser for every drop in position in the order. 

Finally, Stage 603 is a simple stage containing the result of the match, after the final 

ball has been bowled. This result, from the perspective of either team, can be a win, a loss, a tie 

or a no-result. Note that these latter two, which both generally result in any league table points 

from the game being shared, are substantially different outcomes. A tie occurs when the game 

reaches its natural conclusion with Team 2 having scored exactly one fewer run than its target 

score. A no-result simply indicates that there was simply not enough cricket played to 

determine a winner. This would normally be because of poor weather making it impossible to 
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complete the allotted number of balls in each innings. Poor weather causing a reduction in the 

time available to complete the match, however, does not necessarily result in a no-result, as 

mechanisms exist to adjust Team 2’s target score to compensate for the reduced time. We 

discuss these in Chapter 7.  

3.3 Cricket decision-making in an economic framework 

From the first ball of the first innings to the last ball of the second innings, cricket is 

essentially a sequence of 600 two-move sequential games. In each of these games, the fielding 

team presents a frontier with a trade-off between risk and return to the batsman at the crease. 

They do this by selecting the positioning of the fielders and attempting to bowl the ball in a 

particular area of the pitch. The batsman selects a point on that frontier by choosing a level of 

aggression, before nature stochastically determines a realisation from the chosen point in terms 

of runs and/or a wicket.  

There are two important components to the determination of the outcome from a given 

ball. First, batsmen, bowlers and fielders have varying natural abilities and it is these abilities in 

combination that determine the range of frontiers that a fielding side can present to a particular 

batsman. Second, the players must make strategic choices in the frontier that the fielding team 

presents to the batsman and the point along the frontier that is chosen by the batsman. 

Throughout this thesis we focus our attention on the risk level chosen by batsmen, 

rather than the risk level chosen by bowlers and fielders. The overall amount of risk is a 

function of the risk level selected by each team; however, we show in Chapter 5 that it is the 
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batting team that has substantially greater control on the overall level of risk. As a result of this 

we predominantly choose to model the game of cricket as if bowling simply involves the 

execution of physical skills while batting also involves strategic choice. 
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CHAPTER 4 

Inferring the ground conditions: A Bayesian approach 

4.1 The influence of ground conditions 

The ground conditions present on the day of a match play an important role in the sport 

of cricket, but they are certainly not easy to measure. In this chapter, we develop a method of 

inferring the contribution of the variability of ground conditions to the total variability of the 

first-innings scores. We use this information to construct probability distributions for ground 

conditions conditional on the observed score and outcome of each match. Our process enables 

us to extract from the data a measure of ground conditions where no direct measure is available 

in our data set.  

The outcomes that take place on a sports field are closely related to the performance and 

ability of the players or athletes taking part in the sport; however, these are not the sole 

determinants. The sporting world contains many examples where factors unrelated to player 

and team ability have an impact on the type of game played and the result. The main factors of 

this type relate usually to weather conditions either prior to or during the time of competition, 

as well as the characteristics of the venue. The impact varies significantly from sport to sport. 

In sports mostly played indoors, such as basketball, the impact of weather conditions should be 

close to zero but “stadium” factors such as the quality of the lighting may have an impact on 

the level of scoring. In rugby union, wet and muddy conditions often lead to a more 
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conservative game, involving less lateral movement of the ball and lower scores. In sprinting, 

athletes are able to run faster with the wind, but the administrators of the sport do not recognise 

a world record time if there is deemed to have been substantial wind assistance. In the extreme, 

a sporting event may not even take place because of weather conditions; for example, sailing 

events may be postponed due to insufficient wind. 

In cricket, there are five main factors that influence the first-innings score as well as the 

likelihood of each score being a winning one. These factors are 

 the skill levels displayed by the players on both teams; 

 luck; 

 ground size; 

 pitch conditions; and 

 weather conditions. 

The skill measure has two components. The overall strength of the teams as well as their 

relative strength in bowling, fielding and batting all have an influence on the likely score. The 

second component to the skill measure is the actual performance on the day of the two teams, 

given their overall strengths in each discipline of the game. 

Luck plays a role in the outcome of a match; for example, poor umpiring decisions can 

have a marked influence, as can uncontrolled aerial shots that fall safely rather than going 

directly to the fielder.  

On a small ground, it is relatively easier for the batsmen to hit the ball out of the playing 

field for boundaries and for this reason scores tend to be higher on small grounds than on large 

grounds. A mitigating factor here is that there are generally fewer twos and threes run as 

batsmen more often have to settle for single runs due to the ability of the fielders to reach the 
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ball faster on a smaller ground. A fielding side should, however, be at a minimum indifferent if 

they were given the option to change from a small ground to a larger ground, as the larger 

ground simply creates more options for possible field settings, as well as making it more 

difficult for the batsmen to hit boundaries. 

Pitches are extremely variable in their nature. The moisture content, the type of soil 

used, the hardness, the amount of grass and any cracking present on the pitch all have an 

impact on how the ball behaves when it bounces on the pitch. Any movement or change of 

direction of the ball after hitting the pitch makes batting more difficult, as does inconsistent 

bounce, extreme pace off the pitch and extreme lack of pace off the pitch. Pitches are very 

individual; therefore, it is not appropriate to assume that all pitches at a particular ground will 

behave in the same way. 

A fascinating aspect of the game of cricket is the tendency of the ball to “swing”, or 

change direction, in the air after it has been bowled. This swing, if present, makes batting 

significantly more difficult and is likely to lead to lower scores. On a cloudy or humid day the 

ball generally swings significantly more than on sunny dry days. For this reason the weather is 

our final factor influencing the outcome of the game. 

It is useful to categorise these factors into two groups, based on the degree to which 

they are the same for both teams on any given day. The skill level is clearly team-specific and 

luck should be completely random; therefore, we combine these factors into a category entitled 

“performance”. The size of the ground obviously does not change during the game, and while 

pitch and weather conditions might change somewhat over the course of a match, we assume 
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that these factors vary to a far lesser degree within a match than between separate matches. We 

assign these three factors to a category entitled “conditions”. 

4.1.1  The danger of ignoring the influence of conditions 

Our analysis of the game of cricket is limited if we ignore the variability of ground 

conditions. We explain this by way of example. One of the models that we outline in Chapter 5 

predicts the average additional runs scored from any possible situation in the first innings. If we 

do not include a variable for ground conditions in our model, we are effectively assuming that 

all ground conditions are the same. It seems intuitive that this would be a model for what would 

happen in average ground conditions, but on closer inspection this is not the case.  

Consider a team that makes a very poor start to a match, perhaps two batsmen are out 

on the first two balls of a match. Given this start, it is more likely than not that this match is 

being played in worse than average ground conditions, from the point of view of the batting 

team. This likelihood, implicitly built into the model, means that the predicted average 

additional runs for this situation will incorporate the fact that we have a higher probability of 

being in poor batting conditions than good batting conditions. If we are, in fact, on an average 

pitch and the poor start was due to bad batting, good bowling or simply luck then our model is 

going to underestimate the expected number of future runs. The opposite holds for situations 

where the batting team makes a very good start. In this situation they are more likely than not 

to be playing in better than average ground conditions. If conditions on the day are in fact 

average, meaning that the good start is due to factors other than conditions, we will 

overestimate the expected additional runs that can be scored in these average conditions. 
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Effectively, ignoring ground conditions in our model means that we are estimating reduced-

form coefficients. In order to construct a predictive model of what would be expected to happen 

under different ground conditions, it is important to include a ground conditions variable in our 

model to enable the estimation of structural-form coefficients. 

There is an important difference between a situation where all ground conditions are the 

same and a situation where we know that ground conditions may vary but we are ignorant of 

their variations. In the former case we would not require a variable for ground conditions and 

our estimated model would obviously not be biased by this omission. In the latter case if we 

proceed with our modeling without including a variable for conditions then our model will 

make implicit assumptions about conditions based on the strength of the position that the 

batting team is in at any given time. Including a ground conditions variable in our model has 

two effects: improving the accuracy of the model for any particular ground conditions and 

identifying the sensitivity of the model in various situations to different ground conditions. It is 

important when constructing a strategy to know how much you should adapt your strategy to 

various conditions and the optimal adjustment is unlikely to be constant throughout the game. 

Duckworth and Lewis (2005) are critical of the proposed target adjustment method of 

Carter and Guthrie (2004), stating that they do not take ground conditions into consideration. 

The model proposed in Duckworth and Lewis (1998), implicitly assumes that all variation in 

first-innings scores is due to variation in ground conditions. We note that the difficulty of 

estimating ground conditions is likely to have forced researchers to adopt either one of these 

extreme points of view, while the truth is likely to be somewhere in-between. 
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4.1.2  Why is a ground conditions variable missing? 

Directly observing a ground conditions variable is extremely difficult. While the size of 

a particular ground is generally constant, weather conditions and the nature of the pitch are 

certainly not. Some grounds are more likely to have certain weather and pitch conditions than 

others, but there is significant variation due to the time of year and beyond this a large random 

component. Measuring the pitch conditions would be extremely difficult and measuring the 

effect of the weather conditions would be almost impossible, even given historical weather 

records, as there is such a variety of factors that can make a ball swing. There may be, to the 

naked eye, two identical days and the cricket ball may swing one day and not the next.  

More importantly, even if a cricket-expert observer could estimate a value for ground 

conditions on the day of any given match, it is not easy for a modeller to objectively obtain 

ground conditions data. Furthermore, our data set is historical and therefore determining the 

nature of the pitch in particular, in games that were in some cases played several years ago is 

very problematic. 

In light of both the natural difficulty of determining ground conditions and their 

omission from all known historical data sets, we decide that an indirect approach to estimating 

the ground conditions is required. In the remainder of this chapter we present a possible 

approach. 
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4.2 The simple theoretical model 

We create two variables by separating the factors influencing the outcome of a game 

into two groups. Those factors that are specific to the ground conditions on the day are ground 

size, pitch conditions and weather conditions. We combine these factors into a variable 

“Conditions”. The remaining factors, skill and luck, ought to be independent of the ground 

conditions on the day and we combine these factors into a variable “Performance”.  

For ease of interpretation, we consider performance to be a positive function of the 

batting team’s skill and luck and a negative function of the bowling team’s skill and luck; 

therefore, an above average value for performance will on average imply a better performance 

by the batting team than the bowling team, but not a particular level of either batting or bowling 

performance.  

We consider the value of conditions to be the expected value of the number of first-

innings runs that the average batting team would score against the average bowling and fielding 

team in the prevailing conditions on the day. 

Let S be the first-innings score,   be the measure of “Performance” and   be the 

measure of “Conditions”. Given that a game contains two innings, define the performance of 

the team batting first (Team 1) as 1 and the performance of the team batting second as 2 . 

We assume that both teams face the same conditions, so  is constant throughout a match. The 

winning team is the team with the greater  . We define the relationship between score, 

performance and conditions as 
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  S      

Ideally we would have data for  , but absent this information we want to construct an 

estimate for  which is based on the observable information. If we knew the distributions of S ,

 and  as well as the probability of winning given the value of these three variables, then we 

could apply Bayes’ rule to construct a posterior distribution of  given the first-innings score 

and the result. We would then have an estimate of conditions constructed solely from 

observable information. By assuming that S , 1  and  are normally distributed, and assuming 

that 2 is drawn from the same distribution as 1 but has a constant added to represent the 

second-innings advantage, the only information that we are missing are the means and 

variances of the three normal distributions. The mean and variance of S can be calculated 

easily and we have already defined  as the average score that will be achieved when two 

average batting and bowling teams play each other; therefore, the mean of  is equal to the 

mean of S and the mean of 1 is equal to zero. All that we are missing is a decomposition of 

the variance of S into two parts, representing the variance of 1 and  . With this information, 

we would be able to estimate the posterior distribution for conditions. 

We assume an independent, additive relationship between our two right-hand-side 

variables as we do not expect the deviations (in terms of number of runs) from the value of 

conditions of the total scores achieved to vary between different sets of conditions. In other 

words, we expect a score that is  runs in excess of  to be equally competitive for a given 

value of , independent of the value of  . 
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We further assume that   and   are normally-distributed variables having 

distributions 
2~ (0, )N    and 

2~ ( , )N     , where 
S  . In order to create a tractable 

model, it is convenient to assume that   and   are normally distributed as this implies that S 

is also normally distributed. Our approach can nevertheless be justified by the application of 

the central limit theorem to an understanding of the game of cricket.  

The performance measure is a combined measure of batting team performance and 

fielding team performance. The batting team performance is composed of the individual 

performances of up to 11 batsmen and the fielding team performance is composed of the 

individual performances of up to 11 bowlers and fielders. Each player may not play an equal 

part in determining the overall performance of the teams, but generally speaking the central 

limit theorem would imply that there are more ways of putting together the 22 performances in 

a way that gives an average overall performance than there are ways of putting them together to 

get an extremely good or extremely poor performance. Furthermore, with 300 individual balls 

in an innings, performance will also vary from ball to ball even within the overall performance 

of an individual player. The most extreme performances would require an extremely good 

performance from all required members of one team and an extremely poor performance from 

all required members of the other team. This would be much less likely than an average total 

performance, which could be caused by almost unlimited combinations of good batting and bad 

bowling from various players, or vice versa, completely cancelling each other out. This is true 

even if the individual player batting and bowling performance distributions were uniform.  

We can make a similar argument for the normality of the conditions distribution. 

Conditions are a combination of a number of individual factors such as the nature of the pitch, 
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ground size and weather conditions. These main factors are likely to have smaller factors 

underpinning them, with each sub-factor requiring a draw from a distribution for each match. It 

is, however, not as obvious that our conditions distribution should have a normal distribution as 

it is for our performance distribution, due to at least some factors, such as rainfall and soil type, 

being relatively constant at a particular venue or at least correlated with a particular country. 

Later in the chapter we show that normality is a reasonable assumption for S, which increases 

our confidence in the normality of  . 

Since the sum of two normally distributed independent random variables is normal, we 

are also implicitly assuming that the first-innings scores are normally distributed. The true data 

generating process creates a score that is censored at zero. We note that assuming normality for 

performance and conditions raises the prospect of a negative total score; however, this is 

extremely unlikely over the range of the data.
4
 The log-normal distribution, while having the 

desirable property of being bounded at zero, does not fit the data well. The assumed 

relationship between the mean and variance of our performance, conditions and first-innings 

score distributions is 

  S     
  

  
2 2 2

S     
  

                                                 
4
 The probability, given the mean and variance of our full data set, of our assumed normal distribution generating a 

score in any given match less than zero is 0.000016. This means that over our dataset of 784 matches, the 

probability of all our observed scores being greater than zero is 98.8%. 



32 

 

We centre the conditions variable around the mean first-innings score and the performance 

variable around zero in order to create the interpretation that a performance is a certain number 

of runs more or less than the conditions are worth. This approach, however, is simply a 

normalising assumption that we make without loss of generality.  

4.2.1  Inferring the values of 2

  and 2

  

In order to show how we might go about estimating 
2

  and 
2

 , consider two 

hypothetical games. In hypothetical game one, we assume that conditions are known and do not 

change from match to match 
2( 0)  . Team 1 draws a number from the performance 

distribution   and Team 2 then draws a number from the same distribution. The team drawing 

the higher value of   wins and the first-innings score S is equal to   . In this game, the 

probability of Team 1 scoring fewer runs than a particular score is exactly the same as their 

probability of successfully defending that score in the second innings. That is, the graph of the 

cumulative distribution of first-innings scores will be identical to the graph showing the 

probability that a team with a given score in the first innings will win the game. 

In hypothetical game two, we allow conditions to have a positive variance
2( 0)  . 

This time nature draws a value for   before the game begins and the two teams subsequently 

draw values for  . As with hypothetical game one, the team drawing the higher value of   

wins and the first-innings score S is equal to   . In this game, however, the presence of 

variability in conditions will affect both the observed distribution of S and the probability of 

each score being a winning one. If we only observe the distribution of first-innings scores, that 

is, we do not observe any information about performance or conditions, the scores achieved 
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contain information about the conditions. If we observe a lower than average first-innings 

score, it is more likely that this game was played under a relatively low draw from the 

conditions distribution, when compared to our prior of no knowledge about conditions. That is, 

conditions, more likely than not, were more difficult for batting than average and bear part of 

the responsibility for the lower than average score. When a higher than average first-innings 

score is observed, it is more likely than not a match played in better than average batting 

conditions and part of the responsibility for the high score belongs to the conditions, rather than 

being solely allocated to the performance of the two teams. 

The conditions variance affects the second-innings probability of winning function. The 

observation of a low score increases the probability that this match is being played under a low 

draw from the conditions distribution, which means that the probability of Team 1 successfully 

defending the score is higher than the a priori probability of scoring fewer than that score in the 

first innings when nothing is known about the conditions. The probability of winning function 

is therefore flatter than the cumulative density of scores function where we have a non-zero 

variance of conditions. The higher is the variance of conditions, the flatter is the probability of 

winning function, assuming a constant total variance of scores. We illustrate this in Figure 4.1. 
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Figure 4.1: First-innings Score and Probability of Winning 

 

At this point, we need to define the second-innings distribution as the function whose 

cumulative density function is identical to the probability of winning function. 

  ( ) Pr( | )J S S   

where 

  
1, 1

0, 1

if Team wins thematch

if Team loses thematch








 

 Note that this is a very different concept to the distribution of the actual scores 

observed in the second innings, which we do not use in this paper other than in determining the 

value of  for each game. The actual second-innings scores are not of significant 

informational value as the game ends when Team 2 moves ahead of Team 1’s score as further 
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play from that point is redundant given that Team 2 has already won the match. The 

distribution of Team 2’s totals would simply be a lower bound to their potential scores in 

completed innings.  

Once we have the first and second-innings distributions, we are able to infer the 

contributions of 
2

  and 
2

  to 
2

S  by comparing the variances of the first and second-innings 

distributions. We show this in Figure 4.2 where we plot combinations of conditions variance 

and second-innings variance for a given value of the first-innings score variance.  

Figure 4.2: Inferring the contribution of conditions variance for a given 
2

S  

 

A conditions variance of zero (see Point “A”) will lead to the second-innings variance 

being equal to the first-innings variance; this is the case in hypothetical game one, where the 

variation of performance explains the total variation of score. At the other extreme, a conditions 
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variance tending to the first-innings score variance (see Point “C”) will lead to the second-

innings variance tending to infinity. In this case, the entire variation in score is due to the 

conditions and the level of performance is constant. If we know the value of the second-innings 

variance then we can read the value of the implied conditions variance from the vertical axis of 

the graph (see Point “B”). 

4.2.2  Accounting for the second-innings advantage 

We need to make an additional adjustment before we can begin to estimate the values 

for 
2

  and 
2

 . Hypothetical game two assumes that the two teams draw from a distribution of 

  whose mean and variance are exogenous; that is, both teams are drawing from the same 

distribution so there is no advantage in the order of drawing. However, there is a theoretical 

second-mover advantage in ODI cricket. This is due to the team batting second having a known 

target score, resulting in them being able to adjust their risk strategy depending on the target. 

We acknowledge that while the fielding team do have some control over the overall risk 

strategy of the innings, in terms of bowling style and field placement, significantly more 

control over the risk strategy is available to the batting team. This is obvious to any cricket 

watcher as we almost always see the scoring rate increase and the survival rate decrease 

towards the end of the first-innings, which is what the team batting first would generally prefer 

as its overs begin to run out. 

We can view the second-innings advantage as resulting from the batting team choosing 

a level of risk. The higher is the chosen level of risk, the higher is the scoring rate but the lower 

is the probability of survival. While the team batting first wishes to, in most situations, 
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maximise their expected total score and therefore chooses the level of risk resulting in the 

highest expected score, the team batting second wishes to maximise the probability of scoring a 

higher total than the team batting first achieved. The binary nature of the outcome of the second 

innings ensures that a team chasing a high total optimises by choosing a high level of risk, 

which is the equivalent of drawing from a distribution of performance with high variance, 

while a team chasing a low total optimises by choosing a low level of risk - that is, drawing 

from a low variance distribution. In both cases the optimal distribution from which the second 

mover draws   would likely have a lower mean than the optimal distribution from which the 

first mover draws  .  

We outline this concept in Figure 4.3. A team chasing 200 runs in conditions which are 

worth 250, for example, might optimise by drawing from a distribution with a mean of 240 and 

a variance of 2000 runs, rather than the optimal first-innings strategy which might have a mean 

of 250 and a variance of 3000 runs. They accept a lower mean by taking a lower level of risk 

but in doing this they increase their probability of scoring 201 or greater. By contrast, a team 

chasing 300 runs in conditions which are worth 250 might optimise by drawing from a 

distribution with a mean of 240 and a variance of 4000 runs. Their high risk level reduces their 

expected score but the high variance increases the probability of getting the extremely large 

score that they require to win the match. 
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Figure 4.3: Potential choices of over risk level for an innings 

 

We assume that the second-innings advantage is the difference between the means of 

the first and second-innings distributions and that it is a constant number of runs regardless of 

the first-innings score. If Team 1 scores an average score, then Team 2’s optimal strategy may 

well be to bat as if they were batting in the first innings; that is, it would choose the level of risk 

that maximises the expected score. However, this assumes that Team 2 only gets to select their 

risk level once, at the beginning of their innings. This is not the case in a game of cricket; Team 

2 can adjust their risk level at any time, depending on how their innings is progressing. For this 

reason, a constant second-innings advantage, independent of the first-innings score, is a 

reasonable assumption. We will incorporate this second-innings advantage into our ( )J S  

functions in our conditional probability formula for conditions given score and result. 
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4.3  The Data 

4.3.1  Sources and timeframe 

The research described in this chapter only requires three pieces of information: the date 

that the match was played; the first-innings score; and the result of the match. This information 

is publicly available on www.cricinfo.com. We select our time period as the decade of the 

2000s: from January 1, 2000 until December 31, 2009. There were a total of 1405 official One 

Day Internationals played during this decade. Subsequent chapters of this thesis require more 

detailed ball-by-ball data and this is a subset of the data used in this chapter. 

In order to ensure a robust analysis, there are some additional factors to consider when 

selecting the data set. As at the date of writing, there are sixteen countries with official ODI 

status.
5
 It is generally accepted among cricket followers that there is a significant gap between 

the top-eight-ranked countries in the world and the remaining countries. We therefore only 

select matches played between two top-eight countries in our data set. Additionally, to perform 

the analysis we need an estimate of the distribution of first-innings scores in completed innings. 

On occasion, rain interferes in the game of cricket, resulting in a shortened match or even 

causing the complete abandonment of the match. These matches have the potential to distort 

our analysis. In order to be included in our data set, at match must meet all of the following 

criteria: 

 the match was played  between January 1, 2000 and December 31, 2009, 
inclusive; 

                                                 
5
 These teams are Australia, Afghanistan, Bangladesh, Canada, England, India, Ireland, Kenya, Netherlands, New 

Zealand, Pakistan, Scotland, South Africa, Sri Lanka, West Indies and Zimbabwe. 

http://www.cricinfo.com/
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 the match was between two top-eight countries; 

 the first innings was not shortened in any way other than the batting team being 

bowled out before their full allotment of 50 overs had been used; and  

 the match was not abandoned without the declaration of a winner. 

The total number of matches meeting all these criteria is 784. This forms our dataset for the 

analysis in this chapter. 

4.3.2  Data demographics 

We outline the number of matches involving each team and in each venue country in 

Tables 4.1 and 4.2. These tables show that we have a good distribution of matches. 

Table 4.1: Number of matches played by each team 

Country Bat First Bat Second Total 

Australia 130 98 228 

England 90 78 168 

India 106 123 229 

New Zealand 82 103 185 

Pakistan 103 104 207 

South Africa 83 109 192 

Sri Lanka 120 85 205 

West Indies 70 84 154 
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Table 4.2: Number of matches played in each country 

Country Matches 

Australia 122 

England 81 

India 99 

New Zealand 73 

Other 91 

Pakistan 53 

South Africa 110 

Sri Lanka 83 

West Indies 72 

4.3.3  Two approaches 

In the remainder of this chapter we show the results that we obtain from splitting the 

overall distribution of first-innings scores into their performance and conditions components. 

We show two possible approaches. Firstly, we simply perform the analysis using our entire data 

set. Secondly, we split the data into various segments of time in order to test for the impact of 

changes to the rules of the game. 

4.4 Approach One: A single dataset 

In this section we analyse our 784 matches as one single dataset, assuming that changes 

to the rules of ODI cricket over the ten-year period have no impact and that all eight teams are 

of equal ability. The advantage of making these assumptions is they allow us to work with the 

largest possible dataset with which to estimate our distributions. 
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4.4.1  Testing for normality of first-innings scores 

Before we can attempt to split the variance of first-innings scores into their performance 

and conditions components we need to test our assumption that these scores are approximately 

normally distributed. Figure 4.4 shows the frequency of the first-innings scores, in bins of thirty 

runs, while Figure 4.5 compares the CDF of the first-innings score data with the CDF of a 

normal distribution with the same mean and variance. Normality appears to be a reasonable 

assumption; however, we perform a statistical test to confirm our conclusion. 

