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Abstract: 

This paper is part of a wider research programme using a dynamic-programming 
approach to modelling the choices about the amount of risk to take by batting and 
bowling teams in One Day International cricket. An important confounding 
variable in this analysis is the ground conditions (size of ground, nature of pitch 
and weather conditions) that affect how many runs can be scored for a given 
amount of risk. This variable does not exist in our historical data set and would 
regardless be very difficult to accurately observe on the day of a match. 

In this paper, we consider a way of estimating a distribution for the ground 
conditions using only the information contained in the first-innings score and the 
result of the match. The approach uses this information to estimate the importance 
of ground conditions in the determination of first innings total scores. We assume 
a functional form for a model of first innings scores and we estimate the 
parameters of our model using Monte Carlo methods. We test the impact of a 
significant rule change and we apply our findings to selected matches before and 
after the new rules came into play. 
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A Method for Inferring Batting Conditions in ODI 

Cricket from Historical Data 

1. Introduction. 

The outcomes that take place on a sports field are obviously heavily influenced by the 

ability and performance on the day of the athletes taking part; however, these are not the sole 

determinants. In many sports outcomes are also influenced by random influences, ranging 

from human error by match officials to the proverbial “rub of the green”. For empirical 

researchers interested in analysing sports data, most of these external influences can simply be 

modelled as exogenous sampling error. There is one influence, however, that is potentially 

less benign—the impact of weather and venue conditions at the time of the sporting event. In 

many sports, particularly those played outside, the ease with which player skill and effort can 

translate into positive outcomes can depend heavily on these conditions. If the variation in 

conditions during the course of a match is small relative to the variation in conditions between 

different matches, then conditions within a match cannot reasonably be modelled as 

independent draws from some random distribution.  

One sport where this issue can be particularly problematic is one-day-international 

(ODI) cricket. In ODI cricket one team bats and has a single “innings” in which it seeks to 

score as many runs as possible. The innings ends when the other team has bowled 300 

deliveries to the batsmen, or when ten batsmen have been dismissed, whichever comes first. 

The teams then change roles and the other team has an innings of 300 deliveries or 10 

dismissals with which to try and achieve a higher score.  

ODI cricket has been the subject of a lot of empirical research in the academic literature 

of statistics, operations research and economics, in part because of enthusiasm for the game of 

researchers in those areas, but also because of its highly quantitative nature, with the state of 

the game being quantifiable after each of the up-to 600 deliveries that constitute a match.  

Statistical analysis of ODI cricket typically consists of estimates of distributions of 

likely outcomes as a function of the state of a game at a particular point. For instance, the 

Duckworth-Lewis system currently used in all ODI matches to make adjustments to target 
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scores when bad weather forces an interruption in a match with a consequent reduction in the 

time available for play, originated as an academic paper (Duckworth and Lewis, 1998) that 

used statistical analysis to model the likely additional runs scored in the remainder of an 

innings as a function of the balls already bowled and the number of wickets lost. Other papers 

in this tradition include Clarke (1988), Preston and Thomas (2000), and Carter and Guthrie 

(2004).  

A limitation in all these analyses is the lack of information regarding the ease of batting 

conditions. As we explain in the next section, variation across matches in the ground at which 

a match is played and the weather conditions at the time of the match can have a large effect 

on how easy it is for teams to score runs when batting. In the absence of data concerning these 

conditions, empirical models, such as in the papers cited above, will find that the effect of 

playing in difficult conditions and the effect of playing badly will be confounded in the data, 

with subsequent limitations on the interpretation of the models.  

This limitation has been recognised in the literature. In his seminal paper, Clark (1988) 

notes that estimates should take into account playing conditions. Duckworth and Lewis 

(2005) are critical of the proposed alternative to the Duckworth-Lewis target-adjustment 

method proposed by Carter and Guthrie (2004), stating that the Carter-Guthrie approach does 

not take ground conditions into consideration. The model proposed in Duckworth and Lewis 

(1998), however, implicitly assumes that all variation in first-innings scores is due to variation 

in ground conditions, when in truth the variance in scores comes from a combination of 

variation in ground conditions and variance performance on the day. Again, it is the absence 

of data on conditions that forces researchers to adopt either one of these extreme points of 

view of either ignoring variation in conditions or ascribing too much importance to it.  