Figure 4.4: Distribution of first-innings scores 
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Figure 4.5: CDF comparison: Data vs. Normal Distribution 

 

 The Jarque-Bera test uses the sample skewness and kurtosis to test potential departures 

from normality. The null hypothesis is that the data are normally distributed, implying that both 

skewness and excess kurtosis are equal to zero. At this point it is useful to show some summary 

statistics of the data, in Table 4.3. 

Table 4.3: Summary Statistics for First-innings Scores 

Statistic Value 

n 784 

Mean, ( S ) 243.3 

Median 247.5 

Variance, (
2

S ) 3412.5 

Standard Deviation, ( S ) 58.5 

Skewness -0.228 

Kurtosis 2.888 

Excess Kurtosis -0.112002 
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The Jarque-Bera test statistic is 

  2 21
( )

6 4

n
JB K   (1) 

where n is the number of observations in the sample,  is the sample skewness and K is 

the sample excess kurtosis. The Jarque-Bera statistic has an asymptotic chi-square distribution 

with two degrees of freedom. This chi-square distribution is an approximation of the true 

distribution of the Jarque-Bera statistic and is prone to making Type I errors. We identify the 

true distribution of the Jarque-Bera statistic for a sample size of 784 by Monte Carlo 

simulation. We generate 784 values from the standard normal distribution, calculate the 

skewness and excess kurtosis before finally calculating the JB statistic. Repeating this process 

10000 times gives us a distribution of 10000 JB statistics under the assumption of normality. 

We are asking the question, were our data normal, how likely would we be to get a JB statistic 

as extreme as the one we observe by random chance alone in a sample of the same size as ours. 

In our data set, JB  7.186640 . This value occurs between the 9692
nd

 and 9693
rd

 observations 

of our simulated distribution of 10000 JB statistics and therefore we are able to reject the null 

hypothesis that the data are normally distributed at the 5% significance level. 

It is important to see how much our scores deviate from the normal distribution with the 

same mean and variance. Sorting the data in ascending order of first-innings score, if the data 

are normally distributed the n
th

 score should be equal to the inverse normal of
1

n
, for our mean 

and variance. Ignoring the first and last five observations in a bid to eliminate any outliers, the 

mean absolute deviation of our observed score from the theoretical score implied by the normal 
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distribution is 4.1 runs. This indicates that our data are, on average, not substantially different 

to the normal distribution. 

The goal of this analysis is to estimate a value for conditions where no variable exists in 

the data set. We are not looking for perfection; rather, we are seeking a substantial 

improvement on the alternative of simply admitting to having no knowledge about conditions. 

While we have rejected the null hypothesis of perfect normality, it is clear from Figures 4.4 and 

4.5 that the normal distribution is the best approximation to the data that we have. For these 

reasons, we proceed with our analysis despite the imperfect normality. 

4.4.2  Estimating the second-innings variance 

We have, from our 784 matches, a distribution of first-innings scores as well as the 

match result for each one of those 784 scores. We want to estimate the probability of winning 

for a given first-innings score. In order to achieve this, we construct a Probit model where we 

regress the outcome of the game on the score achieved by the team batting first. We have a 

very small sample (six) of tied matches; therefore we do not want to run an ordered Probit 

model with three outcomes as we would not get a good estimate of the relationship between 

first-innings score and the probability of a tie. We are not particularly interested in this outcome 

in any case. In order to simplify the analysis we repeat each tied match in the data set as one 

win and one loss and give each of these observations a weight of 0.5. All other observations 

have a weight of one in the regression, meaning that each match has a total weight of one. We 

define the probability of winning given first-innings score S function Pr( | )S as a simple 

Probit model in Equation (2). Let 
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1

0

if theteambatting first wins the game

if theteam batting second wins the game


 
  
   

    Pr( 1| ) ( )iS S S        (2) 

where is the cumulative distribution function of the standard normal distribution. It follows 

that  

  
Pr( 0 |   )  1  Pr( 1|   )i iS S S S      

  

In our data set, 3.292363342    and 0.0132766688  , which means our Probit 

model is 

  
Pr( 1| ) ( 3.292363342 0.0132766688 )iS S S     

  

This Probit model reveals the probability of winning for the team batting first, given that they 

scored a particular total. These probabilities given an implied distribution of second-innings 

scores, hereafter referred to as the second-innings distribution. To estimate the mean and 

variance of this second-innings distribution,
2 2

2

S Sand  ,we return to our Probit function, 

Pr( 1| ) ( )iS S S      , which implies the Z-score, Z, is calculated as 

  

2

2

S

S

S
Z








  

  Z S    

In a standard normal distribution, Z is equal to zero at the mean value of S; therefore 
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  2
0 S  

 

  
2S







  

We substitute the mean into the formula for Z in order to calculate the variance as 

  2S

S

S




 





 

 

  

2S

S
S

 
 




   

  
2

1S    

  
2

1
S


  

  
2

2

2

1
S


  

We are now able to plug in our values for   and   to determine the mean and variance of our 

second-innings distribution. 

  
2

247.981S







 

 

  
2

2

2

1
5673.117S


 
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4.4.3  Splitting the first-innings variance 

A summary of the information required to split the first-innings variance into its 

separate performance and conditions components is provided in Table 4.4. Note that there is a 

difference between the first-innings mean and the second-innings mean of 4.7 runs. Also, note 

that the second-innings variance is significantly higher than the first-innings variance. These 

differences will play a major role in determining our measures of conditions and performance. 

 Table 4.4: Means and Variances of the distributions 

 N 
Mean 

1
st
 Innings 

Variance 1
st
 

Innings 

Mean 

2
nd

 Innings 

Variance 2
nd

 

Innings 

Score 784 243.287 3412.488 247.981 5673.117 

 

Figure 4.6 shows the differences between the first and second-innings distributions. We 

have linearly adjusted the second-innings distribution to remove the second-innings advantage 

of 4.694 runs. It is clear that the cumulative distribution functions cross over at approximately 

the 50% mark.
6
 The implication of this crossover is that, after the removal of the second-

innings advantage, scores in the upper ranges of the distributions are easier to chase 

successfully than they are to score in the first innings, where nothing is known about conditions 

prior to the first-innings score being observed. Conversely, scores in the lower ranges of the 

distributions are more difficult to chase successfully than they are to score. This is due to the 

second-innings distribution having a greater variance.  

                                                 
6
 The crossover point is not exactly at the 50

th
 percentile due to the small amounts of non-normality present in the 

first-innings distribution. The second-innings distribution, being sourced from a Probit model, is normal by 

definition. 
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 Figure 4.6: Adjusted cumulative distributions 

 

 To split the first-innings variance (
2

S = 3412.488) into performance variance (
2

 ) 

and conditions variance (
2

 ), we investigate combinations of 
2

  and 
2

  in order to find a 

combination that would result in a second-innings distribution with similar variance to that 

implied by our Probit model. This enables us to construct a distribution of first-innings score S  

as a function only of performance  , where this new distribution represents the level of 

performance that is required on average to achieve each score. As this distribution assumes that 

conditions are unknown, this is exactly the situation that we are faced with when we estimate 

the second-innings distribution. It follows that this distribution should approximate the second-

innings distribution; since we are assuming that the conditions are the same for both teams then 

if   is higher in the second innings then the team batting second should win. Note that in this 

analysis we ignore the second-innings advantage. Later in this chapter we show that a constant 

value second-innings advantage has no impact on the second-innings variance. 
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For each possible share of the total variance that we investigate, we are asking the 

question “if these were the shares of the total variance attributable to each factor, what would 

the second-innings variance be?” We then select the values of 
2

  and 
2

  that result in the 

closest second-innings variance to that observed in our data set.  

To determine the second-innings variance that would exist under each possible split of 

the first-innings variance, we need to define some variables. Let    be a binary variable 

taking a value of one if the team batting first wins the match and zero otherwise. Let ( )f  , 

( )g S  and ( )k  denote the density functions of  , S and   respectively, and let ( )K  denote 

the distribution function of  . Let Pr( ) be the probability of observing outcome . Further, 

let ˆ( | )f S be the conditional density of  given S. Let  be the fraction of the first-innings 

variance allocated to performance, which implies that a fraction of (1 )  of the first-innings 

variance is allocated to conditions and let ( )J S be the distribution function of S implied by the 

probability of winning function Pr( 1| )S   under the assumption of a split of . Finally let 

2S be a latent variable which is a measure of performance and is the sum of 2 and  . This 

latent variable indicates a win for Team 1 if 2S S  and has the property 2( ) ( )J S J S  . 

The probability that Team 1 wins, having scored S, is equal to the total of the 

probabilities of Team 1 winning having scored S in conditions worth  , over all possible 

values of  ; that is 

  ˆ( ) Pr( 1| ) Pr( 1| , ) ( | )J S S S f S d          . (3) 
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Now, the probability of Team 1 winning given they made a particular score, S, in particular 

conditions  , is equal to the probability that Team 2 achieves a lower   than that achieved by 

Team 1. Since S    , we can write 

  Pr( 1| , ) ( )S K S      (4) 

Given that Team 1 scores S, the probability that they were playing in conditions worth 

 is equal to the density of  multiplied by the density of performance S   , divided by 

the overall density of S. 

  
( ) ( )ˆ( | )

( )

f k S
f S

g S

 


 
  (5) 

When we put Equations (3), (4) and (5) together we get 

  
( ) ( )

( ) ( ) .
( )

f f S
J S K S d

g S


 
 

 
    (6)  

We perform some numerical investigations into the properties of Equation (6), included 

as Appendix A. It turns out that the distribution defined by Equation (6) is normal, with 

variance defined by 

  
2

2 2

,

2
1S S 



 
  

   

Given that we know 
2

2

S and
2

S , we can define the fraction of score variance that should be 

allocated to performance as 
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  2

2

2 2

2 S

S S




 



 (7) 

Equation (7) enables us to determine the appropriate split of the variance of the first-

innings scores into its performance and conditions components for any first-innings variance 

and Probit-implied second-innings variance. 

Table 4.5 outlines the variances of performance and conditions and their shares of the 

total first-innings variance. 

Table 4.5 Estimated split of the first-innings variance 

2

S
 

2


 

2


 

  1-  

3412.5 2563.4 849.1 0.751 0.249 

 

Now that we have obtained the variances of  and  , we are able to combine this 

information with the assumed means of zero and 243.3 (respectively) and assumed functional 

form of normality, in order to plot the distributions in Figure 4.7. Note that changing the 

assumptions that the performance mean is zero and the conditions mean is 243.3 would simply 

shift the performance and conditions distributions along the x-axis. As we have defined them, 

our functions are 

  ( ) ~ (243.287,3412.488)g S N  (8)  

  ( ) ~ (243.287,849.076)f N  (9) 
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  ( ) ~ (0,2563.412)k N  (10) 

  ( ) ~ (243.287,5673.117)J S N   

Figure 4.7: The performance, conditions and score distributions 

 

4.4.4  Determining the second-innings performance advantage 

Previously we have modeled the probability of Team 1 winning given that they have 

scored S runs in the first innings as 

  
( ) ( )

( ) ( ) .
( )

f f S
J S K S d

g S

 
 

 
    (11) 
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In the presence of a second-innings performance advantage of a constant number of 

runs regardless of first-innings score, which we call A , Equation (11) changes to the following 

  
( ) ( )

( ) ( ) .
( )

f f S
J S K S A d

g S


 
 

 
     (12) 

Equation (12) incorporates the notion that the probability that Team 2 will lose when 

chasing 1S runs to win is equal to the probability that Team 1 has of scoring fewer than 1 pS A

runs. That is 

  1 2( ) ( )K K A  
  

 Recall that the mean of the distribution of first-innings scores, S , is equal to 243.3, 

while the  mean of the implied second-innings distribution, 
2S , is equal to 248.0. The second-

innings advantage observed in the number of runs scored is equal to the difference of these two 

means, 4.7 runs. We treat this as a constant rightward shift of the ( )J S function (which we 

previously modeled without the second-innings advantage), as shown in Figure 4.8. It is 

somewhat intuitive that this constant rightward shift could be achieved by an identical constant 

rightward shift of the performance distribution when modeling the batting innings of Team 2; 

however, this is not the case. To demonstrate, we apply the second-innings advantage to 

Equation (12) using our functions for performance and conditions obtained in the previous 

section.  

  
4.694

( ) ( )
( ) ( 4.694) .

( )
A

f f S
J S K S d

g S

 
 

 
   
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A magnified display of the outcome is shown in Figure 4.9. The ( )J S implied by the setting of 

the performance advantage A equal to the difference in the means of the first and second-

innings distributions is to the right of the observed ( )J S distribution. This means that when 

Team 2 has an advantage in performance of a particular number of runs, A , the advantage 

observed in the distribution of scores implied by the probability of winning function is SA A . 

In our example, using 4.7A  leads to a second-innings mean of 249.5 and a second-innings 

variance of 5673.1. The inclusion of a constant second-innings performance advantage has had 

no impact on the second-innings variance. 

Figure 4.8: The second-innings advantage in score 
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Figure 4.9: Imposing a performance advantage equal to the score advantage 

 

 In Appendix B we show some numerical simulations that are useful for determining the 

relationship between the performance advantage and the score advantage. It turns out that the 

mean of the second-innings distribution can be defined as 

  
2S S

A
 


   (13) 

Equation (13) implies that the higher the fraction of first-innings score variance allocated to 

conditions, rather than performance, the larger the difference in the means of the first and 

second-innings distributions, for a given performance advantage. In our data set, 3.526A  . 
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4.4.5  Establishing the conditional distributions using Bayes’ Theorem 

We now have all the information that we need to determine the conditional distributions 

for conditions, given the first-innings score and the result of the game. Let ( , )h S  be the joint 

density function of S and . Using Bayes’ theorem, we define the conditional density function 

for conditions in match i as 

  

,( ) ( | )Pr( | )
( | , )

( , )

i i i i ii
i ii

i i

f g S S
f S S

h S

   
   


   

 (14) 

Since the probability of scoring S runs in conditions worth  , ( | )g S  , is equivalent to the 

probability of achieving performance S   , Equation (12) can now be written as 

  
,( ) ( )Pr( | )

( | , )
( , )

i i ii i i
i ii

i i

f k S S
f S S

h S

   
   




     (15)  

Reproducing Equations (8), (9) and (10) from above and adding our calculated second-innings 

advantage, the equations that define the parameters of our model are 

  ( ) ~ (243.287,3412.488)g S N  (8)  

  ( ) ~ (243.287,849.076)f N  (9) 

  ( ) ~ (0,2563.412)k N  (10) 

  
3.526A   (16) 
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We can estimate ( )if  and ( )i ik S  directly from the distributions outlined in 

Equations (9) and (10). Since the probability of winning a match when batting first is equal to 

the probability of performing better than the other team by a greater amount than the second-

innings advantage A
, we can define the cumulative density function of performance as ( )K 

and write 

  

,

1 ( ), 0
Pr( | )

( ), 1

ii
i i i

ii

K S A
S

K S A





 
 

 





    
  

      

Finally, ( , )i ih S   is the summation of the probability of observing each possible 

combination of performance, conditions and result over the set of outcomes where iS S and

i  . This is equivalent to summing the numerator of Equation (15) over all outcomes where 

iS S and i  . We can write 

  ( , ) ( ) Pr( | )i i i i ih S g S S   (17) 

Since the probability of Team 1 winning with a score of S is J(S), Equation (17) 

becomes 

  

( )(1 ( )), 0
( , )

( ) ( ), 1

i i

i i

i i

g S J S
h S

g S J S






  
  

    

This means that our final equations for determining the conditional density of conditions given 

the score and result are as follows 
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( ) ( )(1 ( ))
, 0

( )(1 ( ))
( | , )

( ) ( ) ( )
, 1

( ) ( )

ii i i i

i i
i ii

ii i i i

i i

f k S K S A

g S J S
f S S

f k S K S A

g S J S





  


   
  







   
 

 
     

  
 
 

 (18) 

In words, Equation (18) is calculating the probability of achieving each particular 

combination of conditions, first-innings score and result, divided by the total probability of 

observing each combination of first-innings score and result. We use Equation (18) to 

determine the probability of a certain value of conditions given the first-innings score and the 

outcome of the game, two variables that are observable in the data set. Given a score and a 

result, we can determine ( | , )f S   for every possible integer value of conditions and we have 

a random variable of which we can calculate the mean and variance using expected values. 

4.4.6  Selected results 

We plot selected examples of the conditional distributions of conditions given score and 

result in the following figures. The impact of the result of the game is shown in Figure 4.10, 

where the conditional distributions of conditions implied by two situations are shown, along 

with the naive prior distribution of conditions. In each situation, the team batting first scored 

243 runs (the closest whole number to the overall mean in the data set), for one win and one 

loss. There are two important things to note about these distributions. First, the conditional 

distributions provide more certainty about what the conditions are like in each game, as their 

variances are substantially lower than the prior distribution. Second, knowing the result of the 

game makes a substantial difference to the mean of the conditional distribution, as outlined in 

Table 4.6. An average score resulting in a win shifts the conditional mean further from the prior 
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mean than an average score resulting in a loss, as there is a smaller than 50% chance of an 

average score resulting in a win, due to the second-innings performance advantage. 

Figure 4.10: Inferred conditions under different match results 

 

Table 4.6: Mean and Variance of inferred conditions under different match results 

Conditions Distribution Mean Variance 

Naïve Prior 243.3 849.1 

243, 0S  
 251.7 558.8 
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for Team 1 to lose when they have scored a very high score is a surprising result. The variance 

is also lower in this situation, implying a greater level of certainty about the conditions. 

Figure 4.11: Inferred conditions under different first-innings scores 
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Team 1, for a given first-innings total. We also note that the further away from the overall 

mean the first-innings score is, the larger the impact of one result compared with the other on 

the conditions distributions. Figure 4.15 shows that we have a higher level of certainty about 

the value of conditions when the result observed is the less likely one, given the first-innings 

score.  

Figure 4.12: Inferred conditions means 
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Figure 4.13: Inferred conditions variances 
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We choose three situations from our analysis in the previous section to examine for 

normality. If the distributions are perfectly normal then they should have skewness and excess 

kurtosis equal to zero. Additionally, if we take Z-scores of the cumulative probability at each 

value of conditions, these Z-scores should be perfectly linear and therefore a linear regression 

through these Z-scores should have an R-square value equal to one. We show this information 

in Table 4.8. 

Table 4.8: Normality checks for selected conditions distributions 

Conditions Distribution Skewness Kurtosis 2R of Z-score OLS 

200, 0S    0.0291 0.0034 0.999899 

243, 1S    -0.0230 0.0060 0.999929 

300, 0S    0.0164 0.0052 0.999962 

 

Table 4.8 shows that for our three selected situations, the conditional distributions are 

very slightly skewed, but are hardly discernible from a normal distribution, with the R-square 

of the OLS regression of Z-scores on score being so close to one. More generally, we plot the 

skewness and excess kurtosis for all scores from zero to 500, in Figure 4.14 and Figure 4.15, 

respectively. We see that the conditions distributions are positively skewed when Team 1 loses 

and negatively skewed when Team 1 wins, with the skewness distributions themselves having 

the opposite skewness. The kurtosis distributions are more complicated; however, we see that 

regardless of the game result the excess kurtosis tends to be positive in the scores around the 

overall mean score of 243.3, where most scores would actually occur. 
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Figure 4.14: Skewness of conditions distributions 

 

Figure 4.15: Kurtosis of conditions distributions 
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Despite the systematic skewness and kurtosis shown in Figures 4.14 and 4.15, the 

numbers involved are very small. We demonstrate in Figure 4.16 that assuming normality 

causes few problems by plotting one of our conditions distributions along with a normal 

distribution with the same mean and variance. We choose the situation where Team 1 scores 

243 and loses the match, as this is a situation resulting in a relatively high combination of 

skewness and excess kurtosis and therefore should provide an approximate upper bound of the 

negative impact of assuming normality. The graph shows that we should not be concerned 

about assuming normality and the cost of this slight simplifying assumption is likely to be 

trivial in comparison to the benefits provided by the simulation of a larger number of values for 

conditions in subsequent analyses. To confirm this, we perform the same normality test that we 

performed on the first-innings score distribution. That is, we simulate 1000 values of conditions 

from our posterior distribution and sort the data in ascending order of drawn conditions. If the 

data are normally distributed the n
th

 score should be equal to the inverse normal of
1

n
, for the 

simulated mean and variance of conditions. Eliminating the five lowest and five highest 

observations in order to defend against outliers, the mean absolute deviation of drawn 

conditions from what would be expected under a normal distribution is 0.7 runs. 
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Figure 4.16: Implied conditions distribution with normality approximation 
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 We test the mechanics of our method by randomly drawing one value from the 

distribution of   and two values from the distribution of  . We add the first draw of   to   

in order to determine a first-innings score, S, which we round to the nearest integer. If the first 

draw of   is greater than the sum of the second draw plus the performance advantage, this is a 

win to the team batting first, otherwise it is a loss. We generate 10000 scores and results by 

repeating these steps. We then can apply the appropriate posterior distribution for conditions to 

each game and we draw 5000 conditions values from this distribution, again rounding to the 

nearest integer. This gives us a generated data set with 50000000 observations of score and 

drawn conditions and we can subsequently determine the average score achieved for each 

(rounded) value of drawn conditions. We plot the results in Figure 4.17 below, showing the 

2.5
th

 and 97.5
th

 percentiles of the overall conditions distributions to show the range of 

conditions that are most likely to be experienced. 

Figure 4.17: Average Score in generated data set 
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It is clear that the average first-innings score in a given set of conditions closely 

approximates the value of those conditions. We have, to this point, simply confirmed that our 

method works in theoretical games and we need to check the relationship between inferred 

conditions and average first-innings score in our data set of matches. Before doing so, we need 

to think about the amount of deviation from the 45-degree line that would be acceptable, given 

our sample size. In order to do this, we randomly sample 784 of the 10000 scores and results 

previously generated, along with the 5000 draws of conditions for each of those games, and we 

calculate the average first-innings score for each rounded value of drawn conditions. We repeat 

this process 100 times, thus generating 100 samples of 784 simulated matches, and generate a 

95% confidence interval for the average first-innings score given a particular value of drawn 

conditions. These confidence intervals are shown in Figure 4.18. Note that we exclude from the 

confidence interval lines where we did not observe at least one draw of a particular value of 

conditions in all 100 iterations - that is, where in 784 games and 5000 drawn conditions for 

each game, we did not observe the particular value of rounded conditions even once. 
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Figure 4.18: Confidence intervals for a sample size of 784 
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Figure 4.19: Average Score in observed data set 
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Figure 4.20: Average Score in ball-by-ball data set 

 

4.5 Approach Two: The impact of rule changes 
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the match. For the remainder of the innings, five fielders were allowed outside the oval. In 

approximately July 2005,
7
 this was reduced to the first ten overs of the match but the bowling 

captain also had to select two other blocks of five overs in which the restrictions would apply. 

                                                 
7
 At the time of the rule change the old rules were still used for some games for a short period of time. 
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These blocks of overs are known as “powerplays”. At this time the “supersub” rule was 

introduced, which would allow each side to make one player substitution at any stage of the 

game. In March 2006 the supersub rule was cancelled, while the powerplay rule continued. 

Finally, in October 2008 the powerplay rule was changed to enable the batting side to control 

when one of the two blocks of powerplay overs was taken.  

 The increased presence of fielders close to the batsman and the lack of fielders 

patrolling the boundary serve to increase both scoring rates and the risk of a batsman getting 

out. There are generally more runs available but it is more difficult to score these runs without 

hitting the ball over the top of the fielders, rather than along the ground, resulting in the 

batsman risking hitting a catch. Before we move forward with our analysis, we assume that the 

minor rule change allowing three fielders in the restricted area during the second powerplay has 

no significant effect. By far the more significant rule change is the extension of the fielding 

restrictions from 90 balls to 120 balls in total. 

We split the data into four subsets based on the four different sets of rules. It is possible 

that these rule changes may affect our calculation of the posterior distributions of conditions. 

Firstly, a change in rules could change the average score, which we set as the mean of the 

conditions distribution. We note that the average score could change independently of the rules 

due to, for example, pitches getting easier or harder for batting over time, or teams on average 

becoming relatively better at batting or bowling. Splitting the data set enables us to include any 

variation in the average score. It is also possible that a change in the variance of conditions 

might be observed. This could be due to the ground conditions becoming more variable or the 

rules allowing for greater or lesser exploitation of the conditions for the batsmen or bowlers 
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favoured by the conditions. Finally, the rules could impact on the second-innings advantage as 

they could alter the set of potential risk profiles available to the team batting second. 

4.5.1  Data demographics 

In Table 4.9 we show the number of matches played under each set of rules. We have 

far more games under the more traditional 15-over restriction rules, indicating how frequently 

rule changes have occurred in more recent times. We have the smallest sample size under the 

combination of bowling-powerplay and supersub rules. 

Table 4.9: Number of matches under each set of rules 

Rule Number Description Number of Matches 

1 15-over restrictions 441 

2 Bowling powerplay and supersub 58 

3 Bowling powerplay only 193 

4 Batting powerplay 92 

  

In Table 4.10 we show the matches played by each team under each rule. This enables 

us to check whether we have introduced any significant team biases in splitting the data set into 

smaller groups. We see that, other than West Indies batting first under Rule 2, we have a 

reasonable coverage of each team. Table 4.11 shows that we have a reasonably good 

distribution of matches played in each country under each set of rules, with the main concerns 

here being that no matches were played in Sri Lanka or West Indies while Rule 2 was in place. 
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Table 4.10: Number of matches under each set of rules by team 

 Rule 1 Rule 2 Rule 3 Rule 4 

First Innings Bat Field Bat Field Bat Field Bat Field 

Australia 66 55 10 7 32 22 22 14 

England 43 33 5 3 31 29 11 13 

India 55 60 6 13 31 36 14 14 

New Zealand 49 60 10 9 16 23 7 11 

Pakistan 71 66 6 4 14 23 12 11 

South Africa 54 66 4 12 19 21 6 10 

Sri Lanka 60 53 16 6 32 15 12 11 

West Indies 43 48 1 4 18 24 8 8 

Table 4.11: Number of matches under each set of rules by venue country 

Country Rule 1 Rule 2 Rule 3 Rule 4 

Australia 71 15 27 9 

England 43 3 36 9 

India 35 11 29 14 

New Zealand 45 12 12 4 

Pakistan 27 10 13 3 

South Africa 64 4 20 22 

Sri Lanka 57 0 12 14 

West Indies 37 0 29 6 

Other 62 3 15 11 

4.5.2  Data investigation 

We are interested in the accuracy of our assumption of normality of the first-innings 

scores under the different sets of rules. In Figures 4.21 to 4.24 we plot these distributions. It is 

clear that when teams scored below the mean under Rule 1 they tended to score further away 

from the mean than when they scored above the mean. Under Rule 2, the data are fairly 

unstable, most likely due to the small sample size, while under Rules 3 and 4, the data look 

reasonably close to normal. Overall, we reiterate our earlier point that normality seems to be 

the best choice out of the set of functional forms from which we could reasonably choose, and 
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we again note that any errors arising from imperfect normality are likely to be small compared 

to the error of ignoring conditions altogether in our analyses in subsequent chapters. 

Figure 4.21: First-innings scores under Rule 1 

 

Figure 4.22: First-innings scores under Rule 2 
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Figure 4.23: First-innings scores under Rule 3 

 

Figure 4.24: First-innings scores under Rule 4 

 

There are some outcomes that we expect under the various rules, based on some cricket 

intuition. First, as the power-play rules are restrictions on the bowling team, there should be no 
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disadvantage to batting teams and therefore the first and second-innings means should be 

higher under Rules 2, 3 and 4 than under Rule 1. Second, we hypothesise that batting sides will 

be able to take advantage of the restrictions by scoring more quickly when they are in good 

positions and there should be no effect when the batting side is in a bad position (since nothing 

prevented the fielding captain from bringing up the field in the absence of the power-play rule). 

This means that the first-innings variance should be higher under Rules 2, 3 and 4 than under 

Rule 1. Third, there is no reason to believe that the variance of conditions should have changed 

as a result of the introduction of each rule, although it may change exogenously over time.  

Finally, the second-innings variance should be at least as great as the first-innings variance. At 

a minimum, Team 2 should be able to completely ignore their target score and play as if they 

were simply a score-maximising team in the first innings. Even with a “dumb” Team 2 and 

zero conditions variance model, the variances of the first and second-innings scores should be 

approximately equal. 

In Table 4.12 we present the mean and variance of the first-innings score for each of our 

four separate datasets, as well as the second-innings mean and variance implied by a Probit 

model of the result versus the first-innings score. 

Table 4.12: Mean and variance of first-innings score under different rules 

Statistic Rule 1 Rule 2 Rule 3 Rule 4 

N 441 58 193 92 

S  
238.104 255.741 245.596 255.435 

2

S
 

3114.366 2730.230 3712.242 4371.831 

2S  
240.680 276.501 253.261 257.988 

2

2

S
 

4736.622 6805.365 9553.529 2391.888 
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This table presents some very interesting results. As expected, Rules 2, 3 and 4 seem to have 

significantly favoured batting, with Rule 2, the powerplay and supersub combined rule, having 

been particularly easy to bat second under. However, we note that the variance behaviour is not 

as expected, with the second-innings variance changing significantly from rule to rule. While 

we accept that it is perfectly reasonable that the second-innings variance should change under 

different rules, we note that under Rule 4, the second-innings variance is substantially lower 

than the first-innings variance.  

We do not believe that there are cricket reasons to explain the difference observed in 

Table 4.12; therefore, we conclude that the most likely scenario is that the sample sizes are too 

small for the observed data to closely approximate reality. We note that we have a further 

option of combining Rules 2, 3 and 4 and analysing the data as two data sets. The logic behind 

this approach is that, while rules 2, 3 and 4 are all different, they have one common factor that 

is lacking in Rule 1 - that is, the use of 20 overs of fielding restrictions in total, rather than 15 

overs under Rule 1. We need to decide whether we will use this alternative split, or simply 

leave the data as one set. 

We define the matches played under Rule 1 as “Non-Powerplay” matches and all other 

matches as “Powerplay” matches. Table 4.13 shows the summary statistics for each of these 

data sets as well as a reminder of the summary statistics of the full data set. We also show the 

difference for each parameter between the powerplay and non- powerplay data sets. 
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Table 4.13: Mean and variance of first-innings score under different rules 

Statistic Full Data Set Non-powerplay Powerplay Difference 

N 784 441 343 N/A 

S  
243.287 238.104 249.950 11.846 

2

S
 

3412.488 3114.366 3726.848 612.482 

2S  
247.981 240.679 257.911 17.232 

2

2

S
 

5673.117 4736.585 6418.007 1681.422 

  75.119 79.337 73.473 -5.864 

A  
3.526 2.042 5.849 3.807 

2


 

2563.412 2470.854 2738.125 267.271 

2


 

849.076 643.512 988.633 345.121 

We see from Table 4.13 that the difference between the powerplay and non-powerplay data is 

fairly substantial for all parameters. The large increase in the variance of conditions is not 

explained by our earlier intuition, although as mentioned conditions may have changed 

exogenously. In order to determine the best way to proceed with the two data sets, we 

undertake a Monte Carlo study to assess the significance of each difference. Our null 

hypothesis is that all the data are from the same population. We use the parameters estimated in 

the full data set and proceed as follows. 

1. Draw 441 values of 1  and   for the first-innings performance and conditions, 

 respectively. 

2. S    gives 441 first-innings scores. 

3. Draw 2  for each game to represent second-innings performance. 

4. If 1 2 A   then 1  , else 0  . 

5. Run a Probit model of  on S. 

6. Calculate S , 
2S , 

2

S , 
2

2

S and  . 

7. Repeat steps 1. to 6. but drawing 343 values this time. 

8. Calculate the difference between each of the parameters in step 6. in the two data sets. 

9. Repeat steps 1. to 8. 10000 times. 
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We now have a distribution for the difference in each parameter under the null 

hypothesis that the two samples are from the same population. Looking at one parameter at a 

time, we sort our simulated distribution by the parameter in question and look up our observed 

difference from Table 4.13 in this simulated distribution in order to see at which percentile of 

the simulated distribution the parameter occurs. If the parameter is more extreme than the 50
th
 

or 950
th

 observation in the simulated distribution, then we have some evidence at the 10% 

significance level to reject our null hypothesis that we have one big population. The results are 

shown in Table 4.14. 

Table 4.14: Position of observed difference in simulated distribution 

Statistic Difference 
Position in simulated 

distribution 
P-Value 

S  
11.846 9974.5/10000 0.0051 

2

S
 

612.482 9613.5/10000 0.0773 

2S  
17.232 9891.5/10000 0.0217 

2

2

S
 

1681.422 8217.5/10000 0.3565 

  -5.864 3539.5/10000 0.7079 

A  
3.807 7219.5/10000 0.5561 

2


 

267.271 8565.9/10000 0.2869 

2


 

345.121 7532.5/10000 0.4935 

 

Based on the results shown in Table 4.14, we can be very confident that the powerplay 

data set has a higher mean in both innings and confident that it has a higher first-innings 

variance. While the difference in the second-innings variance is rather large, we do not find 

significant evidence that this difference would not have been observed from two data sets 

drawn from a single population. There is simply a substantial amount of uncertainty in 
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determining the second-innings variance. The parameter  represents the percentage of first-

innings variance that is attributed to performance. We do not find sufficient evidence of a 

change in this relationship between the data sets and subsequently we do not find substantial 

evidence of a change in the variance of performance or conditions. Despite the uncertainty 

around the second-innings variance, it nevertheless represents the best possible available 

estimate and we therefore decide to proceed with our splitting of the data set on the basis that 

the means of the data sets in both innings are significantly different. 

We plot the assumed first-innings performance, conditions and score distributions in 

Figure 4.25. We see that, while there has been very little change in the shape of the 

performance distribution, conditions and scores have become more variable in the powerplay 

data set. Note that while the overall average score has risen, we cannot know whether it is 

because conditions have become easier to bat in or if average batting performance has 

improved, relative to average bowling performance. We display the data as if it is the former; 

however, this is by construction rather than by analysis since we have defined performance to 

be the deviation from the average score expected in the conditions. 
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Figure 4.25: Performance, Conditions and Score prior distributions 

 

4.5.3  Selected results 

We show some examples of the posterior distributions of conditions given the first-

innings score and the result of the match. The focus here is on showing the difference between 

the posterior distributions calculated for the non-powerplay dataset, those calculated for the 

powerplay dataset and those calculated for combined dataset. Figure 4.26 shows a match with a 

score equal to the overall dataset mean of 243, with a win to Team 1. Figure 4.27 shows a low 

score of 200 with a win to Team 2, and Figure 4.28 shows a high score of 300 with the 

unexpected result of a win to Team 2. Tables 4.15, 4.16 and 4.17 show the summary statistics 

for each situation. 
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Figure 4.26: Inferred conditions with a mid-range score 

 

Table 4.15: Mean and variance of conditions with mid-range score 
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 231.855 455.536 

243, 1,S pp 
 236.753 623.547 

243, 1,S combined 
 233.741 555.113 

 

When we look at mid-range scores, we see a higher mean and higher variance in the 

conditions inferred by the powerplay data set and we are more confident about the value of 

conditions in the non-powerplay data set. 
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Figure 4.27: Inferred conditions with extreme score, expected results 

 

Table 4.16: Mean and variance of conditions with extreme scores, expected results 

Conditions Distribution Mean Variance 

200, 0,S no pp  
 234.565 467.811 

200, 0,S pp 
 241.655 657.621 

200, 0,S combined 
 237.491 577.335 

 

Despite extreme first-innings scores, the results going the way that they would be 

expected to go indicates that the means of the posterior distributions are not far away from the 

overall means. 
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Figure 4.28: Inferred conditions with extreme scores, unexpected results 

 

Table 4.17: Mean and variance of conditions with extreme scores, unexpected results 

Conditions Distribution Mean Variance 

300, 0,S no pp  
 264.131 442.004 

300, 0,S pp 
 277.538 614.349 

300, 0,S combined 
 271.865 541.146 

 

When extreme scores are scored and the results that occur are unexpected, then we have far 

greater evidence that conditions are not close to the overall mean. We note that even with a 

very high first-innings score and an unexpected result, the mean of the posterior distributions 

for conditions are still some way short of the observed first-innings scores. This fits with the 

idea that performance is the dominant factor in determining first-innings score. 
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4.5.4  Assessing the fit of the conditional distributions to the data 

 As we did when we analysed the data as one complete data set, we simulate from the 

inferred conditions distributions for each game and plot the observed average score for each 

rounded value of conditions. In Figure 4.29 we show the full data set of 784 games and in 

Figure 4.30 we show the 311 games for which we have ball-by-ball data. 

Figure 4.29: Average Score in split analysis of observed data set 
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Figure 4.30: Average Score in split analysis of ball-by-ball data set 

 

The data from the split analysis seems to be a similar fit to when we simply used the one data 

set.  

4.6 Conclusion 

By assuming a functional form for a model of first-innings score, determining the 

contribution to the total score variance of each component in the model and applying Bayes’ 

Theorem, we have obtained information pertaining to a critical but unobservable variable. This 

information is in the form of a distribution that is conditional on the first-innings score and the 

result of the game. In our subsequent chapters, we are able to randomly draw values from these 

conditional distributions in order to include conditions as a right-hand-side variable, greatly 

enhancing the predictive ability of our other models. 
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CHAPTER 5 

A first-innings dynamic programme 

5.1 Introduction 

In the first innings of a game of ODI cricket, cricket fans commonly ask questions of 

each other such as “what total will they end up with from this position?” or “do you think they 

will get enough to win?” In this chapter, we build a model of the expected future outcomes 

from the first innings. Such a model is useful not only for prediction, the focus of this chapter, 

but also for estimating the trade-off that each batsman faces between scoring rate and survival 

rate and testing the strategic optimality of a batsman. This involves the creation of Production 

Possibility Frontiers (PPFs) for individual batsmen and this is the focus of Chapter 6.  

Cricket is a difficult sport in which to speculate about future outcomes while a match is 

in progress. This is, for the most part, caused by the sequential nature of the game. Team 1 bats 

for an innings, sets a target, which Team 2 then attempts to beat. This is in stark contrast to 

simultaneous games such as any of the football codes, where the two teams are each attempting 

to score and therefore the current score is a good indicator of which team is more likely to win 

the match.
8
 The fact that cricket is a sequential game means that we need something other than 

the current score of the other team with which to assess Team 1’s progress. 

                                                 
8
 We say a good indicator, but not a perfect indicator as there may be other information available, such as; the 

weaker team is currently winning, or the team currently winning has had the better of the conditions, which will 

change at half time when the teams swap ends of the field. 
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A dynamic programming model of the first innings is one way to predict the likely total 

score of Team 1, from any given position. This predicted total is a very good indicator of how 

well Team 1 has played so far in the innings, as it indicates the size of the task that Team 2 will 

be likely to face later in the match. We construct our models both with and without the 

conditional distribution of the ground conditions variable,  , calculated in Chapter 4, in order 

to assess the impact of this variable on our models. 

Note that we consider only the first innings in this chapter as we are able to construct a 

model of expected future outcomes without considering the current or target score, which 

would greatly expand the state space. Using a model with fewer state variables means that we 

have more data in each state, making for more reliable PPF estimation in Chapter 6. A second-

innings dynamic programme is constructed in Chapter 7, for the purpose of a specific second-

innings application, namely, predicting the winner of rain-interrupted matches. 

Our dynamic programming model will enable us to define an important new variable, 

the cost of a wicket. This represents the difference in Team 1’s expected total score in the 

current situation and in the situation where they have lost an additional wicket. This new 

variable is an important input to Chapter 6 as it enables us to infer the likely strategy of 

individual batsmen and subsequently construct production possibility frontiers (PPFs) of the 

trade-off between scoring rate and survival rate for selected players. We show that these PPFs 

can be used to compare batsmen, in terms of their ability, their suitability to different match 

situations and their strategic nous. 
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5.2 The structure of the model 

The objective function of the dynamic programme is simple. The goal of any team in a 

game of ODI cricket is to maximise the probability that it wins the game.
9
 Each team is 

therefore trying to maximise its probability, π, of winning the game. We write the objective 

function as 

  Pr( )Win    

and our optimisation problem as 

  ( )Max    

There are a very large number of factors that could affect a game of cricket; however, 

we need to restrict the scope of our analysis in the interests of parsimonious model building. 

The main factors describing the state of a game in the first innings are as follows: 

1. The number of balls that have been bowled in the innings; 

2. The number of wickets that have been lost in the innings; 

3. The ground conditions; 

4. The number of runs scored in the innings; 

5. The ability of the two batsmen current batting; 

6. The ability of the batsmen sill waiting to bat (if any); 

7. The ability of the bowler currently bowling (if an over is in progress); 

8. The ability of the bowlers available to bowl and the number of overs each has remaining; 

                                                 
9
 There may be rare exceptions, in a multi-stage tournament or league where a team needs to win a game by a 

particular margin in order to get ahead of another team and qualify for the next round. Alternatively, it might be 

the case that the team in question simply has to avoid a heavy loss to qualify. We believe that these rare exceptions 

would not create significant bias. 
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The last four points involve the skill sets of individual players. To take these factors into 

account would require the creation of millions of different models, one for every possible 

combination of these four factors. This is very impractical; however, we are interested in 

investigating average performance. We build these models on the basis of the outcomes that we 

would expect from two average teams playing against each other. We expect that teams only 

select bowlers who are at least reasonable bowlers and we assume that the number of wickets 

lost is a good proxy measure of the skill of the current batsmen and the batsmen still to come. 

In certain models, we also exclude the impact of the ground conditions, in which case we are 

looking at the outcomes that we would expect from two average teams playing against each 

other in unknown ground conditions. In order to create a more useful model, we only include 

matches played between two top-eight-ranked teams in world cricket, in order for an 

assumption that the average model approximates reality for any team to be reasonable. 

We assume that, in the range in which first-innings totals generally occur, there is a 

linear relationship between the first-innings score and the probability of winning. This means 

that an extra run is equally valuable regardless of the final score. For example, a score of 261 

gives the team batting first the same advantage over a score of 260 as the advantage that a score 

of 231 would give them over a score of 230. We show evidence of this later in this chapter. It is 

also relevant that, even in the presence of non-linearity in the relationship between first-innings 

score and the probability of winning, on any given ball of the 300 balls in the innings the 

performance of a team can only influence their expected score by a small amount. A local 

linear approximation to the true relationship between first-innings score and the probability of 

winning is unlikely to lead to substantially different decisions. The implication here is that a 
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team should maximise their expected additional runs, for the vast majority of possible 

situations that they could be in. We are effectively making current score irrelevant to future 

decision making. This enables us to revise our objective function for the first innings.  

Let V be the expected additional runs to be scored from a particular first-innings 

situation. The first-innings optimisation problem under the assumption of this linear 

relationship between score and the probability of winning the match is 

  ( )Max V   

Finally, we make the assumption that future performance within a game is independent 

of the performance in that game so far; that is, we are assuming no serial correlation of the 

outcomes on previous balls to the outcome on the current ball. This is a reasonable assumption 

since the attitude towards risk of each team should be focused around the number of balls and 

wickets remaining. We note that there may be some serial correlation due to small differences 

in team ability or a bowler or batsmen playing particularly well on a particular day; however, 

we believe that our average models will still provide a very good indication of the likely future 

outcomes of the match. 

These simplifying assumptions enable us to define the remaining state variables. 

 Let i be the number of the next ball in the innings,  

 where the 301
st
 ball indicates that the innings is complete  1,2,..., 300i  

 Let j be the current number of wickets lost by the batting team,   0,1,..., 10j  

 Let   be the value of the ground conditions,   0,   
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We are now ready to proceed with our estimation of the first-innings dynamic programme. 

5.3 The data set 

In addition to the first-innings score and result data that we used for the majority of 

Chapter 4, we have ball-by-ball information for a subset of 311 matches played over the period 

20 July, 2001 to 25 January, 2008. These data were collected by New Zealand Cricket and they 

simply collected the data from as many games as possible, rather than by using any particular 

sampling strategy. All the matches in the data set are between two top-eight-ranked countries - 

that is, Australia, England, India, New Zealand, Pakistan, Sri Lanka, South Africa and West 

Indies.  

Table 5.1 shows the number of matches in which each team has batted first, batted 

second and been the host country. This is to check that we have a reasonable variety of the 

different situations. Team 1 refers to the team batting first, while Team 2 refers to the team 

batting second. There are a relatively large number of games where New Zealand is Team 2, 

but these games still only make up 21% of the overall data set so we do not believe that this 

will cause any significant bias in our average models. 
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Table 5.1: Distribution of team and venue information 

Country Team 1 Team 2 Host 

Australia 50 30 52 

England 33 39 42 

India 40 43 32 

New Zealand 47 65 40 

Pakistan 43 35 28 

Sri Lanka 43 32 41 

South Africa 34 35 35 

West Indies 21 32 27 

Other - - 14 

 

There was a significant rule change over the period of our data set as the power-play 

rules were introduced in July 2005. As this rule does affect the way that we create the dynamic 

programmes, we note that we have 185 “non-power-play matches” and 126 “power-play 

matches”. None of our matches occur during the period since the batting power-play rule was 

introduced. 

5.4 Testing the linearity assumption 

We have now made all the assumptions required to estimate a reasonably parsimonious 

dynamic programme. Before we do so, we need to test our earlier assumption that the 

probability of winning is linear in the first-innings score, S. This assumption enabled us to 

define the objective function for the team batting first as the expected additional runs from any 

point. In order to test this assumption we look at the relationship between actual first-innings 

scores and the percentage of games won with each score. Since we might have very few 

observations (in some cases no observations) at each score S, we need to smooth the data. Our 
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method is to look at a range of scores in the vicinity of S. We use the 41-point interval {S-20, 

… ,S+20} and calculate the percentage of games won by Team 1 in this interval and we repeat 

this analysis for each value of S. 

Since only scores and results are required for this analysis, we use the full data set from 

the decade of the 2000s as described in Chapter 4. We split our data set into two parts: those 

games played prior to the power-play rule change (non-power-play) and those games played 

after the rule change (power-play). Figure 5.1 shows the relationship between first-innings 

score and the percentage of games won in the non-power-play era, while Figure 5.2 shows the 

relationship for the power-play era. We include a 95% Wilson confidence interval for the 

estimated proportion of wins, as recommended by Brown et al (2001). 

Figure 5.1: Smoothed win percentage versus score in non-power-play data 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 50 100 150 200 250 300 350 400 450 500 

P
r(

W
in

) 

Score 

Average lower upper linear 



97 

 

Figure 5.2: Smoothed win percentage versus score in power-play data 

 

 

It is apparent that assuming a linear relationship between first-innings score and the 

probability of winning is appropriate for the non-power-play data. Any deviations of the linear 

model from the observed win percentage are well inside the confidence intervals for the 

majority of observed scores. In the power-play data, the linearity assumption does not fit the 

data as well. Two aspects of Figure 5.2 are of particular note. There is an unexpected 

decreasing trend in the range of scores (197, 234) and the win percentage falls away to zero, 

rather than the intuitive level of one, when scores get extremely high. The latter situation is 

because the sample size is one at these points; the game with the highest score simply happened 

to result in a loss for the team batting first. The decreasing trend is more difficult to explain but 

a possible cause would be if conditions were worth relatively low amounts over this range 

when compared to the scores. When we incorporate conditions into our models we implicitly 
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make this assumption as our conditional distributions for conditions have a lower mean when 

the game was lost by the team batting first, given a certain value of first-innings score.  

5.5 The first-innings value function 

We develop a value function, V, to calculate the expected additional runs for every 

possible state.  

  Let ( , , )V i j   be the expected number of additional runs  

  given i and j, ( , , ) [0, )V i j     

Note that the value of the ground conditions,   is technically a state variable as it describes the 

prevailing conditions on the day of the match; however, since we assume that it remains 

constant throughout the match, it enters the model as a parameter in the functions that 

determine run scoring and wicket loss. It is therefore not necessarily to consider   a state 

variable in the dynamic programme. Additionally define the following: 

 Let   be the value of the ground conditions,  [0, ) 
10

 

 Let 
ijr be a random variable indicating the number of runs  

 scored on legitimate ball i given j,  0,1,..,ijr    

 Let 
ij be the probability of losing a wicket on ball i given j,  0,1ij   

 Let ij be the probability of a wide or no-ball being bowled on  

 legitimate ball i given j,  0,1ij   

                                                 
10

 Technically, as  is drawn from a normal distribution, it is not bounded at zero. However, we are defining it as 

being censored at zero to fit with the cricketing reality of scores necessarily being non-negative. The mean and 

variance of the normal distribution make this distinction empirically irrelevant.  
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 Let ij be the total number of runs scored from a single occurrence  

 of a wide or a no-ball given i and j,  1,2,..,7ij   

The Bellman equation is defined as follows: 

  ( , ) [ ] ( 1, 1) (1 ) ( 1, )
1

ij ij ij

ij ij

ij

V i j E r V i j V i j
 

 


       


 (19) 

The terminal points, representing the end of the innings, are defined as 

  (301, ) 0V j  , for all j   

  ( ,10) 0V i  , for all i  

In words, Equation (19) is saying that the expected additional runs scored by the batting 

team from their current state of being at the i
th
 ball of their allotted 300 and having lost j 

wickets of their allotted ten is equal to expected runs from the next ball plus the value function 

applicable on the next ball plus the expected runs scored from extras. The next state is always 

one of two possible states: one more ball and one more wicket than the current state (with 

probability
ij ) or one more ball and the same number of wickets as the current state (with 

probability (1 )ij ). Note that the final term is the infinite sum of a geometric series as a wide 

or no-ball must be bowled again by the bowling side. This means that we could in theory have 

an infinite number of consecutive extras. The sum of the series is the expected total runs from 

non-legitimate balls for a given i and j. 