In this paper, we proposed a method by which information about ground conditions can 

be inferred in historical data. Our method doesn’t provide a point estimate, but rather a 

distribution of possible values using information from the match to update prior information 

using Bayes’ rule. We believe that the information revealed by this method, while still 

imperfect, can greatly improve existing empirical models of ODI cricket, particularly models 

of how to adjust the target score in the event that matches are shortened due to bad weather.  

In the following section, we give a brief overview of the role that ground conditions can 

play in an ODI cricket match. In Section 3, we outline the theory for how a posterior 

distribution of values for ground conditions can be inferred from observable match data. In 
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Section 4 we describe the data used in this paper, which we then apply to the theoretical 

model to provide some general results in Section 5. Section 6, presents some diagnostic 

analysis of our results to demonstrate the usability of our ground conditions measures in other 

empirical work. Section 7 presents a discussion of possible extensions to the method.  

2.  The Role of Ground Conditions in ODI cricket. 

In this paper, we assume that the reader has a basic understanding of the structure of a 

game of One Day International (ODI) cricket; for the uninitiated, we provide a brief 

description of the game in the Appendix.  

There are five main factors that influence the first-innings score in an ODI match as 

well as the likelihood of each score being a winning one. These factors are 

• the skill levels displayed by the players on both teams; 
• luck; 
• ground size; 
• pitch conditions; and 
• weather conditions. 

The skill measure refers to both the ability and the execution on the day of the players, 

with high scores being likely when batters perform well relative to the performance of the 

bowlers and fielders. 

Luck plays a role in the outcome of a match; for example, poor umpiring decisions can 

have a marked influence, as can uncontrolled aerial shots that fall safely rather than going 

directly to the fielder.  

On a small ground, it is relatively easier for the batsmen to hit the ball out of the playing 

field for boundaries and for this reason scores tend to be higher on small grounds than on 

large grounds. A mitigating factor here is that there are generally fewer twos and threes run as 

batsmen more often have to settle for single runs due to the ability of the fielders to reach the 

ball faster on a smaller ground. A fielding side should, however, be at a minimum indifferent 

if they were given the option to change from a small ground to a larger ground, as the larger 

ground simply creates more options for possible field settings, as well as making it more 

difficult for the batsmen to hit boundaries. 

Pitches are extremely variable in their nature. The moisture content, the type of soil 

used, the hardness, the amount of grass and any cracking present on the pitch all have an 

impact on how the ball behaves when it bounces on the pitch. Any movement or change of 
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direction of the ball after hitting the pitch makes batting more difficult, as does inconsistent 

bounce, extreme pace off the pitch and extreme lack of pace off the pitch. Pitches are very 

individual; therefore, it is not appropriate to assume that all pitches at a particular ground will 

behave in the same way. 

A fascinating aspect of the game of cricket is the tendency of the ball to “swing”, or 

change direction, in the air after it has been bowled. This swing, if present, makes batting 

significantly more difficult and is likely to lead to lower scores. On a cloudy or humid day the 

ball generally swings significantly more than on sunny dry days. For this reason the weather 

is our final factor influencing the outcome of the game. 

It is useful to categorise these factors into two groups, based on the degree to which 

they are the same for both teams on any given day. The skill level is clearly team-specific and 

luck should be completely random; therefore, we combine these factors into a category 

entitled “performance”. The size of the ground obviously does not change during the game, 

and while pitch and weather conditions might change somewhat over the course of a match, 

we assume that these factors vary to a far lesser degree within a match than between separate 

matches. We assign these three factors to a category entitled “conditions”.  

The aim of this paper is to estimate what the average score would have been on the 

pitch used for a particular match. That is, we ask the question: If a team with average batting 

ability were to play a large number of games against a team with average bowling and 

fielding ability in the same conditions, what would the average score be. This average is the 

theoretical value for “conditions” for the match, and deviations in the first-innings score from 

that average can be attributed to the various factors that we include in our variable termed 

“performance”.  