Note that we make the simplifying assumption that a batsman cannot be dismissed from 

a no-ball or wide. This is not technically true as a batsman can be run out from either type of 
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delivery, stumped from a wide or otherwise dismissed by an exceptionally rare method such as 

handled the ball. Noting that when a wide or a no-ball is bowled i does not change, in the rare 

cases in our data set where the batsmen was dismissed from a no-ball or a wide we allocate this 

dismissal to the legitimate ball of the group of balls that occur at i. Additionally, we note that 

we run our dynamic programme twice, once including and once excluding the conditions 

variable  as an explanatory variable in determining ijr , ij ij and ij . 

The state space for this model consists of 3311 cells (301 possible values for i 

multiplied by the 11 possible values for j), of which the 311 cells involving either 301i 

and/or 10j  are terminal cells indicating that the innings has been completed. It is very 

unlikely that a team could survive until ball number 300 without having lost any of its wickets. 

It is even more unlikely that a team could lose all ten wickets while still being on ball number 

one. Indeed we render this situation impossible with our simplifying assumption that a wicket 

cannot fall on a non-legitimate ball. However, we cover the entire state space with our 

estimated models. This is partly for reasons of completeness, but more importantly because the 

value of V in any one cell has an effect on the value of V in earlier cells.  

A parametric approach to the modeling of , ,ij ij ijr   and ij ensures that the V-functions 

in the thin data cells takes into account the data in the thick data cells. We could, in theory, 

calculate the V-functions simply by taking average additional runs, rather than running a 

dynamic programme. Ideally, this approach would result in very similar results to our dynamic 

programme in the thick data cells; however, it would lead to unreliable information in the thin 

data cells and no information at all in the data cells without any observations. 
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We are subsequently able to calculate the value of the value function, ( , )V i j , for each i 

and j, by backward induction, using Equation (19). The result of this analysis is that we have a 

complete set of values for expected additional runs for any possible first-innings situation. 

5.6 Estimating the value function (without conditions) 

In this section we consider a world in which we have no information about the ground 

conditions. We simply build our expected runs, probability of a wicket, probability of a wide or 

no-ball and expected runs from a wide or no-ball functions using information about the current 

state ( , )i j . It is important to build this model for two reasons. First, we want to see how well 

our model fits the observed average additional runs in each state for which the data are 

reasonably thick. Second, we want to assess the impact of including our newly created (in 

Chapter 4) ground conditions variable in the model in order to gain an understanding of the 

benefit of including such a variable. 

5.6.1  The expected runs functions  

Because there are 300 different non-terminal values of i but only ten different non-

terminal values of j, it makes sense to investigate the data by wicket. Initially, we plot the 

average runs scored from each ball of the innings for a given number of wickets lost, j. This 

gives us an idea of the shape of the function that links average runs with the ball of the innings, 

i. For innings balls less than or equal to 90 in the non-power-play era and less than or equal to 

120 in the power-play era, there are greater restrictions on the places that a fielding captain can 
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position his fielders.
11

 We consider this a structural break in the data and we model the period 

in which these additional restrictions are in place separately. 

Figure 5.3 is a scatter plot of average runs against innings ball for situations where a 

team has lost two wickets. We see an increasing trend, indicating that batsmen tend to score 

more quickly as the innings progresses, for the same number of wickets lost. This makes 

intuitive sense as the balls remaining constraint becomes a larger factor, compared to the 

wickets remaining constraint, the later we are in the innings. We notice that our data points 

have a large variance very early and very late in the innings. This is due to it being a rather rare 

occurrence that a team would have lost two wickets at these times and so these are thin data 

regions and we cannot be confident about them. In Figure 5.4, the data from Figure 5.3 is 

repeated only for cells for which we have at least 30 observations. This plot shows substantially 

greater stability in the data. 

  

                                                 
11

 According to the laws, the fielding captain could select two blocks of 30 balls some time from the 61
st
 ball of the 

innings until the 300
th
 and final ball of the innings, in which the fielding restrictions would apply. In practice, it 

was very rare that a fielding captain would not use these power-plays at the earliest possible opportunity; that is, 

balls 61 to 120. 
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Figure 5.3: Average runs for j = 2 

 

Figure 5.4: Average runs for j = 2 (thick data) 

 

We show the average runs by innings ball within the thick data regions for 0j   and 

7j  in Figures 5.5 and 5.6, respectively. Note that we only have information about the very 

start of the innings for 0j   and about the very end of the innings for 7j  . It is clear that we 
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need to make some assumptions in our parametric models for dealing with the regions where 

data are missing. 

Figure 5.5: Average runs for j = 0 (thick data) 

 

Figure 5.6: Average runs for j = 7 (thick data) 
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The value function (outlined in Equation (18)) requires [ ]ijE r , the expected runs per ball 

in state ( , )i j . We have the choice between modelling this variable directly as an ordinary least 

squares regression with ijr as a continuous dependent variable, or running an ordered Probit 

regression with ijr as an ordinal dependent variable. The ordered Probit model gives the 

probability of ijr taking each value and we then simply take expectations to determine the 

expected runs. We decide on the ordered Probit approach as this gives the curve a larger 

amount of flexibility. In addition, our second-innings models outlined in Chapter 7 require the 

probability of scoring each number of runs and choosing an ordered Probit model allows us to 

take a consistent approach in the models of the two innings. 

We create two ordered Probit models: one for the part of the innings where the fielding 

restrictions apply and one for the part of the innings not affected by the fielding restrictions. 

Technically these should perhaps be referred to as the part with extra fielding restrictions and 

the part with basic fielding restrictions, as there are some restrictions on the field at all times; 

however, for simplicity we refer to the “with restrictions” period and the “without restrictions” 

period. The fielding restrictions can cause a sizeable positive variation in the run-scoring ability 

of the batsmen. 

To enable us to run the regression for each stage of the innings only once, rather than 

running a separate regression for each value of j, we create dummy variables for each wicket 

lost. We define these dummy variables as 

  

1,

0,
k

where j k
W

where j k

 
 

  . 
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The independent variables are now 0 1 9, , ,...,i W W W .  

 Before we perform the regressions, we need to consider our lack of data for some cells. 

This thin data is most apparent in situation where a team has lost many wickets after a 

relatively small amount of balls. In fact, there is significant data in the fielding restriction overs 

only for wickets zero, one, two, three and four, as shown in Table 5.2. We initially only 

estimate the model for these first five values of j. We discuss and impose a simple alternative 

method of creating the fielding restriction region models for the higher numbers of wickets 

later in this chapter. 

Table 5.2: Number of observations by wicket and restrictions 

Wickets Lost With Restrictions Without Restrictions 

0 11390 903 

1 9988 5285 

2 6396 8329 

3 2826 11734 

4 813 11607 

5 323 7998 

6 33 5861 

7 0 4260 

8 0 2245 

9 0 1246 

 

The first model to consider is that using the “with restrictions” data. The criteria for 

accepting or rejecting a variable in the model are a combination of the significance of the 

variable and intuition about the game of cricket. We are primarily looking for a model that will 

fit the data well. The coefficients and p-values of each of our variables in our selected model 

are given in Appendix C. The coefficients of the dummy variables for wicket and the innings 

ball variable had low p-values when modelled separately; however, the interaction terms appear 
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to add substantial information, hence our decision to include them. The dummy variable 

indicating whether we are in the non-power-play or power-play era prove to have little 

significance and has been excluded from the model. In order to give the model some extra 

flexibility, we define a new parameter as 

  Let 
2 max(0, 48)i i   

We hope that this new parameter will allow for us to take into account any effect caused 

by the ball being new and the teams getting used to the nature of the ground conditions, which 

often takes several overs. In addition, it might take into account any effect from the bowling 

team’s two best seam bowlers being used to bowl the first overs of the innings. We choose the 

49
th

 ball to change the slope as this is the start of a new over and close to the average halfway 

point of the “with restrictions” period, bearing in mind that this period was 90 balls for some 

games and 120 balls for a smaller number of games. 

 We note that the p-values are comparing the parameter with the base case, which is the 

value of j that we choose to not include a dummy variable for, in this case, 4j  . For our 

dummy variables and interaction terms involving dummy variables, we focus more on the size 

of the coefficient than the p-value when determining whether the variable should be included or 

not. 

 This model determines the probability of scoring each number of runs from a ball in a 

given state ( , )i j . We plot these probabilities in Figure 5.7. It is clear that dot balls (zeros) are 

by far the most likely outcome, but their probability decreases as the innings progresses, for a 
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given number of wickets down. The probability of the scoring shots increases as the innings 

progresses. 

Figure 5.7: Probabilities for j=0 

 

 

Once we have the probability of scoring each number of runs from a given ball and 

wicket, we are able to take expectations to determine the expected runs for each ball and 

wicket. We plot these expected runs functions, for wickets zero to four, in Figure 5.8. We see 

two clear patterns; the scoring rate increases as the innings progresses, for a given wicket, and 

the fewer wickets the team has lost, the greater the rate of increase. 
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Figure 5.8: Expected Runs Functions - with restrictions 

 

 

We now turn our attention to modeling the “without restrictions” data. In this data set 

we discover that the functional form implied by the Probit model restricts the shape of our 

curves by more than is appropriate for this data - therefore we create an additional variable. 

  Let 3 max(0, 240)i i   

The new variable allows the curves to slope steeply upward in the later balls of the innings, 

where the data suggest that they should. Due to limited amounts of data for some of the lower 

values of j, we assume that values of j less than three will all share a common slope. Note that 

the power-play variable (pp=1 where we are in the power-play era) makes a reasonable 

difference in the “without restrictions” period. The results are shown in Appendix C and the 

plot of the expected runs is shown in Figure 5.9. 
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Figure 5.9: Expected Runs Functions, without restrictions, pp=0 

 

 We have a predominantly consistent set of expected runs functions, generally upward-

sloping as we get closer and closer to the end of the innings, with an acceleration of the scoring 

rate after our structural break at 241i  . The only exceptions are the curves for 8j  and 9j  , 

which slope downwards until the structural break - we put this down to a lack of data early in 

the innings. It is simply very rare for a team to have lost a high number of wickets early in the 

innings and while one of the useful aspects of parametric modeling is that it provides the ability 

to extend the model outside the range of the data, we need to be careful that we do not overuse 

this to the point where it severely contradicts the things that we know about cricket. Later in 

this chapter we will modify this with a simplifying assumption. We also have a lack of data for 

the early wickets, late in the innings, so we make a simplifying assumption about these regions 

too. We leave these adjustments for later in the chapter as we want to use the wicket functions, 

to be outlined in the next section. 
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5.6.2  The wicket functions  

The next stage of the building of the dynamic programme is to create the 
ij function for 

the probability of losing a wicket in state ( , )i j . In this case we have a binary dependent 

variable, 
ij , defined as 

  

1, ( , )

0,
ij

if a wicket falls in state i j

otherwise


 
  
   

 We begin by plotting the distribution of average outs per ball, in order to investigate the 

relationship between the probability of a wicket and the ball of the innings. Note that we 

express the value as the average outs per ball, but we calculate this in groups of one over (a 

period of six balls delivered by the same bowler) here, rather than by each individual ball as we 

did for the expected runs functions in the previous section. This is because a wicket is a 

relatively rare event and there are many states ( , )i j in which no wicket has fallen in our data 

set; therefore, we extend the period over which each average is calculated in order to obtain a 

smoother series.  

The thick data are defined as 180 observations or more for the over group and we plot 

the thick data averages for  2,0,7j in Figures 5.10, 5.11 and 5.12, respectively. We note 

that there is a small upward slope, with a substantial increase in slope towards the end of the 

innings, noticeable in the chart where 7j  . 
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Figure 5.10: Average outs for j = 2 (thick data) 

 

 

Figure 5.11: Average outs for j = 0 (thick data) 
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Figure 5.12: Average outs for j = 7 (thick data) 

 

 We run a Probit model on the dependent variable
ij . As with the ordered Probit for the 

runs functions, we run the model separately for the “with restrictions” and “without 

restrictions” data. It is much more difficult to fit this model than the runs model as we 

effectively have less information, despite the same sample size, due to the fall of a wicket being 

a relatively rare event. This means that we cannot find a model with coefficients and p-values 

that we are comfortable with by including all the interactions of i and j that we included in the 

runs model. The p-values are high and the coefficients do not seem consistent with our cricket 

intuition. We decide that it is prudent to remove these interaction terms; however, to find the 

balance between fitting the data well and ensuring that we do not over fit the model, we include 

our  2i  variable to give the model extra flexibility. The coefficients and p-values of the “with 

restrictions” model are shown in Appendix C and the graphical representation of these 

probabilities is shown in Figure 5.13. 
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Figure 5.13: Probability of wicket functions – with restrictions 
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terms between i and j . The parameter estimates are given in Appendix C and the probability of 

a wicket functions are shown in Figure 5.14. 

Figure 5.14: Probability of wicket functions – without restrictions 
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5.6.3  Modifying the expected runs and wickets functions 

In our estimation of the expected runs and the probability of a wicket functions, we 

have tried to find the right balance between fitting the model to available data and allowing for 

reliable inference about the regions where no data exists. Our goal is to estimate the expected 

runs and probability of a wicket for all 3000 non-terminal cells of the state space, no matter 

how unlikely a given state is to occur. We recognise that our fitted models will be very accurate 

in the thick data areas, but with a decreasing level of accuracy the further away from the thick 

data areas that we get.  We decide to make adjustments to the extremely unlikely regions of our 

state space by making some assumptions. 

 The first problem occurs because we do not have much information about what is likely 

to happen if a team loses a lot of wickets early in the innings. In fact, we do not even have 

functions for the “with restrictions” period for wickets lost of five or more. Fortunately, some 

cricket knowledge can assist us with making an adjustment here. We know that a batting team 

faces two constraints, the number of balls remaining (301 )i and the number of wickets 

remaining (10 )j . The players should adjust their risk strategy based on a combination of 

these two constraints. If a team has lost an unusual number of wickets for the number of balls 

gone in the innings, there comes a point where the batsmen recognise that there is very little 

chance that they will make it through the 300 balls of the innings; that is, the wickets constraint 

will almost certainly be the constraint that ends the innings. 

 We know, from our probability of a wicket functions, the probability that a team will 

lose a wicket at any point of the innings. It is possible to calculate, through backward induction, 

the probability that a team will survive the full 300 balls. 
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  Let   be the probability of the team surviving the full 300 balls 

The Bellman equation is 

  ( , ) ( 1, 1) (1 ) ( 1, )ij iji j i j i j           (20) 

with terminal values 

  

(301, ) 1

( ,10) 0

j

i







  

We use Equation (20) to determine the probability of the team surviving the full 300 

balls from any situation ( , )i j . Once we have calculated these survival probabilities, we assume 

that players will not change the way they play based on the number of balls remaining if the 

survival probability is less than 0.1. We find the greatest value of i for which the survival 

probability is less than 0.1 and we impose the expected runs and probability of a wicket implied 

by that value of i on all previous values of i for that j. In the situation where the survival 

probability does not go below 0.1 but we reach the beginning of the “without restrictions” 

period and there is no function for the “with restrictions” period, we assume that the expected 

runs and probability of a wicket implied by the first value of i in the “without restrictions” 

period applies to the entire “with restrictions” period for that wicket. Note that we start this 

procedure by calculating the probability of survival for the entire function for 9j  , make the 

adjustment as described, then calculate the probability of survival for 8j  and so forth. This 
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ensures that the adjusted probability of a wicket for any value of j affects the survival 

probability for earlier values of j. 

The second problem with our runs and wickets functions is that we do not have great 

confidence in the models where a team has lost a very low number of wickets as we approach 

the end of the innings. Again, we use our knowledge of cricket to make an assumption. We 

know that a team will usually have a minimum of six highly skilled batsmen. On the last ball of 

the innings, a team will be trying to score the highest number of runs possible from that ball, 

without regard for the probability of getting out, except insomuch as that a high probability of 

getting out has an impact on the expected runs from that ball. This means that the skills and risk 

attitude to those batsmen at the crease where 300i  and  0,1,2,3,4j should be similar; 

therefore, the expected runs and probability of a wicket should be similar in these five states. 

To make our adjustment, we assume that the cell ( 300, 4)i j  gives the correct expected runs 

and probability of a wicket, as this is the most data-rich cell out of the five. We note that that 

our structural break at 240i  is where the expected runs and probability of a wicket functions 

start sloping up sharply and we therefore fit a linear function from (240, )j to (300,4) for 

 0,1,2,3j . In this way we are using both the original function (in an area where it is more 

likely to be accurate) and an assumed end point from our most accurate function with two 

batsmen at the crease at the end of the innings. 

We show the modified expected runs and probability of wicket models in Figures 5.15 

and 5.16, respectively, for the example of the non-power-play era. These figures show the 

combined model with both the restrictions and non-restrictions period. In the non-power-play 

era, there is therefore a structural break at 90i  for the end of the fielding restrictions. In the 
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power-play era, the structural break occurs at 120i  . We see that the higher order wickets now 

result in similar expected runs and probability of a wicket as we get towards the end of the 

innings, while the functions are flat in the regions where the ball of the innings is unlikely to 

affect proceedings. In particular, where a team is nine wickets down, the modified functions 

imply that batsmen in the last wicket partnership score rather quickly in the period where they 

are unlikely to see out the innings, but at an extremely high probability of dismissal. This fits 

well with our cricket intuition, which is that the last batsman is generally so poor that his 

batting partner will substantially increase the amount of risk that he takes, in order to get the 

most runs possible before the partnership ends. Indeed, this often causes the better batsman to 

be the one dismissed. 

Figure 5.15: Expected runs functions, combined, pp=0 
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Figure 5.16: Probability of wicket functions, combined, pp=0 

 

5.6.4  Calculating the probability of a wide or no-ball 
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Figure 5.17: Probability of a wide or no-ball function – combined model 
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model the runs functions from the combined data set. The parameter estimates are given in 

Appendix C and the graph is shown in Figure 5.18. 

Figure 5.18: Expected runs from a wide or no-ball function – combined model 

 

It is clear that bowlers will be unlikely to concede significantly more than the one run 

penalty if they bowl a wide or no-ball at the start of an innings; however, they will concede on 

average about 1.7 runs if they commit this sin at the end of the innings. This is almost certainly 

due to no-balls being hit for runs as it seems unlikely that wicket keepers suddenly become 

more likely to fail to stop wides cleanly. 

5.6.6  Solving the dynamic programme 

We now possess, for each state ( , )i j , estimates for [ ]ijE r , ij , 
ij and 

ij . This is all 

that is required to solve our value function, ( , )V i j , by backward induction. Recall Equation 

(19). 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

0 30 60 90 120 150 180 210 240 270 300 

Ex
p

ec
te

d
 E

xt
ra

 R
u

n
s 

Innings Ball 



123 

 

  

( , ) [ ] ( 1, 1) (1 ) ( 1, )
1

ij ij ij

ij ij

ij

V i j E r V i j V i j
 

 


       


  

We plot the resulting V-functions, from the non-power-play era, in Figure 5.19. In 

Figure 5.20 we add the power-play-era models as a dashed line for comparison to the non-

power-play-era models. Recall that the only differences in the two models are a dummy 

variable for the era, which was used only in the runs functions in the “without restrictions” 

regression, and the fact that the “with restrictions” period runs for the first 120 balls, rather than 

90, in the power-play era. Not surprisingly, the biggest difference occurs around the point of 

the difference in rules, for the early wickets. 

Figure 5.19: V-functions, non-power-play era 
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Figure 5.20: V-functions (dashed line indicates power-play-era) 
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dots of the same colour, to represent the average additional runs. 
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Figure 5.21: V-functions versus average additional runs, non-power-play era 
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where 

 
ijAverage is the average observed additional runs in that state 

 
ijcount is the number of observations in that cell 

 
jcount is the number of observations for that value of j. 

Note that we are measuring the distance between the average additional runs and the modeled 

expected additional runs, rather than measuring the distance from the expected additional runs 

of the actual additional runs from each individual match. We note that our worst fit, for 1j  in 

the non-power-play era, is different from the data on average by only about 3% of the average 

first-innings total score. 

Table 5.3:  Weighted Mean Square Error of Fit 

j Non-power-play Power-play 

0 4.292 4.863 

1 7.225 5.925 

2 4.371 6.833 

3 4.263 4.370 

4 3.391 1.492 

5 3.531 2.656 

6 1.751 N/A 

7 1.074 2.295 

8 0.664 N/A 

9 N/A N/A 
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5.7 Estimating the value function (with conditions) 

In Chapter 4, we calculated a variable,  , to represent the ground conditions occurring 

in each match. We inferred this variable using only information about the first-innings scores 

and results of matches and we created a conditional distribution for ground conditions  , for 

each first-innings score and result of the match. These conditional distributions were almost 

exactly normal; therefore, we assume normality and our information set about the conditions in 

each game consists of a mean and a variance. 

 There are two choices of ground conditions model: the version where we used a single 

data set of 784 matches, or the version where we split the data set into matches involving an 

additional five overs of fielding restrictions (the power-play era). The former was slightly better 

at predicting first-innings scores, given draws of conditions from the conditional distributions; 

however, since we want to create our V functions for the two separate eras, we decide to use 

the latter. In order to include the ground conditions variable in our Probit regression models, we 

use the following procedure. 

 

1. Determine the first-innings score and result of each match. 

2. Apply the mean and variance of the conditional distribution of  , as implied by the 

analysis in Chapter 4, to each match. 

3. For each ball, simulate a random number,  , from the standard normal distribution. 

4.  The simulated value for ground conditions is 2

| , | ,S S        . 

5. Repeat steps 3. and 4. n  times to generate n values of  for each ball. 

6. In the regression models, give each observation a weight of 
1

n
. 
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The above procedure means that we have effectively multiplied the size of our data set 

by n . Each observation is repeated n times in the data set with the ground conditions variable 

being the only variable that is changing with each repetition. The weight variable has no impact 

on the coefficients of the Probit regressions, as each observation has the same weight; however, 

it ensures that our p-values are still meaningful as we tell SAS about the weight when we run 

the regressions. The multiplication of the data set without weighting would result in incorrect 

(very small) standard errors and p-values. 

We are being slightly inconsistent by taking this approach. In Chapter 4, one of our 

necessary assumptions for being able to determine the conditional distribution of  was that 

does not change during a game. Theoretically, this implies that we should simulate one value of

 , apply it to all balls in that game, and repeat that process n  times, rather than generating n

values for each ball. The reason for our approach is that we have limited computing power and 

we therefore cannot simulate as many values as we would choose to with unlimited computing 

power. By simulating just n values for each game, we risk distorting the data for an entire game 

if our simulation procedure results in a set of values of  not representative of the underlying 

conditional distribution. On the other hand, each individual ball has only a very minor role in 

determining the coefficients of the Probit models and we therefore are able to get a better 

representation of the conditional distribution of  by simulating values for each ball. We note 

that the simulation process takes slightly longer using our approach, but the size of the resulting 

data sets are identical, for a given value of n ; therefore, there is no carry-over difference in the 

time taken after the multiplication of the data set is complete. 
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The choice of n is a balance between accuracy and the time available, given our 

computing power. Clearly, the higher n  is, the more accurate our models will be. In order to 

determine the most appropriate n , we run our entire dynamic programme multiple times for 

selected values of n in order to determine how high n  needs to be to ensure accuracy. 

Eventually, we settle on 100n  , meaning that our data set is 100 times its original size of 

approximately 91000 observations. 

5.7.1   The regression equations 

 We include our simulated values for  in our Probit and Ordered Probit models for 

, ,r   and  . It is important to also consider the interaction of  and i as ground conditions 

(particularly weather) may have a larger impact when the ball is new. We also reconsider the 

role of the power-play variable; this is because our estimation strategy for  involved splitting 

the data into the two eras and it is possible that the inclusion of  may change our decision to 

include or exclude the power-play variable in each model. 

  In the runs models, the only new variable included is the  variable, as the interaction 

of  and i and the power-play variable made very little difference. The variable coefficients 

and p-values are included in Appendix C. 

 Figure 5.22 displays a plot of the expected runs functions implied by the models, where 

2j  and 1pp  , for three selected examples of conditions along with the model created 

without any information about conditions (this is represented by the line labeled ?  ). We 

deliberately choose 253  as one of our examples as this is the overall mean first-innings 
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total in the power-play era. This shows that the function where conditions are average is not the 

same as the no-conditions function. The latter is below the average conditions function early in 

the innings and above it later in the innings. This is because the no-conditions model implicitly 

assumes that conditions are likely to be bad for batting when a team has lost two early wickets 

and good for batting when a team makes it a long way through their innings for the loss of only 

two wickets. Note that we show the models after having applied the same thin data adjustment 

techniques used in the unknown-conditions model 

Figure 5.22: Expected Runs Functions, power-play era, j=2 
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positive coefficient, combined with the negative coefficient of  , implies that the conditions 

have a smaller impact on the probability of a wicket as the innings progresses. 

 Figure 5.23 contains a graphical representation of the wicket functions. Note that again 

we see a difference between the model that assumes average conditions and the model that has 

no knowledge of conditions. This time, the probability of a wicket is higher if two have fallen 

early as the no-conditions model implicitly assumes a high likelihood of difficult batting 

conditions. The inclusion of the interaction term between ground conditions and innings ball 

means that the difference between the curves for the various conditions is larger at the start of 

the “with restrictions” period than at the end of the innings. 

Figure 5.23: Wicket Functions, power-play era, j=2 
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batting conditions. We suggest that a possible reason for this is that bowlers faced with difficult 

bowling conditions (good batting conditions) may be willing to sacrifice some accuracy for 

additional pace or variation, as taking wickets is difficult in such conditions. As we expect, 

teams score a higher number of runs on average from wides and no-balls in good batting 

conditions than in poor batting conditions, presumably because it is easier to score from no-

balls, which can be hit. The regression coefficients and p-values of these two models are given 

in Appendix C. 

We show the graph of  , the probability of a wide or no-ball and  , the expected runs 

from a wide or no-ball, in Figures 5.24 and 5.25, respectively. 

Figure 5.24: Probability of Extra Functions, power-play era, j=2 
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Figure 5.25: Expected Runs from Extras Functions, power-play era, j=2 

 

 

 We calculate the V-functions by solving the dynamic programme by backward 

induction separately for each integer value of  in the range  0,500 . Define the value function 

as 
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If our model is perfectly calibrated, we expect that the expected additional runs at the start of 

the first inning would be equal to the value for ground conditions; that is 

  (1,0, )V    =  (21) 

For each era, we plot the calculated (1,0, )V  value for each   between 0 and 500, 

inclusive, in Figure 5.26. The 45 line indicates the locus of points where Equation (21) holds. 
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It is clear that our fit is generally very good in the range of conditions that we are likely to 

observe, although the model is not coping as well with the less-likely conditions. We note that 

these results are in line with expectations. It is not possible to observe a score of less than zero; 

therefore, the average score for conditions of zero is clearly going to be substantially greater 

than zero. Our theoretical model allows for both score and conditions to take any value; 

therefore, at these extreme values, it is not going to match what is observed in practice, which 

drives the dynamic programme. A similar argument can be made for the higher values of 

conditions. While it is theoretically possible to observe any score, in our data set the highest 

score is 434 and it is therefore no surprise that the dynamic programme finds it more difficult to 

fit the model for values of conditions where the lack of higher scores would mean that we 

would expect a substantial number of draws of conditions to be above the highest observed 

score. 

Figure 5.26: Expected Additional Runs at start of innings versus Conditions 
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 We test our fit to the theoretical value using the following procedure. 

1. For each era, simulate 10000 values of  using the normal distributions estimated in 

Chapter 4. In the non-power-play era, ~ (238.1,643.5)N while in the power-play era, 

~ (250.0,988.6)N . 

2. Calculate the difference between the simulated value of   and the (1,0, )V  implied by 

that value. 

3. Square the differences, sum them, divide by 10000 and then take the square root of the 

result to determine the root mean square error. 

Table 5.4: RMSE for fit of (1,0, )V  to   

 Non-power-play Power-play 

RMSE 1.35 runs 2.54 runs 

 

The root mean square errors are given in Table 5.4. It is clear that the V-functions are a 

good fit to the theoretical values implied by the ground conditions variable. The fit is not 

perfect, however, particularly at very high and very low values of  . As we use these V-

functions in determining the PPFs for batsmen in a later section of this chapter, we apply a 

correction to the V-functions at this point. Define the adjusted V-function as 

  ( , , ) ( , , )
(1,0, )

adjV i j V i j
V


 


  (22) 

Equation (22) implies that all V-functions for a given ,i j and will be scaled by the 

same factor that equates their V-function in the first cell (the start of the innings) with the 

theoretical ground conditions. 

Now that we have our final, adjusted V-functions, it is useful to plot some examples in 

order to investigate the impact of the   variable. Figure 5.27 shows the power-play-era 
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functions for ground conditions of 200, 250 and 300 and wickets zero and seven. These 

examples reveal some interesting information. First, the graph for ( ,0,200)V i is very flat at the 

beginning of the innings, indicating that simply surviving and not scoring any runs is good 

enough to leave your expected final total unchanged, due to the difficult batting conditions. 

Second, early in the innings the difference between playing in 300 conditions and 250 

conditions is much greater than the difference between 250 conditions and 200 conditions, for 

seven wickets down. This implies that, if the top order were to be dismissed early despite 

excellent batting conditions, the lower order could be expected to do a reasonable job. 

Figure 5.27: Selected V-functions 
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functions appear as the dashed lines. Note that, for reasons of fairness, we scale the unknown-

conditions function to its theoretical initial value of 250, as we did for the V-functions with 

conditions. It is clear that the unknown-conditions model implicitly makes assumptions about 

conditions based on what has happened so far in the innings. The dashed lines are flatter than 

the solid lines, meaning that when wickets are lost early, the unknown-conditions model 

assumes that our future scoring will be lower than the average-conditions model, as it is likely 

that we are in poor batting conditions. By contrast, when the team gets a significant way 

through their innings without losing many wickets, the unknown-conditions model expects 

more future runs than the average-conditions model, as the former assumes the team is playing 

in very good batting conditions. 

Figure 5.28: Average Conditions (solid lines) vs Unknown Conditions (dashed lines) 
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 It is possible to also illustrate the benefit of solving the dynamic programme for each 

value of ground conditions, rather than solving it for a single value and scaling the resulting 

function. In Figure 5.29 we present the dynamically-solved V-functions for conditions of 200, 

250 and 300 (the solid lines) and compare them to functions obtained by solving the dynamic 

programme only for conditions of 250 and scaling this function. These functions are for the 

power-play era, where 0j  . We see that the difference is significant; therefore, it is 

worthwhile spending the computer time solving for each individual value, although solving for 

several values and interpolating for the in-between values would provide a good 

approximation. 

Figure 5.29: Conditions vs Scaled Conditions 
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5.8 Concluding remarks 

The focus of this chapter has been on analysing the first innings. We have created a 

dynamic programme to answer questions surrounding the reasonable future expectations of a 

batting team from any given current position. In Chapter 6 we show how we can use the models 

in this chapter to construct a new variable, the cost of a wicket, which has important 

implications for strategy. Using the cost of a wicket as a proxy for the risk taken by batsmen we 

are able to estimate PPFs for individual players. 
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CHAPTER 6 

Estimating Production Possibility Frontiers for batsmen 

6.1  Introduction 

In ODI cricket, a batsman faces a trade-off between the rate at which he can score runs 

and his probability of survival. If a batsman attempts to score at a faster rate, he is usually 

required to take a higher level of risk, compromising his probability of survival. Some 

examples include the batsman attempting to loft the ball over the fielders (risking being 

caught), attempting to run with a lower degree of certainty that he will make his ground 

(risking being run out) and attempting to hit the ball harder (risking several dismissal methods 

due to having less control of the bat). In this chapter, we outline a method with which we can 

estimate the trade-off between scoring rate and survival rate for an individual batsman. A 

cricket team cannot determine its optimal batting strategy without knowing the capabilities of 

its 11 members. 

6.1.1  A hypothetical case 

Our goal is to observe the trade-off between expected runs and the probability of 

survival. Unfortunately we cannot observe these variables directly. We are only able to observe 

the outcome of each ball in terms of number of runs scored and whether or not a wicket fell. To 

properly observe this trade-off, we require information about the risk intentions of batsmen 
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when particular results are achieved. We show the usefulness of this by way of a hypothetical 

example. The greatest batsman in the history of the game, Sir Donald Bradman, never played 

an ODI, as the shorter format of the game was yet to be invented. For the purpose of illustrating 

an example, consider for a moment the idea that Bradman had an ODI career of several years. 

Assume that he faced 7000 balls with the outcomes displayed in Table 6.1. Over this period, 

our hypothetical D. Bradman scored 6996 runs from 7000 balls faced, a scoring rate of 99.94 

runs per hundred balls. Bradman was also out 70 times over this period, giving him a survival 

rate per ball of 99.00%. This gives us some overall idea of our hypothetical Bradman’s ability 

but tells us nothing about how his scoring rate and survival probability change when he adopts 

different risk strategies. 

Table 6.1: Summary of D. Bradman’s batting outcomes over observed sample. 

Outcome 
Number of 

Occurrences 

Percentage of 

Occurrences 

Zero Runs 2359 46.56% 

One Run 2341 33.44% 

Two Runs 350 5.00% 

Three Runs 175 2.50% 

Four Runs 700 10.00% 

Five Runs 0 0.00% 

Six Runs 105 1.50% 

Out 70 1.00% 

 

We now add some more information to our hypothetical model. Imagine we knew that 

Bradman only ever played with two strategies, a relatively defensive strategy which we call 

strategy a and a relatively aggressive strategy which we call strategy b. Our hypothetical 

Bradman is equipped with a powerful memory and he informs us that he played exactly half the 
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balls in his career using each strategy and is able to recall exactly which balls were played 

under which strategy. This information is summarised in Table 6.2. 

Table 6.2: Summary of D. Bradman’s batting outcomes 

 Strategy a Strategy b 

Outcome 
Number of 

Occurrences 

Percentage of 

Balls Faced 

Number of 

Occurrences 

Percentage of 

Balls Faced 

Zero Runs 2100 60.00% 1159 33.11% 

One Run 1050 30.00% 1291 36.89% 

Two Runs 140 4.00% 210 6.00% 

Three Runs 35 1.00% 140 4.00% 

Four Runs 161 4.60% 539 15.40% 

Five Runs 0 0.00% 0 0.00% 

Six Runs 0 0.00% 105 3.00% 

Out 14 0.40% 56 1.60% 

 

When playing strategy a, our hypothetical batsman D. Bradman scored a total of 2079 

runs from 3500 balls, a scoring rate of 0.5940 runs per ball, while his survival rate was 99.60%. 

When playing strategy b¸ he scores a total of 4917 runs from 3500 balls, a scoring rate of 

1.4048 runs per ball, while his survival rate was 98.40%. We now have two points where we 

know that our hypothetical Bradman was playing different risk strategies and we can infer a 

basic PPF. Assuming convexity of the production set, that is to say that the higher is the 

probability of survival, the higher is the marginal cost in terms of expected scoring rate of an 

additional unit of survival probability, a possible PPF for D. Bradman, if he chose to employ a 

full range of strategies, is displayed in Figure 6.1. Point “A” represents Bradman’s aggressive 

strategy a, while point “B” represents his defensive strategy b.  
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Figure 6.1: A possible PPF for hypothetical batsman D. Bradman
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It would be reasonable to assume that a batsman would take the same level of risk, on 

average, every time he is in exactly the same situation. Given there are 3000 combinations of i 

and j that make up the state space, it is infeasible to treat each state as a separate situation as, 

for an individual batsman, we would have a very small set of observations for each cell. 

We show in this chapter that the key determinant of first-innings risk strategy should be 

the number of runs that a team’s expected score falls by if a wicket is lost, the “cost of a 

wicket”. The higher is this number, the larger is the potential cost to the batting team of a risky 

strategy and the more defensive is the optimal strategy for the current batsman to employ. 

There are two important things to note about the cost of a wicket. First, different states ( , )i j  

produce very similar costs, meaning that we can collapse our 3000 different states into a much 

smaller number of groups, increasing the sample size in each group. More importantly, the cost 

of a wicket converts each state ( , )i j into a cardinal variable, which means that we can use cost 

of a wicket to create a flexible semi-parametric model to make predictions for all cells ( , )i j .  

A batsman’s ability determines the trade-off that he faces between scoring rate and 

survival rate. There also exists a preference trade-off, the marginal rate of substitution (MRS), 

given by some utility function   ,  U E r  where  E r is the expected runs from a particular 

ball and   is the probability of surviving that ball. We show that the MRS is equal to the cost 

of a wicket. By estimating a batsman’s  E r and   as functions of the cost of a wicket, we are 

first able to identify his PPF and second able to test his strategic nous by comparing the points 

of his PPF at which he chooses to operate with the optimal strategy, for various values of the 

cost of a wicket. 
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6.2  Choosing the level of risk to optimise the value function 

In Chapter 5 we estimated the value function, ( , )V i j , by looking at actual behaviour. 

This was sufficient for predicting the expected additional runs from any state ( , )i j . In this 

chapter we are concerned with the chosen strategy of a batsman; therefore, we note that our 

expected runs and probability of a wicket functions do not arise automatically from each 

combination of i and j. Rather, they arise in part because of the strategic choice of a batsman. 

Let  = The level of aggression chosen by the batsman.  0,1   

We redefine our expected runs function as |ijE r    . To enable us to model a batsman’s 

strategic choice in the conventional economic framework of substituting between two desirable 

goods, we use the probability of not losing a wicket on a legitimate ball, rather than the 

probability of a wicket. We define the probability of survival as ( )ij  .
12

 When a batsman 

selects a strategy, he chooses a risk level ; however, we do not know the relationship between 

 and ijE r    or ij . Define  as the locus of points  ,ij ijE r     that define a batsman’s PPF 

so that 

  
( , )ij ijE r      

                                                 
12

 ijE r    and ij are batsman-specific, as well as depending on i and j; however, we suppress the reference to the 

batsman in the notation as we do not use this notation to compare different batsmen. 



146 

 

 We assume that when a batsman is selecting a strategy, he is implicitly choosing a 

point on his PPF - that is, some combination of 
ijE r    and ij where ( , )ij ijE r     . The 

Bellman Equation is now 

  

*

( , )
( , ) ( , )

ij ijE r
V i j Max V i j

   



 

where 

  

* *( , ) [ ] (1 ) ( 1, 1) ( 1, )
1

ij

ij ij

ij ij

ij

V i j E r V i j V i j
 

 


       


   

A batsman is indifferent between the set of points where ( , )V i j K , for any constant K. 

  ( , ) 0V i j K   

so 

  
* *[ ] (1 ) ( 1, 1) ( 1, ) 0

1
ij

ij ij

ij ij

ij

E r V i j V i j K
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From the implicit function theorem, then 
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  Let ( , )C i j be the cost to the batting team of losing a wicket on ball i, given they have 

already lost j wickets, ( , )C i j  ,
13

 so that 

   ,
ij

ij

E r
C i j



     


 (23) 

Equation (23) reveals that, in any state of the first innings, a batsman’s marginal rate of 

substitution between scoring rate and survival rate is equal to the negative of the cost of a 

wicket in that state. As the cost of a wicket only depends on i and j, in any state ( , )i j  the 

batsman’s indifference curve is linear with slope  ,C i j . 

We have outlined the fact that there are different combinations of runs and survival 

between which the batting team is indifferent. Now we address the capabilities of an individual 

batsman. On every ball, a batsman must decide how much risk he wants to take. Each level of 

risk results in some number of expected runs and some probability of survival, for that 

individual batsman. These numbers can be used to form the PPF for that batsman. A batsman is 

optimising if he takes the level of risk that places him at the point where his PPF is tangential to 

the indifference curve of the team, given by the cost of a wicket at that stage of the game. That 

is, where the marginal rate of substitution is equal to the marginal rate of transformation.  

We expect that a batsman’s PPF is continuous, monotonic in 
ij  and weakly concave. 

This weak-concavity expectation means that a batsman will have to give up a higher amount of 

                                                 
13

 We note that ( , )C i j can technically take any real-numbered value. Situations do exist in the game of cricket 

where the batting team may actually be better off by the loss of a wicket, for example, if the situation demands fast 

scoring and the batsman at the crease is either having a bad day or simply does not have the ability to score as 

quickly as required. If a team is following the optimal strategy then the cost of a wicket should never be negative 

as the batsman has the option of retiring; however, a poorly-performing batsman’s pride may well get in the way 

of the optimal strategy, opening the door to negative values of ( , )C i j . 
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expected runs in order to get an extra unit of survival, the higher the probability of survival he 

already has and vice versa. This can be theoretically justified by the reasoning that a batsman, 

over the course of several balls, can reach any point on the straight line between two points of 

his PPF by mixing between those two strategies. 

We illustrate an example of a batsman’s PPF and his optimal choices in Figure 6.2, 

using three potential game situations. When the cost of a wicket is high, this particular batsman 

wants to be operating at point A, where he is taking a low level of risk and the highest 

attainable indifference curve is IC-A. When the cost of a wicket is a middling value, this 

batsman should optimally move to higher risk point B and he should move to very high risk 

point C where the cost of a wicket is very low. 

Figure 6.2: The PPF with optimal points 
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6.3  Estimating the Production Possibility Frontiers 

6.3.1  The cost-of-a-wicket functions 

Recall that the key determinant of first-innings optimal strategy is ( , )C i j , the cost of 

losing a wicket on ball  i  given that  j  wickets have already been lost. Having identified our 

expected additional runs functions ( , )V i j , we can now estimate the cost of losing a wicket as  

  ( , ) ( 1, ) ( 1, 1)C i j V i j V i j      

We plot the ( , )C i j function for each value of j  in Figure 6.3. It is clear that the 

relationship between ( , )C i j and each factor i and j is a rather complicated one, but as a general 

rule we can say that the cost of a wicket tends to decrease for any given j, as i increases, and 

tends to increase for any given i, as j increases, with this tendency being stronger in the second 

half of the innings. Note that in the early stages of the innings, however, the costs are not 

necessarily monotonic in the number of wickets lost; this is an indication of the complexity of 

the decision that players have to make on the field in terms of their risk strategies. One 

implication of this is the counter-intuitive result that the loss of a wicket can lead to it being 

optimal to increase the amount of risk taken. 
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Figure 6.3: C-functions in unknown conditions model, non-power-play era 

 

Naturally, the cost of a wicket varies with the conditions, but the relative importance of 

conditions to the cost, depends on the number of wickets lost and the number of balls bowled. 

This is illustrated in Figure 6.4, which shows the C-functions for zero and six wickets lost for 

poor, approximately average and good batting conditions. It is clear that conditions are very 

important for determining the cost of a wicket near the start of the innings with six wickets lost 

(an unlikely situation), but not important in general with zero wickets down and, in either case, 

towards the end of the innings.  

In better conditions, it is likely that two factors are approximately cancelling each other 

out. As a higher overall score is expected, each partnership is expected to contribute a higher 

number of runs than in worse conditions. This is counteracted by the lower probability of a 

team being bowled out within their 50 overs in better conditions. Clearly, this second factor 

does not apply when a team has lost six wickets very early on and this explains the importance 
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of conditions in that situation. Figure 6.5 compares the functions for three and eight wickets 

down and we see a similar pattern. The cost of losing your eighth wicket early in the innings is 

very large when conditions are good and smaller in poor conditions as less is expected from the 

last two partnerships. 

Figure 6.4: Selected C-functions in various conditions, non-power-play era 
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Figure 6.5: Selected C-functions in various conditions, non-power-play era 

 

6.3.2  Inferring the Production Possibility Frontiers 

Recall Equation (23) 

  

* *( 1, 1) ( 1, )
ij

ij

E r
V i j V i j



        

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wicket provides a good reference point for us to compare a batsman’s trade-off between scoring 

rates and the probability of survival. While a batsman is unlikely to be thinking about the exact 

equation of his PPF or the exact cost of a wicket at the time he is at the crease, we assume that 

he at least has a good enough idea about the amount of risk that is appropriate for the current 

game situation to choose a higher amount of risk for a lower cost of a wicket. That is, we 

assume that his risk adjustments to the changing cost of a wicket are monotonic in ( , )C i j  and 

in the optimal direction.  

Recall that we defined the runs function as ( )r   and the probability of a wicket 

function as ( )  , noting at the time that we did not know the exact relationship between each 

variable and the risk parameter . Using the cost of a wicket as a proxy measure of the risk 

taken enables us to model these relationships and allows us to determine what a batsman is 

capable of by constructing his PPF. We achieve this by separately modelling expected runs,

 E r  and the probability of survival,  , as a function of the risk proxy, C , which yields an 

estimate for expected runs and the probability of survival for each possible value of C . The 

locus of points implied by the set of observed C values is our estimated PPF for that batsman.  

Define ( )r C as a batsman’s expected runs and ( )C as his probability of survival, for a 

given cost of a wicket C. The inverse function of ( )C is 
1( )C 

=  C  . The batsman’s PPF is 

then defined by 

  ( ) ( ( ))r r C   
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6.3.3  The spline estimation procedure 

We group our data by individual batsman and period of the innings (fielding restrictions 

or no restrictions). For each group we want to create two models linking first our runs variable 

r  and second our survival variable  to our cost-of-a-wicket variable and conditions variable, 

C and   respectively. For comparison purposes, not all the PPFs that we create contain this 

conditions variable. A priori, we expect that the cost-of-a-wicket variable will influence the 

runs variable negatively and the survival variable positively as batsmen should be relatively 

defensive when it is expensive to lose a wicket. We also expect that it should be easier to both 

score more quickly and survive in easier batting conditions.  

 The final thing needed to create the models is a functional form for the runs and 

survival functions. Before creating the models, we need to address the very important question 

of which functional form we should select for the model. Fitting the ( )r C and ( )C curves 

through data means that we can use information from observed situations to get an estimate of a 

point on the PPF for any situation; however, we need to be careful with this. The PPFs give one 

the ability to determine the optimal point at which a batsman should operate, given the game 

situation, by setting the slope of the PPF equal to the slope of the indifference curve. The slope 

of the PPF function is very important and we are concerned that assuming a parametric 

functional form for two functions that are to be combined to form the PPF, may impose so 

much structure on the model that we may not get an accurate representation of the true PPF at 

any point. This is especially true as regression models are more concerned with the fit in the 

thick data areas than in the thin data areas, which is often justifiable on the grounds that the thin 

data areas are, by definition, rarely observed. In our case, the thin data area(s) of the PPFs are 
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thin because the batsman in question does not encounter the costs at which he chooses to 

operate in that region of his PPF often; however, it is perfectly possible that our PPFs might 

indicate that he should be operating in that thin data area much more often than he currently 

chooses. 

 SAS provides the capability to estimate Generalised Additive Models (GAMs). A GAM 

involves a new function of some form being added at each unique value of the independent 

variable, creating a smooth fit without a general functional form. In particular, we are able to 

construct semi-parametric models of the form 

  0 1 1 2 2 2( ) ( )E Y x x s x     
 

The 2( )s x represents a smoothing spline which is the solution to the optimisation problem 

  

2 2

1

min ( ( )) ( ( ))

bn

i i

i a

y x t dt


  


  
 

where  is the set of all functions with two continuous derivatives,   is a fixed constant 

indicating the size of the penalty for curvature in the function and a and b are the minimum and 

maximum values of ix , respectively. The optimiser is a natural cubic spline with knots at the 

unique values of x - it is a piecewise cubic polynomial.  

 SAS contains a procedure PROC GAM that estimates the GAM. The resulting functions 

are flexible in that they do not have a specific functional form; however, we do need to 

determine the value of the smoothing parameter1



 . Setting   very high implies a smoothing
 

parameter of close to one, which means that curvature in the GAM is not tolerated and our 
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function approximates a straight line. Setting   close to zero implies a very small smoothing 

parameter, which means that the GAM simply looks for the best fit to the data and the result is 

not a smooth function. Note that SAS does not allow the specification of  directly; instead, it 

requires the specification of a degrees of freedom parameter, equal to the trace of the matrix of 

smoothing functions implied by a particular . We can specify any value greater than one for 

the degrees of freedom parameter. 

 We create models for r  and  where  is a parametric term and C is a spline term. The 

most difficult aspect of the modeling process is choosing the best degrees of freedom 

parameter. If we choose a value too low, the resulting PPFs will fail to show the full curvature 

of the batsman’s true underlying PPF. If we choose a degrees of freedom value that is too high, 

we will over fit our model and the PPF will contain curvature that does not really exist. SAS 

does contain an automatic selection criterion, the Generalised Cross Validation Function, which 

fits the model by leaving out one data point at a time and calculating the squared residual for 

that data point and summing these squared residuals, seeking the model that minimises this 

sum. This feature tended to over-fit our model in too many cases to be useful. 