In the next section, we describe the identification strategy we use to infer a value for 

conditions in each match, using information from the match itself—specifically, the first-

innings score and the result of the match. Before describing this approach, it is worth briefly 

discussing why we seek to infer conditions only from match data rather than external 

information about ground conditions. In particular, it has been suggested to us, that, because 

the size of any particular ground changes rarely if at all over time, and the type of soil at the 

ground remains consistent over time, that one could infer a lot about average ground 

conditions simply by regressing first-innings score on a set of dummy variables for the ground 

where the match is played. There are two reasons why this would not be a useful approach.  
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First, there are a surprisingly large number of games on which ODI cricket matches 

have been played over the period of our dataset (the decade from 2000-2009), with many 

ground hosting a single match.  

Second, even with a constant size and soil type, there can be a lot of variation over time 

in how easy it is to bat on a particular ground, partly from variation in the weather on the day 

of the match, but also because weather conditions in the lead up to the match will typically 

affect how much the ball will change direction after hitting the pitch. Furthermore, this 

relationship between weather and conditions is not highly predictable, so that even if 

historical data on weather conditions before and during a match were available, it would be 

impossible to quantify it into a stable relationship with batting conditions.  

Accordingly, in this paper we adopt the strategy of assuming that there is no useful 

information from knowing the ground at which the game was played. In the final section, 

however, we discuss how ground information could be combined with our measures in further 

research.  

3. Outline of our Approach:  

In this section, we provide an extremely stylised model of a game of ODI cricket to 

illustrate our basic approach. Throughout this paper, we refer to the team batting first as 

“Team 1”, and the team batting second as “Team 2”. 

We model a game of ODI cricket as follows: Initially, the ease of batting conditions, χ, 

which is common across the match is drawn from a distribution, F, with density, f. Team 1 

then draws a value of its performance, 1,ρ  from a distribution, , (density, ) and 

conditions and performance are summed to give that team’s score,  
1G 1g

1,S

 1 1 .S ρ χ= +  

Without loss of generality, assume that the mean of the performance distribution, , is zero; 

that is, the interpretation of performance is how much better the team performs than the 

average performance one can expect given the conditions. We assume that  is observable to 

the modeller, but the components, 

1G

1S

1 and ,ρ χ are not.  

Team 2 then also draws a value of its performance, 2 ,ρ  from a second-innings 

performance distribution,  (density, ), which combines with the common conditions to 

give a second-innings outcome,  
2G 2g

2 ,S
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 2 2 .S ρ χ= +  

Even though we assume conditions are the same for both innings, we don’t require that the 

performance distributions, and , be the same. This is due to the team batting second 

having a known target score, resulting in their being able to adjust their risk strategy 

depending on the target. The fielding team does have some control over the overall risk 

strategy of the innings, in terms of bowling style and field placement, but significantly more 

control over the risk strategy is available to the batting team. This is obvious to any cricket 

watcher as we almost always see the scoring rate increase and the survival rate decrease 

towards the end of the first-innings, which is what the team batting first would generally 

prefer as its overs begin to run out. The effect of this is that a team chasing a low target 

relative to conditions will choose to bat more conservatively than they would if they were 

unaware of the target score, and a team chasing a high target will bat more aggressively. 

Teams chasing an average target will typically adjust along the continuum between 

conservative and aggressive strategies as their innings progresses as a function of how well 

they are doing. We model these effects by assuming that the second-innings performance 

distribution is a uniform rightward shift from the first-innings performance distribution. That 

is,  

1G 2G

  2 2 1 2( ) ( )G G .ρ ρ γ= −  (1) 

This is essentially assuming that, whatever the target, Team 2 starts with γ runs already 

scored.  

We make two assumptions about the distributions,   and   ,F 1,G 2.G

First, we assume that ,χ  1,ρ  and 2ρ  are distributed independently on each other. This 

implies that the variation in scores due to performance on a pitch where scoring is difficult 

will be similar to the variation on a pitch where scoring is easy. While one might expect that 

the variance of performance would be proportionate to the level of conditions, our experience 

watching cricket suggests that this is not, in fact, the case.  

Second, we assume that each of the three distributions is normal, which implies 

normality in  and  This seems a reasonable approximation an a priori grounds for the 

performance distributions,  and  because of the central limit theorem. The performance 

measure is a combined measure of batting team performance and fielding team performance. 

The batting team performance is composed of the individual performances of up to 11 

1S 2.S

1G 2 ,G
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batsmen and the fielding team performance is composed of the individual performances of up 

to 11 bowlers and fielders. Each player may not play an equal part in determining the overall 

performance of the teams, but generally speaking the central limit theorem would imply that 

there are more ways of putting together the 22 performances in a way that gives an average 

overall performance than there are ways of putting them together to get an extremely good or 

extremely poor performance. Furthermore, with 300 individual balls in an innings, 

performance will also vary from ball to ball even within the overall performance of an 

individual player. The most extreme performances would require an extremely good 

performance from all required members of one team and an extremely poor performance from 

all required members of the other team. This would be much less likely than an average total 

performance, which could be caused by almost unlimited combinations of good batting and 

bad bowling from various players, or vice versa, completely cancelling each other out. This is 

true even if the individual player batting and bowling performance distributions were uniform.  

We can make a similar argument for the normality of the conditions distribution. 

Conditions are a combination of a number of individual factors such as the nature of the pitch, 

ground size and weather conditions. These main factors are likely to have smaller factors 

underpinning them, with each sub-factor requiring a draw from a distribution for each match. 

It is, however, not as obvious that our conditions distribution should have a normal 

distribution as it is for our performance distribution, due to at least some factors, such as 

rainfall and soil type, being relatively constant at a particular venue or at least correlated with 

a particular country. Later in the chapter we show that normality is a reasonable assumption 

for   and  which increases our confidence in the normality of1S 2 ,S χ .  

Of course, it can’t be literally true that the distribution of conditions and performance 

are normal, since negative scores are not possible. This is extremely unlikely over the range of 

the data, however.1 The log-normal distribution, while having the desirable property of being 

bounded at zero, does not fit the data well. 

                                                 
1  The probability, given the mean and variance of our full data set, of our assumed normal distribution 

generating a score in any given match less than zero is 0.000016. This means that over our dataset of 784 
matches, the probability of all our observed scores being greater than zero is 98.8%. 
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Let ω denote the result of the match with 1ω =  if Team 1 wins and 0ω = if it loses, so 

that 1ω =  if  which by assumption is equivalent to 2 1,S S< 2 1ρ ρ< .2 We assume that the 

second-innings outcome is a non-observable latent variable, but the result of the match is 

observed. There are two reasons that we cannot simply use the second-innings score as an 

observable measure of the second-innings outcome. The first is that a match ends as soon as 

Team 2 has overtaken Team 1’s score, so that instances where Team 2 heavily outperforms 

Team 1 do not show up in the data as a big difference in scores. The second reason is that the 

optimal adjustment in the level or risk taken by Team 2 when batting can result in a small 

difference in performance showing up as a very large difference in scores as they get forced 

by the game situation into taking highly risky strategies.  

The information available to the modeller, then, is the first-innings score,  and the 

result of the match, ω. The idea of this paper is to find a posterior density for conditions, 
1,S

,pf  

conditional on these two pieces of information. Let H χ  and hχ  denote the distribution and 

density of  conditional on a particular value of conditions, χ, and let 1S ,1 )Pr( | Sω χ  denote 

the probability that Team 1 achieves the result, ω, given its score,  and the match 

conditions, χ. From Bayes’ rule we have 
1,S

  
,1 1

1
,1 1

( ) ( | )Pr( | )
( | , ) .

( | )Pr( | ) ( )P

f h S S
f S

h S S dF
χ

χ

χ χ ω χ
χ ω

χ ω χ χ
=

′ ′ ′∫
 (2) 

Note that the density, ,hχ  and the probability, ,1Pr( | ),Sω χ  can be inferred from the 

distributions of performance, and  1G 2 :G

  1 1 1( | ) ( ),h S g Sχ χ χ= −  (3) 

  ,1 2 1 1 1Pr( 1| ) ( ) ( ),S G S G Sω χ χ χ= = − = − − γ  (4) 

  ,1 2 1 1 1Pr( 0 | ) 1 ( ) 1 ( ),S G S G Sω χ χ= = − − = − − −χ γ  (5) 

so that Equation (2) can be written entirely in terms of the distributions, F and : 1G

  1 1 1 1
1

1 1 1

( ) ( ) ( )( | ,1) ,
( ) ( ) (P

f g S G Sf S
g S G S dF )

χ χ χ γχ
χ χ γ χ

− − −
=

′ ′− − −∫ ′

                                                

and (6) 

 
2  Note that in this theoretical model with continuous distributions, the probability of a tie—i.e. of Team 2 

scoring exactly the same number of runs as Team 1—is zero. In reality, ties are possible. We describe in 
Section 5 our way of dealing with the small number of ties in our database.  
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  ( )
( )

1 1 1 1
1

1 1 1 1

( ) ( ) 1 ( )
( | ,0) .