 In order to investigate the most appropriate choice of degrees of freedom parameter, we 

try a number of values for three example batsmen in our non-fielding-restriction data set. We 

choose our batsmen for this analysis based on the frequency that they appear in the data, paying 

attention to both total number of balls faced and number of times dismissed. The latter is 

important as a wicket is a rather rare event; therefore, to construct a PPF we need to observe a 

batsman being dismissed in the data set a reasonable number of times. Andrew Symonds has 

faced the most balls of anyone in our data set (1567) and has been out 34 times. If our choice of 
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model cannot fit his data well, it would likely have little chance for many other players. Justin 

Kemp has faced 355 balls for ten dismissals, which is very thin data and therefore we want to 

investigate the performance of the GAM here too. Our third batsman is in the approximate 

middle of these two extremes - Brendon McCullum has faced 735 balls for 23 dismissals. Now 

that we are starting to look at individual batsmen, at this point it is important to note that our 

data contain, in most cases, a small snapshot of a player’s career. Any conclusions about the 

strengths and weaknesses of individual players should be interpreted as being the case in our 

particular data set, but not necessarily extrapolated to form a judgement of that player in 

general. 

 In order to decide how many degrees of freedom we need for a reasonable fit, we 

construct the PPFs for our three example players where degrees of freedom is equal to one, 1.5, 

two, three, five and ten. Andrew Symonds’ PPFs are shown in Figure 6.6, Brendon 

McCullum’s in Figure 6.7 and Justin Kemp’s in Figure 6.8. Note that for simplicity, these 

models have been constructed without the conditions variable. 
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Figure 6.6: PPFs for selected values of df – Andrew Symonds 

 

Andrew Symonds’ PPF is constructed from the most data. It is immediately clear that 

df=10 and df=5 suffer from substantial over fitting, while df=3 looks better but suffers from an 

unexpected shape near the high-survival end point. There may be cricket reasons to explain 

some unexpected results, so we need to be careful to not use such results as a reason to over-

smooth the data. Overall, df=2 has the largest df value for which the shape looks reasonable. 

For Brendon McCullum, we remove df=10 and df=5 in order to improve the clarity of the 

graph. We see here that df=3 has a strange feature in the high-survival region, while df=2 has a 

slight concavity of the production set in the same region and df=1.5 has no such features. 
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Figure 6.7: PPFs for selected values of df – Brendon McCullum 

 

Figure 6.8: PPFs for selected values of df – Justin Kemp 

 

 

Justin Kemp’s PPFs, which are based on the least amount of data of the three players, 

show an unusual feature at the high-scoring end for df=2, where the graph implies that he can 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

0.8 0.85 0.9 0.95 1 

Ex
p

ec
te

d
 R

u
n

s 

Probaility of Survival 

df=3 

df=2 

df=1.5 

df=1 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

0.8 0.85 0.9 0.95 1 

Ex
p

ec
te

d
 R

u
n

s 

Probaility of Survival 

df=2 

df=1.5 

df=1 



160 

 

increase his scoring rate to its highest point and increase his probability of survival as he does 

so. This seems highly unlikely. The graph for df=1.5 looks reasonable, although we have a 

concavity-of-the-production-set region.  

Taking the above findings into account and erring on the side of our prior belief that the 

PPFs should have a weakly convex production set and exhibit monotonicity in the survival 

variable, we decide on the following rules for the selection of the degrees of freedom 

parameter. 

  

1.2, 351 500

1.3, 501 1000

1.5, 1001

/ , Otherwise

n

n
df

n

N A

  
 

  
  

 
  

 

No PPF is estimated for players with 350 or fewer observations. We note that the goal 

of this overall modeling strategy is that we want it to be possible for our models to show 

concavity of the production set (both local and global) or non-monotonicity, but we also want 

to make it difficult for these factors to appear in the model by chance alone, meaning that the 

model must have a high degree of confidence that these factors exist before they appear this 

way in the results. 

6.3.4  Estimating the PPFs 

Having obtained, from our GAM models, all the necessary information from which to 

construct our PPFs, we outline the relevant functions of one of New Zealand’s longest-serving 

batsmen, Chris Harris. Figures 6.9 and 6.10 contain the expected runs and probability of 
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survival functions, respectively, with the cost of a wicket as the dependent variable. For 

simplicity, these are models constructed from the unknown conditions data set. These figures 

show that this batsman scores relatively slowly and has a higher probability of survival when 

the cost of a wicket is high, which is a rational strategy. Harris’ expected-runs function is 

convex while his survival function is concave. It is the degree of this convexity and concavity 

that determines whether the overall production set will be convex or not. These curves are 

estimated only over the range of costs observed for Chris Harris in the data set. We are 

interested in his batting ability as revealed by the data; therefore, we do not make any 

assumption about what he could achieve over extended ranges of cost of a wicket. 

Figure 6.9: Expected Runs function for Chris Harris, Unknown Conditions 
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Figure 6.10: Survival function for Chris Harris, Unknown Conditions 

 

Putting the data in Figures 6.11 and 6.12 together, for each cost of a wicket, yields the 

PPF for Chris Harris. This PPF reveals the locus of points from which Harris can select his 

strategy. 

Figure 6.11: PPF for Chris Harris, Unknown Conditions 
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 Once we have established the PPF of a batsman, we are able to determine their optimal 

strategy, given that PPF, in any game situation. Recall the solution to our optimisation problem, 

given in Equation (23) 

  
[ ]

( , )
ij

ij

E r
C i j




 


      (23) 

A batsman should operate where the slope of his production function is equal to the 

negative cost of a wicket. Since the cost of a wicket is a constant, given a particular game 

situation ( , )i j , a batsman has linear indifference curves with slope equal to ( , )C i j with 

increasing preferences in both expected runs and survival probability. Our PPFs were 

constructed by matching expected runs and survival probabilities for given values of ( , )C i j ; 

therefore, we can infer the strategy chosen by a batsman for a particular ( , )C i j  and compare it 

to the optimal strategy given his PPF. We show the case of Chris Harris, in unknown 

conditions, where the cost of a wicket is equal to 15, in Figure 6.13. The larger, dark blue dot 

represents the optimal point for Harris, given this cost, while the smaller, light blue dot 

represents his chosen point. In this situation, the chosen point is very close to the optimal point 

and Harris is approximating the optimal strategy. The light blue indifference curve, which his 

actual choice places him on, is almost indistinguishable from the dark blue indifference curve, 

on which his optimal choice would place him. 
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Figure 6.13: Optimisation for Chris Harris, Unknown Conditions, 15C   

 

It would be useful to be able to determine the impact of a suboptimal choice in terms of 

value function for expected additional runs. Recall our value function 

  

( , ) [ ] (1 ) ( 1, 1) ( 1, )
1

ij

ij ij

ij ij

ij

V i j E r V i j V i j
 

 


       


  

We define the value function for a particular individual batsman, B, in state ( , )i j  and taking 

risk level  . We write 

  

( , | ) [ ] (1 ) ( 1, 1) ( 1, )
1

ij ij

B B B

ij

V i j B E r V i j V i j
  

 
 


       


 

   ( , | ) [ ] , ( 1, 1)
1

ij ij

B B

ij

V i j B E r C i j V i j
 

 



     


 (24) 

The third and fourth terms of the RHS of Equation (24) are constants in state ( , )i j , as they 

relate to the performance of the average team. The first and second terms contain important 
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information about the performance of batsman B. Define the Expected Gross Contribution 

(EGC) of batsman B, taking risk level  , as 

  
   [ ] ,B BEGC B E r C i j

   
 

The EGC measure enables us to make three important comparisons. First, it enables us 

to compare the chosen strategy  with the optimal strategy 
* , for a given batsman. Second, it 

enables us to compare the performance of two batsmen B and D, assuming either that each 

batsman operates under their chosen strategy B  and D , or their optimal strategy *B


 and 

*D
  

. Third, it enables us to compare the outcome from a batsman’s chosen or optimal strategy 

with the average outcome as estimated in the dynamic programme for the V-functions. This last 

comparison is outside the scope of this thesis. 

6.3.5  Illustrative examples of the use of the PPFs and EGC measure 

This section contains several examples illustrating the information that one can extract 

from the PPFs and the EGC measure. Returning to our example of Chris Harris in Figure 6.13, 

Harris’ chosen strategy where the cost of a wicket is equal to 15 yields [ ] 0.643HarrisE r

 and 

0.978Harris
  . If he followed the optimal strategy he would have operated at the point where 

*
[ ] 0.672HarrisE r



 and 
*

0.976Harris


  , a slightly more aggressive point. Given the cost of 15 

runs, 15.31205HarrisEGC

 while 

*
15.31206HarrisEGC



 . These values are almost identical, 

indicating that Harris’ small amount of sub-optimality is doing very little harm in this situation. 

The EGC measure is particularly useful because in some situations a batsman may be operating 
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far away from his optimal point in terms of the Euclidian distance on his PPF, but his poor 

choice may have a very small impact on the resultant V-function. This is generally the case 

where a batsman has a relatively flat PPF in the relevant range of risk choices and the cost of a 

wicket is high. In other situations, operating slightly away from the optimal point may have a 

very large impact on the resultant V-function. This generally occurs when a batsman has a 

steep PPF in the relevant range and the cost of a wicket is low. 

To this point we have compared Chris Harris’ chosen strategy to his optimal strategy for 

a single value cost of a wicket, 15C  . It would be useful to illustrate the difference between 

these strategies for all possible costs. It is possible to do this using the EGC measure, by 

calculating the difference between the EGCs implied by the optimal strategy and the chosen 

strategy for each cost of a wicket. The difference between two EGC functions can be 

interpreted as the difference in runs of the V-functions implied by the two strategies. Note that 

this assumes that each strategy is chosen for the current ball only; the subsequent V-functions 

are taken as given. We show the difference between the EGC functions for the optimal and 

actual strategies, again using the example of Harris, in Figure 6.14. It is clear that this batsman 

is achieving very close to the optimal outcome, for all costs. We will show in the subsequent 

analysis that many other batsmen are not so strategically aware. 
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Figure 6.14: Optimal vs. chosen strategy for Chris Harris, Unknown Conditions  
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the PPFs we can say that Sangakkara is unambiguously more capable in good batting 

conditions than in poor batting conditions. This statement, however, assumes that he adopts the 

optimal strategy. We show the difference in the EGC functions implied by the optimal and 

actual risk choice for each value of conditions in Figure 6.16. It is clear that some of 

Sangakkara’s higher capability under good batting conditions is lost due to a higher level of 

sub-optimality. This might indicate, for example, that Sangakkara does not take enough risks 

when conditions are good for batting. 

Figure 6.15: PPF for Kumar Sangakkara under different conditions 
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Figure 6.16: Optimal vs. Chosen strategy Sangakkara under different conditions 
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addition, we can compare degrees of optimality in order to answer the question as to whether a 

player with greater ability is always a better choice. 

 The first player comparison is between two middle-order batsmen, Michael Hussey and 

Mark Boucher. Their PPFs are shown in Figure 6.17. We see that Hussey’s PPF dominates 

Boucher’s in every situation, which implies that Hussey has greater ability. In Figure 6.18 we 

show the difference in the EGC functions for each player under the optimal strategy and under 

the actual strategy. By convention, these are shown as the EGC of the blue batsman from the 

PPF graph minus the EGC of the red batsman; therefore, any positive difference implies an 

advantage to Hussey over Boucher in this case. It is clear from Figure 6.18 that, while Hussey 

has a substantial advantage over Boucher in terms of ability, he suffers from much greater sub-

optimality and the difference between the players in terms of what they actually achieve is 

lower than it might otherwise be if both players behaved optimally. 

Figure 6.17: PPFs for Hussey and Boucher, 250   
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Figure 6.18: Difference in EGC functions for Hussey and Boucher, 250   
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14

 

  

                                                 
14

 Note that the decision of who is the better choice is complicated somewhat by the fact that a high-cost situation 

tends to turn into a low-cost situation if wickets do not fall. 
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Figure 6.19: PPFs for Singh and Gibbs, 250   

 

 

Figure 6.20: Optimal and chosen strategies for Singh and Gibbs, 250  , C=5 
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Figure 6.21: Optimal and chosen strategies for Singh and Gibbs, 250  , C=20 
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Figure 6.22: Difference in EGC functions for Singh and Gibbs, 250   
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the “without restrictions” period, this is an unlikely explanation. Second, a batsman may be 

aware that he should consider the cost of a wicket, but he may not have a good idea about what 

the cost of a wicket is in any given game situation. This is particularly likely to be the case in 

the restrictions period, where the costs do not vary to the great degree that they do in the no 

restrictions period. Third, a player may be well aware of both the need to consider the cost of a 

wicket and its approximate current value, yet chooses to ignore this information. This is a 

possibility, as the potential scoring methods are reduced for batsmen when the field is close, as 

they often need to hit the ball over the top of the fielders, as finding a gap along the ground is 

more difficult. Some batsman may prefer to play purely on instinct or by the old cricket adage 

of playing every ball on its merits. 

We have developed an alternative method for constructing the PPFs in the restrictions 

period, involving assigning a level of risk to particular cricket shots played. This is useful in 

that it gives us a complete set of functions in order to run full innings simulations; however, 

this is outside the scope of this thesis. 

6.4 Concluding remarks 

The PPFs can be applied in a range of ways, from determining players’ abilities and 

assessing how well they use it, to determining which players are better in which conditions and 

in which game situations, to potentially answering questions about what a particular batting 

line-up following a particular strategy might be able to achieve, in both average and optimal 

worlds. 
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CHAPTER 7 

Determining the winner of an abandoned match 

7.1 Introduction 

In an ideal world, players and fans alike would be able to enjoy a full-length contest of 

300 balls per innings, on every occasion that a match is scheduled. Unfortunately, this is not 

always possible due to wet weather. The mechanics of bowling a cricket ball, which usually 

involve a momentum-building sprint, followed by a jump, and culminating in the arm rotating 

at pace as the ball is delivered, mean that it is considered too dangerous to play when the 

ground is slippery. As a result, play does not occur during a period of significant rain and, 

depending on the severity and duration of the rain, for a period after the rain stops as the 

ground must first be deemed dry enough for play. It is also possible for bad light to prevent 

play; however, this has become a rare event in the modern game as most stadiums are equipped 

with floodlights, often for the specific purpose of enabling games to be played at least partially 

at night. 

 There are several possible approaches for cricket authorities to take in determining what 

to do when part of the playing time is lost in a match. One option is to complete the match the 

following day; however, this does not fit well with playing schedules (which are often very 

busy), television coverage and spectator interests. A second option is to abandon the match 

completely, declaring neither team as the winner (in cricket terminology, this is called a no-
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result). Consider the situation where a match has almost been completed and one team is almost 

certain to win. Declaring a no-result would be very unfair. A third option is to have some rules 

in place that enable a shorter match to be played. This is the approach that is almost exclusively 

used in ODI cricket today and this chapter focuses on the fairness of various sets of rain rules. 

 There are three main game situations to consider when thinking about the impact of a 

weather interruption. First, bad weather may delay the start of the match. Second, there may be 

an interruption which occurs after the start of the match and is short enough to enable further 

play after the interruption. Third, an interruption may occur which is so severe or so close to 

the end of the match that no further play is possible after the interruption. We note that it is 

possible for any combination of these interruptions to occur in any given match, as multiple 

interruptions do happen. 

The situation where rain delays the start of the match is relatively trivial. In this 

situation it is very easy to come up with a solution that is fair to both teams. Since the amount 

of time lost is known at the start of the match, each team’s batting innings can be reduced by 

the same number of overs. For example, if half the playing time were lost, then each team 

would bat for 25 overs, rather than 50. 

If bad weather causes an interruption in play but there is enough time for more play 

after the interruption, we face a situation where it is far more difficult to invoke a rule which 

makes it fair for both teams. Most obviously, if the interruption occurs during the second 

innings of the match, Team 1 will have already batted for 50 overs; therefore, all the lost overs 

must be taken away from Team 2’s innings. First-innings interruptions are also unfair. Consider 

the situation where Team 1 bats for 30 overs, then it rains and by the time the match is able to 
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be resumed there is time for just 30 further overs. Team 1 is disadvantaged if Team 2 are asked 

to bat for 30 overs and attempt to beat the score that Team 1 achieved in their 30 overs. This is 

because Team 1 would have been assessing their optimal risk strategy under the assumption 

that they had 50 overs to spread their ten wickets over, resulting in more defensive play than if 

they knew ex ante, as Team 2 would know, that they would only have 30 overs to bat. It is 

necessary for a fair rule to adjust the target score of Team 2 in these situations. 

Sometimes bad weather can bring about the end of the match. This might be because the 

rain lasts for many hours, is so heavy that it takes hours to get the ground dry again after the 

rain stops, or we are close to the end of the match when the interruption occurs. In this 

situation, we need a fair rule to decide the winner of the match. We note that this is simply a 

special case of the previous situation, as each rule that we investigate sets a target score for 

Team 2 even in the event of no more play. If Team 2 are in excess of this target score at the 

time of the abandonment of the game then they are declared the winner. 

Throughout this chapter we discuss several of the target-adjustment rules (rain rules) 

that have been used over the history of ODI cricket and we propose our own alternative rule. In 

order to compare the different rules, we introduce a method with which we can assess the 

accuracy of each one. Using this approach we show that our proposed rule is fairer than the 

Duckworth/Lewis (D/L) rule currently sanctioned for use in ODIs. Furthermore, we comment 

on the key differences between our rule and the D/L rule and assess the importance of each 

difference. 



179 

 

7.2 The rule-assessment procedure 

A good rain rule should, as accurately as possible, answer the question “in the current 

situation, which team is more likely to win this match?” It is important to note that it is 

impossible to use matches that were actually interrupted or abandoned due to bad weather to 

assess the fairness of a rain rule. By definition, we do not know who the truly deserving winner 

of these matches was, as they could have won or lost partly due to an unfair rain rule. 

Therefore, we take the set of completed, uninterrupted matches and create artificial 

interruptions in these matches and we assume that each interruption results in the abandonment 

of the match.  

We use the same data set of 311 matches as we used in Chapters 5 and 6; however, 

there is one game in this data set where the second-innings information is incomplete. In 

addition, there are two ties in our data set. Since our analysis investigates the ability of various 

rain rules to predict the winner of a match, these matches add very little value and 

unnecessarily complicate matters; therefore, we exclude them from our data set. This leaves us 

with 308 remaining matches in which we create artificial interruptions. 

At each artificial interruption, we determine the winner predicted by each rain rule by 

calculating the revised target according to the rule and looking at whether Team 2 is ahead of 

that target or not. Since these were, in fact, uninterrupted matches, we know which team went 

on to win each match; therefore, we can calculate the percentage of winners correctly predicted 

by each rain rule. We call this measure the Correct Prediction Percentage (CPP). The more 

interesting use of the rain rule occurs when the players are able to continue the match after an 
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interruption and a revised target is calculated; however, we cannot observe both the result with 

and without an interruption. The purpose of the CPP measure is to determine the most accurate 

method, which could then be used to calculate the revised target score in an interrupted match 

where a resumption in play is possible.  

 The rules of ODI cricket require that at least 20 overs must be faced by Team 2 to 

constitute a match. Matches that are abandoned before reaching this threshold are deemed to be 

no-results. As the minimum number of overs to constitute a match has varied over the history 

of ODI cricket, we illustrate the differences in CPP for all potential abandonments in Team 2’s 

innings in order to provide a complete picture of each method’s accuracy. 

 We create our artificial abandonments at the end of each over, from the first until the 

49
th

 and we plot the CPP for each method. In almost every match in which Team 2 is the 

winner and in some where Team 1 is the winner, Team 2’s innings does not last the full 50 

overs, due to their either achieving the target or being bowled out. In our assessment measure, 

we count any match that has already been decided as a correct prediction of any rain rule in 

order to show the likely impact of the choice of rule in any given match where, ex ante, we do 

not know whether the rain rule will be required.
15

 

 A very naïve rain rule would decide the winner of an abandoned match entirely by 

chance; for example, with the toss of a coin. This rule would have the equivalent correct 

prediction percentage as a rule that called every abandoned game a no-result, counting each no-

result as half a correct prediction. This is our baseline measure. In order for a rain rule to have 

any credibility whatsoever it must predict the correct winner more often than this baseline. In 

                                                 
15

 This approach also keeps our series smooth, since if we were to use the alternative method of ignoring games 

already decided in the analysis, our sample size would be substantially reduced in the latter overs of the innings. 
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order to introduce the way that the CPP will be displayed throughout this chapter, we show the 

baseline in Figure 7.1. 

Figure 7.1: The baseline CPP 

 

7.3 The Average Run Rate (ARR) rule 
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 The ARR rule has severe limitations. A batting team has two scarce resources – overs 

remaining and wickets in hand. The ARR rule reduces the target in proportion to overs lost but 

takes no account of the fact that an interruption does not affect Team 2’s wickets in hand. Team 

2 could bat very aggressively, scoring at a faster rate than Team 1 but losing nine of their ten 

wickets while being a long way short of the target when the rain comes. In an uninterrupted 

match, they would be very unlikely to win, but under the ARR rule they would be declared the 

winner by virtue of their faster scoring rate. This rule also ignores the timing of the 

interruption. Given a particular number of overs lost, it is clearly easier for Team 2 to plan their 

chase if the interruption occurs during the innings break than if their innings is unexpectedly 

cut short and the match is abandoned.  

 In Figure 7.2 we show the CPP of the ARR rule.
16

 It is clear that the ARR rule, despite 

its shortcomings, is a substantial improvement on the baseline rule of deciding the winner by 

chance.  

  

                                                 
16

 In this and all subsequent CPP graphs we smooth the data using a 5-over centred moving average. 
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Figure 7.2: CPP – adding the ARR rule 

 

No rule is going to predict the correct winner 100% of the time. Cricket would be a very 

boring game if that were the case as it would mean the actions of players would be entirely 

predictable. The CPP, however, does provide a way of comparing two rules in terms of how 

well they used the match-specific information available prior to the interruption. It is not only 

the CPP that is important. We also consider those matches where the winner was incorrectly 

predicted by the ARR rule and look at which team would have benefited from the incorrect 

prediction - that is, which team would be incorrectly awarded the win in each case of 

abandonment. Figure 7.3 displays the percentage of the incorrectly predicted matches that 

would be awarded to each team.
17

 It is clear that, aside from in the last three overs (where there 

is a very small sample size of matches still alive), Team 1 has a very large advantage under the 

                                                 
17

 In this and all future charts displaying the bias of a particular rule, we include a black line to show the 

theoretical line of fairness, a purple line at the 20-over mark to show the current minimum number of overs that 

constitute a match and a green line, to the right of which we have fewer than 50 incorrectly decided matches. 
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ARR rule in abandoned matches. This is because teams generally prefer to start their chase 

relatively conservatively, getting behind the required run rate but keeping wickets in hand with 

which to pick up the scoring rate towards the end of the innings. A surprise abandonment of the 

match is likely to find them short of their revised target. 

The type of interruption least like an abandoned match is where the interruption occurs 

during the innings break. Logically, the advantage would be reversed in this situation as Team 

2 would need to score at the same rate as Team 1, with all their wickets in hand, for fewer 

overs. We suppose that, for a given length of interruption, the fewer overs remaining for Team 

2 at the resumption, the greater the advantage to Team 1. 

 Figure 7.3: Bias under the ARR rule 
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7.4 The Most Productive Overs (MPO) rule 

The MPO rule involves the overs faced by Team 1 being ordered from the smallest 

number of runs scored to the largest. The reduced number of overs available to Team 2 is 

accounted for simply by removing Team 1’s least productive overs, in terms of run scoring, 

from the target. That is: 

 

2

1

1

MPO m

O
T P

m
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


 

 

Where Pm is the runs scored from the m
th

 highest-scoring over in Team 1’s innings.  

In Figure 7.4 we show that the MPO rule does not perform much better than simply 

tossing a coin to determine the winner. In fact, we show in Figure 7.5 that the MPO rule 

performs far worse than the baseline in terms of fairness, as when it makes a mistake it almost 

exclusively does so by being too quick to award the win to Team 1. The MPO method clearly 

advantages Team 1 as it only counts the overs of the first innings where they performed the 

best. Ignoring whether a predicted winner was correct or not and just focusing on the prediction 

itself, the MPO rule predicts Team 1 as the winner 97.9% of the time in an abandoned match. 

Team 2 would have more of a chance in a revised target situation where the match was 

resumed, but the size of the bias towards Team 1 in an abandonment situation makes is quite 

unbelievable that this method was used in important international matches. Indeed this method 

affected the 1992 World Cup, where South Africa’s semi-final winning equation went from 
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needing 22 runs from 13 balls before a rain interruption, to needing an (almost) impossible 21 

runs from a single ball at the resumption. 