( ) 1 ( ) (P

f g S G S
f S

g S G S dF
χ χ χ γ

χ
)χ χ γ χ

− − − −
=

′ ′ ′− − − −∫
 (7) 

2.2 Identifying F and . 1G

Equations (6) and (7) describe the distribution of conditions that we infer for each 

match in our dataset from the first-innings score and the result of the match. These equations, 

however, require us to know the prior distribution of conditions, F, and the distribution of 

first-innings performance, .  1G

To infer these, we make use of the assumption that F and  are normal distributions, 

so that 
1G

2~ ( , ),N χ χχ μ σ  2
1 ~ ( , ),N ρ ρρ μ σ

1
).S

 and the first-innings score is also normally 

distributed,   
1

2
1 ~ ( ,SS N μ σ

Since F and  are assumed independent, we have  1G

  
1

,S χ ρμ μ μ= +  and  (8) 

  
1

2 2 .S
2

χ ρσ σ σ= +  (9) 

We can estimate 
1Sμ and 

1

2
Sσ  from the mean and variance of first-innings score in our dataset. 

By assumption, 0ρμ =  so 
1
.Sχμ μ=  Let δ denote the fraction of the variance in first-innings 

scores arising from variance in conditions so that  

  
1

2 ,Sχ
2σ δσ=  and 

  
1

2 2(1 ) .Sρσ δ σ= −  

The final step needed to identify a posterior distribution for conditions, then, is to estimate the 

decomposition parameter, δ, and the magnitude of the second-innings advantage, γ. 

2.3 Estimating δ and γ.  

To see how we can infer the relative contribution of conditions and performance 

variances to the observed variance in first-innings scores, consider a special case of the 

stylised game described above in which both the variance of conditions and the second-

innings advantage is zero. In this case, a team scoring at the 90th percentile in the distribution 

of first-innings scores, say, will have, by definition, performed at the 90th percentile of 

performance and will have a 90% probability of winning. That is, the graph of Team 1’s 

probability-of-winning versus first-innings score would be identical to the cumulative 

distribution of first-innings scores. In contrast, let the variance of conditions be positive. Now 
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a team that scores at the 90th percentile of scores will, on average, have had a better-than-

average performance, but will also, on average, be playing in better-than-average conditions 

and its probability of winning will be lower than 90%. The graph of Team 1’s probability-of-

winning versus first-innings score will then be flatter than the cumulative distribution of first-

innings scores, and the greater the variance of conditions, the greater will be the difference in 

these two graphs.  

This insight is the key to our estimation procedure. We estimate a probit regression of 

the probability of winning versus the first-innings score, and use the difference in variance 

between the implied estimated distribution and the variance in first-innings scores to identify 

the variance of conditions.   

Specifically, let 
1Sf  denote the posterior density function of conditions, given a first-

innings score of  and not other information, and let  be the unconditional density of 

. We then have (using Equation 
1S 1( )h S

1S (3)), 

  
1

1
1

1

1 1

1

( | ) ( )
( | )

( )
( ) ( .

( )

S
h S f

f S
h S

g S f
h S

χ

)

χ χ
χ

χ χ

=

−
=

 

Let  denote the probability that Team 1 wins given a score of  and no information 

about conditions. We have 
1( )J S 1S

  
1

,1 1( ) Pr( 1| ) ( | )SJ S S f S d1ω χ χ= = ⋅∫ χ  

  1 1
1 1

1

( ) ( )( )
( )

g S fG S d
h S

.χ χχ γ χ−
= − − ⋅∫  (10) 

1( )J S  denotes a probability, but, as it describes an increasing function from the real line onto 

the unit interval, it also describes the cumulative density function of some distribution that we 

can interpret as the distribution of the (unobserved) second-innings outcome,  Let 2.S
2Sμ and 