Figure 7.4: CPP – adding the MPO rule 

 

Figure 7.5: Bias under the MPO rule 
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7.5 The Duckworth/Lewis (D/L) rule 

Duckworth and Lewis (1998) proposed a method for calculating an appropriate target 

for the team batting second. Weather-affected ODI games have for more than a decade adopted 

the D/L rule. Like the ARR rule, the D/L rule is a resources-lost criterion however it has the 

significant advantage of taking both of a batting team’s scarce resources, ball and wickets 

remaining, into account. To outline the basic idea of their method, consider the most common 

situation where two teams play a full length game. Each team has 100% of the resources (50 

overs, ten wickets) of a full length game available to them. Team 2 simply has to beat Team 1’s 

score, without adjustment. Now consider a game where Team 1 has an uninterrupted 50 over 

innings, but at some point in Team 2’s innings it rains and ten overs are lost. Team 2 now only 

bats for a total of 40 overs. This clearly hurts their chances of beating Team 1’s score so an 

adjustment is needed.  

The D/L rule calculates the adjustment based on the ratio of resources available to Team 

2 to the resources available to Team 1. If either innings is interrupted or abandoned, one or both 

of the teams lose some of their resources. The resources-lost depend on the number of overs 

and wickets remaining at the time of the interruption as shown in Figure 7.6 below. Citing 

commercial confidentiality, Duckworth and Lewis do not include the exact parameters of their 

model; however, they reveal that it is based on an exponential function for each wicket.  
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Figure 7.6: Duckworth/Lewis Resource Percentages 
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The basic concept is the same as the standard edition, but the resource percentages change 

depending on the first-innings score. Our assessment of their model is based on the publicly 

available standard edition. Defining the resource percentages available to Team 1 and Team 2 

as R1 and R2, respectively, the formula for the Duckworth/Lewis target for Team 2 is
18
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. 

This formula is essentially the same as the formula for the ARR rule, with the only difference 

being that the resource percentages are not constructed solely in terms of overs. 

In Figure 7.7 we add the CPP for the D/L rule to our chart of the performance of each 

rule. It is clear that the D/L rule is a substantial improvement on the next-best ARR rule. 

Furthermore, Figure 7.8 does not suggest that the D/L rule substantially advantages one team or 

the other, in the case of abandoned matches, particularly considering the region between the 

green and yellow dashed lines – that is, after the minimum 20-overs have been bowled and 

before the data get thin. 

  

                                                 
18

 The formula is slightly different when Team 2 has a greater resource percentage than Team 1, a situation which 

would occur if Team 1’s innings is unexpectedly cut short but Team 2 has full knowledge at the start of their 

innings of how many overs they have. 
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Figure 7.7: CPP – adding the D/L rule 

 

 

Figure 7.8: Bias under the D/L rule 
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7.6 A probability-maintenance criterion 

Both the D/L and ARR rules use a “resources-lost” criterion in calculating a revised 

target score. The basic idea of this criterion is to assess the percentage of a team’s resources 

that were lost over the course of the interruption or, in the case of an abandonment, the resource 

percentage that a team had available to them at the time of the abandonment. The revised target 

score is the nearest integer greater than Team 1’s score multiplied by the resource percentage 

that Team 2 had available in total. The D/L rule uses a much more sophisticated model in 

determining what these resource percentages are in any given situation, compared to the ARR 

rule. 

 An alternative criterion is one of “probability-maintenance”. The idea behind this 

criterion is that the probability of Team 2 winning the match is calculated for all possible 

situations. If an interruption occurs, Team 2’s probability of winning is noted and when play 

resumes the revised target is set as the nearest integer greater than the target that gives Team 2 

the same probability of winning after the interruption as they did before it. Thus the probability 

of winning is maintained across the interruption. In the event of an abandonment, the winner is 

declared to be the team with the greater probability of winning when play is stopped (a tie 

occurs if the probability of winning is exactly 50%.) 

Preston and Thomas (2002) create a rule that uses a probability-maintenance criterion. 

They calculate their probabilities by assuming a model of run scoring and wickets, solving it 

for the optimal strategy, simulating 10000 games assuming that strategy and matching various 

percentiles of simulated scores to the distribution of first-innings scores in their observed data. 
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They repeated this process choosing a variety of values for the parameters of their model and 

chose the model that best matched their data.  

Carter and Guthrie (2004) build on the work of Preston and Thomas (2002), arguing 

that the Duckworth-Lewis method is unfair in some situations. They use a dynamic 

programming approach to determine their probability of winning model, using the data from 

the 1999 World Cup in England. 

We believe that a dynamic programming approach to the construction of the model is 

likely to result in a more accurate model, particularly in rare situations where there is little 

actual match data. Accordingly, we extend the work of Carter and Guthrie by creating a model 

of the second innings and include two significant additional variables: the run rate required and 

the ground conditions existing on the day of the match. We build our model both with and 

without the ground conditions variable. There are two main reasons for this: So that the 

difference between our rule and the incumbent D/L rule can be seen without the added 

complication of the newly-created conditions variable and so that the impact of including the 

conditions variable can be assessed. 

7.7 The dynamic programme 

In order to construct our new probability model, we set up a dynamic programme with 

which to estimate the probability of winning for Team 2, in any possible game situation. Our 

dynamic programme uses the same explanatory variables as the first-innings dynamic 

programme introduced in Chapter 5. In addition, we define a new state variable, the number of 

further runs required by Team 2 to win. 
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  Let k be the number of further runs required,   1,2,...,k 
 

 

The objective function in the second-innings model is the probability of Team 2 winning. 

  Let ( , , , )i j k  be the probability of winning given i, j,k and  .  0,1
 

The Bellman Equation is 
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 (25)

 

Equation (25) is a close approximation to the true process that is the second innings of 

an ODI but it is not an exact match. We assume that it is not possible for a batsman to be 

dismissed from a wide or a no-ball, whereas this is possible in cricket as one can be stumped or 

run out from a wide or run out from a no-ball. We further assume that it is not possible for runs 

to be scored from a ball upon which a batsman is dismissed, which can occur if a batsman is 

run out attempting two or more runs. We are, however, confident that these omissions affect the 

model only trivially.  
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In addition, it is possible that multiple wides or no-balls could occur sequentially, on a 

single legitimate value of i. Before estimating the model, we
 
make the following adjustment to 

Equation (25). 

 

  Let 
ijk be a random variable indicating the sum of 

ijkr 
and 

ijk , 

  the total runs from ball i whether they are from runs or extras  0,13ijk   

  Let Pr( ) Pr( ) Pr( )ijk ijk

R

r R  
 
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The modified Bellman Equation is 
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The reason for this simplifying assumption is that the addition of the additional state 

variable for the number of runs required, k, already expands the state space by a factor of 

hundreds, when compared to the first-innings dynamic programme. Including the possibility of 

sequential wides or no-balls would add a significant additional complication to the estimation 

process since, unlike the first innings, we cannot simply take an expectation of the number of 

extras per legitimate ball, rather, we need to calculate each individual possibility separately. It 

is simply too computationally intensive to include the possibility of this rare event in our 

modeling process. 
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The value of k is, in most cases, meaningless without the value of i. If we know that a 

team needs 150 more runs to win, we have no idea how difficult its task is without knowing 

how many balls there are remaining. If they have all 300 balls in which to score the 150 runs, it 

is an easy task, but it is much more difficult if they only have 100 balls remaining. For this 

reason, we transform our state variable k into *k , a variable representing the required run rate. 

  

*

301

k
k

i


  

Note that the state variable is still k - the use of *k is restricted to the estimation process of 

, ,r    and  . 

 Before we can proceed with the estimation of the dynamic programme, we need to filter 

our data set. The presence of a target score causes teams and players to behave differently to 

what they would do in the first innings. The first-innings goal is always to get as many runs as 

possible, regardless of the current situation. In the second innings, however, there are some 

game situations where it is obvious to all which team is going to win. When Team 2 has no 

realistic chance of winning the match, it is relatively common for its remaining batsmen to 

simply focus on spending some time batting, with no regard for the run rate required, which is 

likely to be high if the situation for Team 2 is hopeless. In the opposite scenario, when Team 2 

is clearly going to chase the runs easily, they sometimes get very aggressive with the bat in a 

bid to finish the game quickly and, presumably, go celebrate the victory. These two approaches 

are unlikely to be optimal strategies; however, since the game is almost certainly lost or won 

anyway, employing these strategies make very little difference to the outcome. Unfortunately, 

they do contaminate our data set as we are attempting to use the required run rate as an 
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explanatory variable. In most situations it would be reasonable to expect aggression from the 

batting team, the higher is the run rate required; therefore, strategies in almost-decided games 

that are counter-intuitive can add considerable noise. 

After investigating our dataset and looking at the likely run rate required / innings ball 

combinations where the game is essentially decided, one way or the other, we filter our data set 

by including data only if 

  

*
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We note that situations outside this range do not by any means make it impossible for either 

team to win the match; this filter is simply applied to ensure that our models are estimated from 

data where we are very confident that both teams are attempting to win the match. Having said 

that, we do apply some limits to the state space over which we estimate our dynamic 

programme for faster computation. We use the same principle to eliminate some states from the 

state space as we use to filter our data set, but our cut-off values cover a far greater range as we 

need to be almost certain that the true probability of winning would be approximately zero in 

these situations. The criteria for exclusion from the state space is 
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These limits ensure that we will not use valuable computing power estimating the probability of 

winning in states where Team 2 has an approximately zero probability of winning. 

7.7.1  The regression equations 

As we did for the first-innings model, we construct Probit and Ordered Probit models 

for , ,r and   . In selecting the variables and interaction terms to include, we consider p-

values, coefficient size, cricket knowledge and consistency. This last factor involves giving 

greater consideration to a variable that appears significantly in, for example, the wickets 

regressions but not the runs regressions. In the tables in this chapter we show the model 

coefficients for the model with and without the conditions variable.  

We decide to allow our second-innings model slightly more flexibility in shape than the 

first-innings model. This is because it was fairly obvious in the first innings that the scoring 

rate should increase as the innings progresses, for a given number of wickets lost, but this is 

less clear in the second innings as we need to consider the impact of runs required, which 

should be the most important variable for strategy. We create two new variables involving i  

and re-define 3i from the first-innings model in order to order the variables sensibly. 

  Let 2 max(0, 48)i i   

  Let 3 max(0, 180)i i   

  Let 4 max(0, 240)i i   
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  Let 
5 max(0, 270)i i   

We define the par score as the first-innings score which is closest to giving both teams 

an equal chance of winning. A simple Probit regression of the result on the first-innings score 

shows that there is a rather large difference in the par score in the power-play era, compared 

with the non-power-play era. These par scores are 248.2 and 265.3, respectively. With that in 

mind, we include the power-play variable in all our regressions, interacting it with other 

variables where appropriate. Interacting j with i proved relatively unimportant in the second 

innings, presumably because the required run rate is the most significant factor for chasing 

teams to have in mind. Additionally, there appears to be very little difference in runs or wicket 

patterns when a team is zero, one or two wickets down in the “without restrictions” period; 

therefore, these dummy variables are excluded. 

 The regression coefficients for our runs models are given in Appendix D. As expected, 

the new variable run rate required, introduced for the second-innings model, is an important 

inclusion. We see that the inclusion of the conditions variable has not changed the other 

coefficients substantially, although it appears that the required rate has a slightly smaller effect 

when conditions are taken into account. The coefficient of the conditions variable is positive, 

indicating that the scoring rate is higher in easier batting conditions. 

 Appendix D contains the coefficients and p-values for the wickets model. It is 

interesting that the interaction between the power-play variable and the required rate is 

significant and positive, indicating that chasing teams have responded better to the required rate 

in recent times. In contrast to the runs models, in the wickets models the inclusion of conditions 
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results in an increase in the significance of the required rate. The negative coefficients on 

conditions indicate that in better batting conditions, the probability of a wicket is reduced, as 

we would expect. 

 The coefficients and p-values for the probability of a wide or no-ball, and the 

probability of each number of runs from a wide or no-ball, are given in Appendix D. We see 

that the conditions do not substantially affect the probability of bowling a wide or no-ball, but 

good conditions do increase the number of runs that are scored of such deliveries on average. 

 

7.7.2  The results of the dynamic programme 

The dynamic programme is solved by backward induction after the calculation of the 

regression coefficients. If our dynamic programme is a good fit to the data, the initial par score 

(where 1, 1i j  ) implied by the version of the dynamic programme without conditions 

should be equal to the par score estimated by our Probit model regression result on first-innings 

score. The Probit model suggests a par score of 248.2 in the non-power-play era and 265.3 in 

the power-play era. Our dynamic programme suggests par scores of 249.5 and 263.0, 

respectively. This is a very close fit.  

 In the case of the conditions model, the par score should equal the value of conditions 

plus the performance advantage, as described in Chapter 4. These advantages are 2.0 in the 

non-power-play era and 5.8 in the power-play era. Our dynamic programme suggests the par 

scores shown in Table 7.1. We see that our model provides a reasonable, but not perfect fit. We 

tried fitting many different models and all resulted in the same effect: that the model 
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overestimates Team 2’s chances of winning in poor conditions and underestimates it in good 

batting conditions. However, the most important result that we take from the analysis is the 

shape of the models and we correct our model by scaling it so that the par scores equal their 

theoretically-correct values. 

Table 7.1: Par Scores from the conditions model 

 Non-PP Era PP Era 


 Par Theoretical Par Theoretical 

200
 

214.6 202.0 222.2 205.8 

250
 

255.8 252.0 258.2 255.8 

300
 

301.2 302.0 297.0 305.8 

 

 Our scaling method is to look at the probability of winning the match when the number 

of runs required at the start of the innings is equal to the theoretical par. We convert these 

probabilities to z-scores and we adjust the model by adding a constant to the z-scores so that 

the adjusted z-scores are equal to zero, for each combination of  and era. These adjustments 

are shown in Table 7.2. We then convert the entire probability model to z-scores and add the 

same constant adjustment to all the situations for the given  and era. The probability of 

winning at any point is then found from the cumulative standard normal distribution for the 

adjusted Z-score for the given i, j,k and  . 
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Table 7.2: Z-score adjustments 

Non-PP Era 


 

Probability 

 1, 0, ,i j k      
Z-score 

Z-score 

Adjustment 

200
 

0.5872 0.2203 -0.2203 

250
 

0.5248 0.0622 -0.0622 

300
 

0.4949 -0.0128 0.0128 

PP Era 


 

Probability 

 1, 0, ,i j k      
Z-score 

Z-score 

Adjustment 

200
 

0.6191 0.3031 -0.3031 

250
 

0.5176 0.0441 -0.0441 

300
 

0.4384 -0.1550 0.1550 

7.8 Assessing our without-conditions new probability (NP) rule 

The NP rules uses the probabilities as calculated by the dynamic programme to make 

adjustments to the target score that preserve each team’s probability of winning on either side 

of an interruption. In the case of an abandonment, the team with a greater than 50% chance of 

winning is declared the winner. 

In Figure 7.9 we add the CPP for the NP rule to our chart of the performance of each 

rule. In Figure 7.10 we show the percentage of the incorrectly decided games that are awarded 

to each team. It is clear that the NP rule is a further improvement on the D/L rule. In particular, 

note that the NP rule outperforms the other rules most substantially early in the innings.  

  



202 

 

Figure 7.9: CPP – adding the NP rule 

 

 

Figure 7.10: Bias under the NP rule 
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7.9 Assessing our with-conditions new probability (NP*) rule 

Our ground conditions analysis in Chapter 4 provides us with the mean and variance of 

a conditional distribution for conditions,  , given the score and result of the match. In 

applying our NP* rule, we randomly generate 100 values of  for each start-of-over situation 

in our data set. Applying the probability model to these situations, we have 100 probabilities 

for each situation. We calculate the average probability from these 100 draws and use this 

average to predict the winner. 

 Calculating the probabilities is not completely straightforward as our computing power 

limitation means that we only have models for  200,250,300  . Clearly, probabilities of 

winning exist for all other values of  as well; however, it is not obvious what kind of function 

should be used to interpolate between these points. A simple linear scaling of the model is not a 

good method as this could lead to probabilities less than zero or greater than one. We select the 

option of fitting a Probit model where the latent variable is defined by a piecewise linear 

function. This ensures that the model fits our three data points and cannot result in a probability 

outside the range (0,1). The interpolation procedure is as follows. 

  

200 250

Let  be the probability of winning in conditions worth 
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The predictive ability of the NP* rule is shown in Figure 7.11. Clearly, adding the 

conditions variable into the model results in a more accurate model. Figure 7.12 shows the 

percentage of incorrect predictions that are made in favour of each team. By definition, the 

better the accuracy of a rule, the smaller the sample size from which to show any bias; 

however, it appears that the rule is treating the teams similarly.  

Figure 7.11: CPP – adding the NP* rule 

 

  

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0 5 10 15 20 25 30 35 40 45 50 

C
P

P
 

Overs Bowled 

Baseline 

ARR 

MPO 

DL 

NP 

NP* 



205 

 

Figure 7.12: Bias under the NP* rule 

 

 

A potential criticism of our NP* model is that the result of the game is used in 

estimating the mean and variance of the conditions distribution, effectively including the 

variable that the model is trying to measure as an explanatory variable. This raises the question 

of how an NP* rule could be implemented in practice, as our current estimation method 

requires knowledge of the result, which obviously is not available in an interrupted game. In 

practice, we would need a way of agreeing upon the value of conditions on the day of the 

match, before play takes place. One option would be to simply use the average first-innings 

total at that ground; however, one of the reasons for developing the conditions measure in 

Chapter 4 was that conditions vary substantially from match to match, even at the same ground. 

We propose that each captain and the match referee submit their estimate of the value of 
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conditions after inspecting the ground. The median estimate is then selected for the NP* rule 

for that match. The inclusion of the match referee and the use of the median, rather than the 

mean, prevents a captain with a weaker side submitting an outrageous estimate for conditions, 

hoping that the very unfair adjustment that would result goes in favour of his team.  

Our conditions measure contains a substantial amount of uncertainty, in that it is a 

normal distribution with a mean and variance. Provided that this conditional distribution is 

representative of the true range of conditions that were likely to have been observed on the day 

of the match, we propose that using an expert opinion in the deciding of the conditions is only 

going to improve the predictive power of the model. While the estimation of the conditions 

variable is extremely useful for creating a variable to include in models and should be an 

unbiased estimator, cricket experts should be able to estimate a much more accurate point 

estimate for each match. Imposing a conditional distribution of conditions, simulating from this 

distribution and calculating the average probability is an inferior substitute for accurately 

estimating the value of the prevailing conditions, on the day of the match.  

7.10  Three considerations when choosing a rain rule 

There are three main considerations when constructing a rain rule. First, the criterion of 

fairness must be determined. Second, there is the choice of estimation method, of which two 

prominent ideas are direct estimation of scoring patterns from the data and indirect estimation 

via the calculation of transition probabilities in a dynamic programming framework. Third, the 

variables to be included in the modeling process need to be determined. 
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 Like the Average Run Rate method, the Duckworth and Lewis adjustment uses a 

“resources-lost” criterion of fairness, where teams are compensated for the lost time with an 

adjustment reflecting the percentage of the target that teams would need to score, on average, 

from that lost time resource. The difference between the two methods arises from the difference 

in the way lost resources are measured, with the D/L rule taking into account the number of 

wickets remaining as well as the number of balls. 

Carter and Guthrie discuss an example where Team 2 is playing very well and is 

obviously well ahead before an interruption and then later in the day further play is possible. In 

some situations the Duckworth-Lewis method determines that Team 2 is already ahead of their 

revised target score and therefore is declared the winner without any further play taking place. 

It must be the case, however, that Team 1 had some probability greater than zero of winning 

this game before the interruption but the adjustment hands them a loss with certainty.  

We agree with the views of Carter and Guthrie on both the fairness of a probability-

preserving adjustment rule and the dynamic programming approach. In our view, a team should 

have the same chance of winning after a rain interruption as they did before the rain. We 

illustrate the difference between the resources-lost criterion and the probability-maintenance 

criterion with a simple example. Consider a two-player sequential game where Player 1 tosses a 

fair coin 100 times, scoring one point for each “heads” and zero points for each “tails”. Player 2 

then plays the same game and wins if he has the higher score after his 100 tosses. 
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Let , ,1

i

j i j ii
S T


  

Where ,j iS  is Player j’s score after i tosses and ,j iT  is Player j’s score from the i
th 

toss. Assume 

that Player 1 completes her 100 tosses and sets a score, but Player 2’s turn is interrupted or has 

to be abandoned completely due to time constraints. Define toss k as the last toss that takes 

place before the interruption and toss l as the last toss that is lost to the interruption. If 100l 

then the match is considered to have been abandoned. Define ,k lR  as the resource percentage 

lost due to the interruption and 2,i as, after i tosses of his turn, Player 2’s probability of 

winning. Finally, define RLY as Player 2’s revised target under the resources-lost criterion and 

PMY as the revised target under the probability-maintenance criterion. We show the different 

effects of the two criteria for selected examples in Tables 7.3 to 7.5. 

Table 7.3: 1,100 2,50, 20, 80, 10kS k l S     

20,80R  60% 

RLY  21 

2,i  0.456 

PMY  21 

 

 In this simple coin toss game, the resource percentage lost is simply the number of tosses 

lost divided by 100. In the example shown in Table 7.3, Player 2 is exactly on track to equal 

Player 1’s score. In this situation, the revised targets given by the resources-lost criterion and 

the probability- maintenance criterion are identical. 
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Table 7.4: 1,100 2,60, 20, 80, 15kS k l S     

20,80R  60% 

RLY  25 

2,i  0.109 

PMY  29 

 

 Table 7.4 shows a situation where Player 1 has scored a very good score of 60 out of 

100, but Player 2 has made an excellent start and is on 15 out of 20 at the time of the 

interruption. Player 2 still requires 46 heads out of his remaining 80 tosses and is clearly not the 

favourite. The probability-maintenance criterion recognises this and sets a target of 14 more 

heads out of the 20 tosses available after the interruption, while the resources-lost criterion sets 

a target of just ten more heads, clearly advantaging Player 2.  

Table 7.5: 1,100 2,25, 20, 80, 0kS k l S     

20,80R
 

60% 

RLY
 

11 

2,i
 

0.999 

PMY
 

4 

 

 Table 7.5 shows a situation where Player 1 has scored a very bad score of just 25 heads 

out of 100 and Player 2 has started dreadfully, having not a single point on the board after his 

first 20 tosses. However, it is almost certain that Player 2 will be able to manage the 26 heads 

required from his remaining 80 tosses at the time of the interruption. The resources-lost 
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criterion fails to recognise this and sets a target of 11 heads from the remaining 20 tosses, 

compared to the four heads required by the probability-maintenance criterion. 

 The examples given show that the resources-lost criterion can cause very unfair revised 

targets to be set. The major problem with a resources-lost approach is that it assumes that the 

two players are equally likely to win after the first player’s turn, regardless of what the first 

player scores, or equivalently, that Player 2 would have on average scored at exactly the 

required rate during the lost period of play, regardless of how easy or hard that required rate is. 

This results in a resources-lost criterion tending to, on average, dampen the advantage of the 

team who has played better so far in the match.  

 Estimating the probabilities of winning in a game of cricket is not as easy as in a coin-

tossing game. In particular, the omission of a ground conditions variable in the estimation 

process leads to some circumstances where the resources-lost criterion can provide a fairer 

adjustment. Consider, for example, a situation where Team 1 achieves a very good score, but 

we know for sure that they batted only averagely, Team 2 bowled averagely and the very good 

score can be put entirely down to favourable batting conditions. In this case, starting the second 

innings as an even contest makes sense, as the implicit assumption of a resources-lost method is 

that all the variation in first-innings score is due to variations of conditions. We have shown in 

Chapter 4 that this is not the general case.  
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7.11  Decomposing the difference in predictive power 

Our NP and NP* rules appear to outperform the alternative rules in predicting the 

results of abandoned matches. It is of concern, however, that our models were created from the 

data set that is subsequently being used to assess the predictive power of each model. This 

could lead to an over-fitting problem and may bias the results of the contest in favour of our 

model. In addition, we are interested in, as best as possible, isolating the difference in 

predictive power that is due to the choice of fairness criterion, the inclusion of the run rate 

required variable, and the inclusion of the conditions variable. These represent the major 

differences between the Duckworth/Lewis and Carter/Guthrie rules, the Carter/Guthrie and NP 

rules, and the NP and NP* rules, respectively. 

 We approach this problem by constructing a DL-type model, from our second-innings 

data set. It is not an exact replica of the DL model as we do not know their exact formula; 

instead we use our first-innings dynamic programme (without conditions) to estimate the 

expected additional runs for any i and j. We then divide these expected additional runs values 

by the expected additional runs in the ( 1, 0)i j  cell, in order to get the resource percentages. 

This does not give the DL-model, but it gives a model which has been created based on average 

scoring patterns, with both ball of innings and wickets lost taken into account. Crucially, this 

model uses a resources-lost criterion, identical to the DL. We call this new rule the RL rule and 

we plot the resources percentages given by the RL rules (as dotted lines) against the DL 

resource percentages in Figure 7.613. We note that there is substantial difference in the early 

part of the innings. This possibly can be put down to the dynamic programming approach of the 

RL curves compared to the assumed functional form approach of the DL curves. 
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Figure 7.13: DL versus RL resource percentages 

 

In Figure 7.14 we show that there is very little difference between the predictive power of this 

rule and the DL rule. If anything, the DL rule does slightly better, which we speculate could be 

due to having a much larger sample size with which to estimate their model. 

Figure 7.14: DL versus RL 
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 Next, we create a CG-type model; that is, a rule which uses the probability-maintenance 

criterion, but does not include the run-rate-required variable. We simply re-run our NP model 

without this variable and we call the resulting model the CG~ rule. The predictive power of the 

GG~ rule is plotted alongside that of the NP rule in Figure 7.15. 

 There is very little difference between the CG~ and NP rules, suggesting that the run-

rate-required variable has little impact. Upon closer inspection, this is not the case. The CG~ 

rule tends to underestimate the probability of the team which is currently losing making a 

comeback, when compared to the NP rule. We show this in Figure 7.16 for the situation at the 

start of the second innings. This makes intuitive sense as a team who is losing will, more likely 

than not, require a high run rate and the NP rule takes into consideration their increased 

urgency. Predicting a winner in an abandoned game simply assesses which team is winning at 

the time of the abandonment, and CG~ and NP are similar here. This does not, however, mean 

that the two rules would necessarily give similar revised targets in a match that resumes after 

the interruption. 
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Figure 7.15: NP versus CG~ 

 

 

Figure 7.16: Probabilities for i=1, j=0, pp=0 
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Figure 7.17 shows the difference between the predictive power of the RL rule, the CG~ 

rule, the NP rule and the NP* rule. It is clear that the largest difference is made by the use of a 

probability-maintenance criterion, compared to a resources-lost criterion. Including conditions 

is also a substantial improvement, while the incorporation of the run rate required variable 

makes little difference in terms of predictive power (although as previously noted it does make 

a difference to the revised targets that would be set in a resumed match). 

Figure 7.17: All rules created from the same data set 
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substantially on the target that they are set. It is possible to make some general statements about 

the impact that we expect each rule to have in resumed matches.  

An accurately estimated probability model allows the probability-maintenance criterion 

to be applied in such a way that the revised target advantages neither team, as each team would 

have the same probability of winning after the interruption as they did prior to it. Assuming that 

the NP* model, as the most accurate predictor of winners in abandoned games, is an accurate 

model, we can be sure that the ARR and D/L rules, both resources-lost criterion, will 

sometimes set unfair targets. However the exact impact of the use of an unfair method is 

complicated and varies with the particular situation of the game. 

We take our data set with abandonments and alter it to allow for matches to be resumed 

after a break. We use break lengths of 5, 10, 15, 20, 25 and 30 overs for each interruption, only 

including those that allow a resumption in play. We outline a brief comparison of the revised 

targets that would be set by the NP* method and those that would be set by the D/L method. 

Table 7.6 shows the summary statistics of the difference in these revised target scores as the 

D/L target minus the NP* target. 

Table 7.6 D/L revised targets vs. NP* revised targets 

Statistic Value 

Mean Difference -12.6 

Median Difference -13 

Minimum Difference -85 

Maximum Difference +167 

There are some very large differences in the revised targets. The difference of -85 came 

about in a game where Team 1 had scored 185 runs and Team 2 were at 133/1 after 15 overs 
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when the rain came. Thirty overs were lost and therefore just five overs remained upon the 

resumption of the match. The conditions were worth 279 runs and Team 2 had a probability of 

winning this match of 0.996. The D/L revised target is 72 runs, meaning that Team 2 were 

already 61 runs past the target. The NP* revised target is 157, meaning that Team 2 would have 

to score a further 24 runs from the last 30 balls, with nine wickets in hand. This is a very easy 

task that matches their extremely high probability of winning before the break. However, 

unlike under the D/L rule, Team 1 still has a slim glimmer of hope, as they did before the 

break. 

At the other end of the scale, in one situation the D/L rule sets a target of 167 more runs 

than the NP* rule. This occurred when Team 1 had the very high score of 392 and Team 2 were 

struggling at 125/8 after 20 overs. There was almost no chance that Team 2 would win this 

game (the probability was 0.00001). After a 25 over break, the D/L rule makes sure they cannot 

win by asking them to score a further 258 runs from the last 30 balls. The NP* rule asks them 

to score a further 91 runs, which is almost impossible, but better reflects the position that each 

team was in before the break. 

The mean and median difference indicate that overall the D/L rule favours Team 2 by 

setting revised targets that are too low. This seems consistent with the comments that captains 

tend to make upon winning the toss in a match where rain is forecast for later, as they usually 

indicate that they think they are better to be batting second in the event of the D/L rule being 

invoked. 

 Throughout the course of this chapter, we have shown that rain rules have certainly 

undergone substantial improvement since the days of the ARR rule and the simply awful MPO 
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rule. We have also shown, however, that it is possible to do substantially better than the DL 

rule, particularly by selecting probability-maintenance as the fairness criterion, rather than 

resources-lost. In addition, this chapter has contributed a method for comparing the predictive 

power of different rain rules. If this diagnostic had been employed prior to the adoption of the 

MPO rule, it would likely have never been seriously considered for use in actual games. 
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CHAPTER 8 

Concluding remarks 

We hope that, having reached the end of the thesis, the reader has an appreciation for 

the immense value that a variable for the ground conditions adds to any cricket analysis. By 

using this variable, research will not be subject to the criticism that the findings could simply 

be explained by variation of ground conditions over the course of the data set. Furthermore, we 

provide an insight into the strategic information that can be gained by plugging in different 

values of ground conditions into a model and developing strategies suitable for particular 

conditions. 

The use of the cost of a wicket as a proxy for the risk taken by a batsman enables us to 

construct PPFs to represent the ability of individual batsman. We show that it is possible to 

separate the two components of a batsman’s average performance in particular situations – 

natural ability and strategic nous. This is useful in many different ways. Estimates of the raw 

ability of batsmen might be used in identifying talented players while the strategic nous 

measures provide an indication of which players have a good feel for what is required in 

particular situations. It becomes possible to identify the batsmen who are currently performing 

close to their maximum ability and to work without those who could become better players by 

improving their tactical awareness. The PPFs would also useful for quantifying trade-offs such 

as identifying the impact of selecting an extra batsman or to address the issue of optimal batting 

orders. 
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We show that while the Duckworth/Lewis method is easily the best of the resources-lost 

methods used for target-adjustment in weather-affected matches, there is substantial room for 

improvement. By artificially terminating complete games we show that a probability-

maintenance criterion outperforms the Duckworth/Lewis method in predicting actual results 

correctly. In addition, we show that the incorporation of a ground-conditions variable in the 

rain rule results in a further improvement to the predictive power of the probability-

maintenance model. 
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Appendix A: Numerical investigations into the split of performance 

and conditions 

It is useful to test whether the distribution of scores, 2S , implied by the distribution 

function 
2( )J S is normal. Normality would enable the simple calculation of the mean and 

variance of the second-innings distribution as we could then determine ( )J S for two values of 

S and fit a straight line through the Z-scores implied by those two points. In order to test for 

normality we arbitrarily split the first-innings variance 
2( 3412.488)S   as 60% due to 

performance and 40% due to conditions  2 260, =2047.493, =1364.995     and calculate 

60 ( )J S for all values of S  in the interval (0, 500), which easily covers the range of observed 

scores. If ( )J S  implies a normal distribution of 2S  then the Z-scores associated with each 

value of ( )J S will be linear in S. In Figure A.1 we plot 60 ( )J S and in Figure A.2 we plot the Z-

scores. A linear regression of Z on S results in the following: 

  Z S     

  2.726433718 0.011206656Z S      

  
2 1.00R    

It is apparent from the 
2R value of one that the distribution of 2S  implied by 60 ( )J S is perfectly 

normal. We assume this result applies to all values of (0 100)  . Note that 0  is a special 

case as when there is no variation in performance all matches will be tied; therefore, if we are 
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consistent with our earlier treatment of counting ties as both a win and a loss, each with a 

weight of 0.5,
0 ( ) 0.5J S  , regardless of the value of S. 

Figure A.1: The implied second-innings distribution 
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Figure A.2: Z-scores implied by 
60 ( )J S  
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( ) ( )J S Z 
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The mean and variance of the second-innings distribution implied by Equation (26) are 

  
2 ,S












  (27) 

 

  
2

2

, 2

1
S






  (28) 

 

From our example of 60  , the Probit regression shows that 60 2.726433718   and 

60 0.011206656  . Plugging these values into Equations (27) and (28) results in 

2 ,60 243.287S  and 
2

2

, 7692.472S   . The mean, as expected, is equal to our observed first-

innings mean (recall that we have ignored the second-innings advantage in this analysis to 

date), while the variance is greater than our observed second-innings variance of 5673.117. 

This tells us that we have allocated too much of the first-innings variance to conditions and not 

enough to performance, as the second-innings variance would get larger, the larger is the 

conditions variance. 

We set up a macro in SAS to split the first-innings variance into performance variance 

and conditions variance 21 different ways (0.1%,
19

 5%, ..., 95%, 100% of the total variance is 

allocated to conditions) and calculated the implied second-innings variance in each case. We 

note that, while we calculated a regression equation in our example above, with Z being linear 

in S it is only necessary to calculate the value of Z for any two values of S in order to determine 

                                                 
19

 We know that a performance variance of zero will result in a second-innings variance of  , so we choose a 

performance variance very close to zero in order to demonstrate this result in a calculable way. 
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parameters  and  . In Figure A.3 we show the 21 means of the second-innings distribution, 

obtained from the 21 different variance splits. The mean is equal to the theoretical value of 

243.3 in all cases, indicating that, in the absence of a second-innings advantage, the mean of the 

second-innings distribution is invariant to the chosen split of the first-innings variance.  

Figure A.3: Second-innings mean for each split of first-innings variance 
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 Figure A.4: Second-innings variance for each split of first-innings variance 
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Appendix B: Numerical investigations into the second-innings 

advantage 

In order to find the value for A that implies a second-innings advantage in scores of 

4.7, we first investigate the effect on SA of trying different values of A , assuming our 

estimated split of performance and conditions. We include negative second-innings advantages 

and determine the implied SA  for  10, 9,...,9,10A    . The results are shown in Table B.1. 

Table B.1: Values of SA implied by different values of A  

A  
    SA

 

SA

A  
-10 -3.0533 0.013277 -13.312 1.331 

-9 -3.07097 0.013277 -11.981 1.331 

-8 -3.08865 0.013277 -10.65 1.331 

-7 -3.10632 0.013277 -9.319 1.331 

-6 -3.124 0.013277 -7.987 1.331 

-5 -3.14167 0.013277 -6.656 1.331 

-4 -3.15934 0.013277 -5.325 1.331 

-3 -3.17702 0.013277 -3.994 1.331 

-2 -3.19469 0.013277 -2.662 1.331 

-1 -3.21237 0.013277 -1.331 1.331 

0 -3.23004 0.013277 0 1.331 

1 -3.24772 0.013277 1.331 1.331 

2 -3.26539 0.013277 2.662 1.331 

3 -3.28306 0.013277 3.994 1.331 

4 -3.30074 0.013277 5.325 1.331 

5 -3.31841 0.013277 6.656 1.331 

6 -3.33609 0.013277 7.987 1.331 

7 -3.35376 0.013277 9.319 1.331 

8 -3.37144 0.013277 10.65 1.331 

9 -3.38911 0.013277 11.981 1.331 

10 -3.40678 0.013277 13.312 1.331 
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There are two interesting pieces of information that we can obtain from Table B.1. First, 

the value of  is constant while  is changing with the level of A
. This indicates that 

pA

affects the mean of the second-innings distribution but not the variance. Second, we see that the 

ratio of 
SA to A

is constant. This means that an increase in the second-innings performance 

advantage increases the second-innings score advantage by a constant percentage. In fact, this 

ratio can be defined as follows. 

  

2

2

S SA

A 






  

The unobserved performance advantage can be derived from the other three variables, for 

which we have already estimated values. 

  

2

2

4.694 2563.412
3.526

3412.488

S

S

A
A










  

  

The implied relationship between the second-innings mean, the first-innings mean and the 

performance advantage is 

  
2

2

2

S
S S A




 


 

  

  
2S S

A
 


   (29) 

From Equation (29) we can determine the performance advantage implied any advantage in 

score. 
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Appendix C: Regression coefficients in the first-innings dynamic 

programmes 

Table C.1: Runs model coefficients for “with restrictions” model 

 With conditions Without conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept: r=6 -3.4257 <0.0001 -3.0692 <0.0001 

Intercept: r=4 -2.1626 <0.0001 -1.8073 <0.0001 

Intercept: r=3 -2.0983 <0.0001 -1.7430 <0.0001 

Intercept: r=2 -1.8887 <0.0001 -1.5336 <0.0001 

Intercept: r=1 -1.2671 <0.0001 -0.9126 0.0003 

0W  0.2461 0.3262 0.2709 0.2800 

1W  0.1356 0.5861 0.1548 0.5344 

2W  -0.0837 0.7388 -0.0735 0.7696 

3W  -0.0604 0.8176 -0.0581 0.8243 

i 0.00573 0.0479 0.00574 0.0478 

2i  -0.00513 <0.0001 -0.00488 <0.0001 

0W i  0.00271 0.3309 0.00283 0.3313 

1W i  0.00233 0.3915 0.00240 0.3915 

2W i  0.00295 0.2825 0.00304 0.2828 

3W i  0.00182 0.5258 0.00190 0.5258 


 0.00155 <0.0001 N/A N/A 
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Table C.2: Runs model coefficients for “without restrictions” model 

 With conditions Without conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept: r=6 -3.1692 <0.0001 -2.8525 <0.0001 

Intercept: r=4 -2.3139 <0.0001 -1.9983 <0.0001 

Intercept: r=3 -2.2658 <0.0001 -1.9502 <0.0001 

Intercept: r=2 -1.8965 <0.0001 -1.5812 <0.0001 

Intercept: r=1 -0.6865 <0.0001 -0.3719 <0.0001 

pp 0.0137 0.1735 0.0291 0.0032 

1W  -0.0963 0.0182 -0.1018 0.0126 

2W  -0.1686 <0.0001 -0.1774 <0.0001 

3W  -0.2770 <0.0001 -0.2897 <0.0001 

4W  -0.4848 <0.0001 -0.5140 <0.0001 

5W  -0.5349 <0.0001 -0.5745 <0.0001 

6W  -0.3365 0.0077 -0.3698 0.0034 

7W  -0.8653 <0.0001 -0.9319 <0.0001 

8W  0.3773 0.3403 0.3261 0.4095 

9W  0.7335 0.1297 0.6785 0.1609 

i 0.00392 <0.0001 0.00401 <0.0001 

3i  0.00665 0.0006 0.00673 0.0005 

3W i  0.00010 0.7777 0.00009 0.8047 

4W i  0.00061 0.1084 0.00066 0.0804 

5W i  0.00012 0.7948 0.00018 0.7038 

6W i  -0.00130 0.0326 -0.00129 0.0343 

7W i  0.00055 0.5506 0.00067 0.4663 

8W i  -0.00533 0.0026 -0.00530 0.0028 

9W i  -0.00793 0.0004 -0.00794 0.0004 

3 3W i  0.00204 0.4155 0.00198 0.4312 

4 3W i  0.00207 0.3440 0.00198 0.3652 

5 3W i  0.00624 0.0056 0.00627 0.0053 

6 3W i  0.00683 0.0035 0.00685 0.0034 

7 3W i  0.00530 0.0413 0.00531 0.0409 

8 3W i  0.0129 <0.0001 0.0131 <0.0001 

9 3W i  0.0162 <0.0001 0.0165 <0.0001 


 0.00130 <0.0001 N/A N/A 
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Table C.3: Wickets model coefficients for “with restrictions” model 

 With Conditions Without Conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept -1.5467 <0.0001 -2.0799 <0.0001 

0W  0.1178 0.2718 0.0645 0.5440 

1W  -0.0149 0.8861 -0.0544 0.5992 

2W  -0.0797 0.4486 -0.1072 0.3064 

3W  -0.0903 0.4185 -0.1028 0.3561 

i 0.00267 0.0544 0.00244 0.0773 

2i  -0.00276 0.1804 -0.00305 0.1384 


 -0.00242 <0.0001 N/A N/A 

 

Table C.4: Wickets model coefficients for “without restrictions” model 

 With Conditions Without Conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept -1.0443 0.0052 -2.2046 <0.0001 

1W  -0.0756 0.4560 -0.0649 0.5216 

2W  -0.0806 0.4137 -0.0588 0.5496 

3W  -0.1488 0.1292 -0.1165 0.2327 

4W  -0.2285 0.0212 -0.1858 0.0594 

5W  -0.1820 0.0700 -0.1278 0.2003 

6W  -0.1788 0.0798 -0.1207 0.2335 

7W  -0.2329 0.0254 -0.1691 0.1021 

8W  -0.1325 0.2193 -0.0661 0.5372 

9W  -0.0868 0.4446 -0.0132 0.9063 

i -0.00171 0.2834 0.0014 <0.0001 

3i  0.0102 <0.0001 0.0102 <0.0001 


 -0.00483 0.0012 N/A N/A 

i 
 

0.000014 0.0354 N/A N/A 
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Table C.5: Pr(Wide or No-ball) combined model 

 With Conditions Without Conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept -1.8097 <0.0001 -1.6905 <0.0001 

i  -0.00130 <0.0001 -0.0013 <0.0001 

pp -0.0234 0.1679 N/A N/A 

  0.00053 0.0699 N/A N/A 

 

Table C.6: Expected runs from a wide or no-ball combined model 

 

 With Conditions Without Conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept: 7ij   -3.8262 <0.0001 -3.0237 <0.0001 

Intercept: 5ij   -2.7802 <0.0001 -1.9871 <0.0001 

Intercept: 4ij   -2.7245 <0.0001 -1.9317 <0.0001 

Intercept: 3ij   -2.5464 <0.0001 -1.7544 <0.0001 

Intercept: 2ij   -2.0137 <0.0001 -1.2239 <0.0001 

i  0.00231 <0.0001 0.00236 <0.0001 

pp -0.0129 0.8167 N/A N/A 

  0.00326 0.0005 N/A N/A 
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Appendix D: Regression coefficients in the second-innings dynamic 

programmes 

Table D.1: Runs model coefficients for “with restrictions” model 

 With conditions Without conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept: r=6 -3.3988 <0.0001 -3.2615 <0.0001 

Intercept: r=4 -2.1313 <0.0001 -1.9944 <0.0001 

Intercept: r=3 -2.0770 <0.0001 -1.9401 <0.0001 

Intercept: r=2 -1.8701 <0.0001 -1.7332 <0.0001 

Intercept: r=1 -1.2635 <0.0001 -1.1268 <0.0001 

pp
 -0.00310 0.9158 0.00429 0.8833 

i pp
 

0.00072 0.1616 0.00072 0.1601 

0W  0.3772 <0.0001 0.3889 <0.0001 

1W  0.2507 <0.0001 0.2595 <0.0001 

2W  0.1514 <0.0001 0.1575 <0.0001 

3W  0.0512 0.2344 0.0553 0.1989 

i 0.00676 <0.0001 0.00682 <0.0001 

2i  -0.00555 <0.0001 -0.00557 <0.0001 

*k  0.1762 <0.0001 0.2174 <0.0001 


 0.00076 0.0063 N/A N/A 

 

  



236 

 

Table D.2: Runs model coefficients for “without restrictions” model 

 With conditions Without conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept: r=6 -3.3179 <0.0001 -3.0410 <0.0001 

Intercept: r=4 -2.4316 <0.0001 -2.1554 <0.0001 

Intercept: r=3 -2.3776 <0.0001 -2.1015 <0.0001 

Intercept: r=2 -2.0210 <0.0001 -1.7451 <0.0001 

Intercept: r=1 -0.8914 <0.0001 -0.6160 <0.0001 

pp
 -0.0396 0.7358 -0.0290 0.8047 

i pp
 

0.000386 0.5997 0.000368 0.6165 

3i pp
 

-0.00137 0.3183 -0.00133 0.3352 

4i pp
 

0.00238 0.4106 0.00227 0.4328 

5i pp
 

0.00577 0.4284 0.00627 0.3898 

3W  -0.0698 <0.0001 -0.0735 <0.0001 

4W  -0.1565 <0.0001 -0.1654 <0.0001 

5W  -0.2431 <0.0001 -0.2554 <0.0001 

6W  -0.2395 <0.0001 -0.2554 <0.0001 

7W  -0.4303 <0.0001 -0.4533 <0.0001 

8W  -0.4987 <0.0001 -0.5265 <0.0001 

9W  -0.6445 <0.0001 -0.6832 <0.0001 

i 0.00206 <0.0001 0.00211 <0.0001 

3i  0.00122 0.0877 0.00120 0.0943 

4i  0.00724 <0.0001 0.00734 <0.0001 

5i  0.00377 0.3982 0.00408 0.3605 

*k  0.3386 <0.0001 0.3630 <0.0001 

*k pp  0.00670 0.8703 0.0150 0.7139 


 0.00124 <0.0001 N/A N/A 
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Table D.3: Wickets model coefficients for “with restrictions” model 

 

 With Conditions Without Conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept -2.0473 <0.0001 -2.2736 <0.0001 

pp
 0.0463 0.4688 0.0341 0.5917 

0W  0.1366 0.1487 0.1177 0.2109 

1W  0.1712 0.0628 0.1572 0.0864 

2W  0.0548 0.5547 0.0452 0.6257 

3W  0.0772 0.4368 0.0713 0.4724 

i -0.00031 0.8263 -0.00041 0.7677 

2i  0.00166 0.4520 0.00169 0.4436 

*k
 

0.2689 0.0008 0.1999 0.0060 

i pp
 

-0.00054 0.6358 -0.00054 0.6359 


 -0.00126 0.0433 N/A N/A 
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Table D.4: Wickets model coefficients for “with restrictions” model 

 With Conditions Without Conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept -1.8010 <0.0001 -2.1610 <0.0001 

pp  -0.4024 0.1537 -0.4188 0.1377 

i pp  0.00206 0.2424 0.00210 0.2336 

3W  -0.0630 0.1490 -0.0583 0.1810 

4W  -0.00536 0.9042 0.00610 0.8907 

5W  0.00304 0.9499 0.0195 0.6856 

6W  0.00252 0.0527 0.0457 0.3820 

7W  0.1520 0.0117 0.1810 0.0024 

8W  -0.00708 0.9174 0.0285 0.6712 

9W  0.1013 0.2235 0.1510 0.0642 

i -0.00029 0.7189 -0.00036 0.6534 

3i  0.00377 0.0263 0.00382 0.0242 

4i  -0.00004 0.9916 -0.00012 0.9727 

5i  0.0188 0.0157 0.0182 0.0190 

3i pp  -0.00644 0.0441 -0.00651 0.0418 

4i pp  0.00570 0.3459 0.00581 0.3358 

5i pp  -0.00670 0.6101 -0.00708 0.5889 

*k  
0.1796 0.0021 0.1504 0.00941 

*k pp
 

0.1875 0.0375 0.1771 0.0489 


 -0.00162 0.0013 N/A N/A 

 

 

Table D.5: Pr(Wide or No-ball) combined model 

 With Conditions Without Conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept -1.6666 <0.0001 -1.6567 <0.0001 

i  -0.00156 <0.0001 -0.00156 <0.0001 

pp -0.0757 <0.0001 -0.0752 <0.0001 
  0.000041 0.9020 N/A N/A 
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Table D.6: Runs from a wide or no-ball combined model 

 With Conditions Without Conditions 

Variable Coefficient P-value Coefficient P-value 

Intercept: 7ij   -3.3654 <0.0001 -3.0115 <0.0001 

Intercept: 5ij   -2.1749 <0.0001 -1.8231 <0.0001 

Intercept: 4ij   -2.1440 <0.0001 -1.7923 <0.0001 

Intercept: 3ij   -1.9131 <0.0001 -1.5615 <0.0001 

Intercept: 2ij   -1.4427 <0.0001 -1.0914 <0.0001 

i  0.00112 0.0049 0.00108 0.0068 

pp -0.0324 0.6026 -0.0116 0.8480 

*k  0.0645 0.5746 0.1145 0.2963 

  0.00163 0.1439 N/A N/A 

 