2

2
Sσ  denote the mean and variance of this distribution. Monte-carlo investigation of Equation 

(10) confirms that the distribution is normal with  

  
2 1

,
1S S
γμ μ
δ

= +
−

 

  
2 1

2 2 1 .
1S S

δσ σ
δ

+ ⎞⎛= ⎜ ⎟−⎝ ⎠
 

Rearranging these gives 
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  2 1

2 1

2 2

2 2 ,S S

S S

σ σ
δ

σ σ
−

=
+

 and  (11) 

  ( )2 1
(1 ).S Sγ μ μ δ= − −  (12) 

Now the mean and variance of the first-innings distribution can be estimated directly 

from a sample of first innings scores. Since  is a latent variable, we can’t observe the 

second-innings distribution, J, directly, but it can be inferred from a probit regression of 
2S

ω  on 

.  1S

This describes the estimation procedure of the paper. We estimate the means and 

variances of the first-innings and second-innings distributions from a dataset of ODI matches 

describing the first-innings score and the result of the match and then use Equations (11) and 

(12) to infer the decomposition of variance between conditions and performance and the 

magnitude of the second-innings advantage. This gives us sufficient information to then 

calculate a posterior distribution of match conditions for each match in our database using 

Equations (6) and (7).  

In the rest of this paper, we implement the procedure described in this section and test 

some of our maintained assumptions.  

4. Description of the data. 

The research described in this paper requires two pieces of information: the first-innings 

score; and the result of the match. This information is publicly available on 

www.cricinfo.com. We select our time period as the decade of the 2000s; from January 1, 

2000 until December 31, 2009. There was a total of 1405 official ODI matches played during 

this decade.  

In order to ensure a robust analysis, there are some additional factors to consider when 

selecting the data set. As at the date of writing, there are sixteen countries with official ODI 

status3. It is generally accepted among cricket followers that there is a significant gap between 

the top-eight ranked countries in the world and the remaining countries. We therefore only 

select matches played between two top-eight countries in our data set. Additionally, to 

perform the analysis we need an estimate of the distribution of first-innings scores in 

                                                 
3  These teams are Australia, Afghanistan, Bangladesh, Canada, England, India, Ireland, Kenya, Netherlands, 

New Zealand, Pakistan, Scotland, South Africa, Sri Lanka, West Indies and Zimbabwe. 

http://www.cricinfo.com/
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completed innings. On occasion, rain interferes in the game of cricket, resulting in a shortened 

match or even causing the complete abandonment of the match. These matches have the 

potential to distort our analysis. In order to be included in our data set, at match must meet all 

of the following criteria: 

• the match was played  between January 1, 2000 and December 31, 2009, inclusive; 
• the match was between two top-eight countries; 
• the first innings was not shortened in any way other than the batting team being 

bowled out before their full allotment of 50 overs had been used; and  
• the match was not abandoned without the declaration of a winner. 

The total number of matches meeting all these criteria is 784. This forms our dataset for 

this paper.  

Tables 1 and 2 outline the number of matches involving each team and in each venue 

country. These data show that we have a good distribution of matches. 

Table 1: Number of matches played by each team 

Country Bat First Bat Second Total 
Australia 130 98 228 
England 90 78 168 

India 106 123 229 
New Zealand 82 103 185 

Pakistan 103 104 207 
South Africa 83 109 192 

Sri Lanka 120 85 205 
West Indies 70 84 154 

Table 2: Number of matches played in each country 

Country Matches 
Australia 122 
England 81 

India 99 
New Zealand 73 

Other 91 
Pakistan 53 

South Africa 110 
Sri Lanka 83 

West Indies 72 
 
Over the ten-year period of our data set, the rules of ODI Cricket changed significantly 

three times. The rule changes predominately concerned the restrictions on where the bowling 
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captain can place his fielders. At the beginning of our data set, the fielding captain could have 

no more than two fielders outside an oval drawn 30 metres from the wickets for a period of 15 

overs at the start of the match. For the remainder of the innings, five fielders were allowed 

outside the oval. In approximately July 20054, this was reduced to the first ten overs of the 

match but the bowling captain also had to select two other blocks of five overs in which the 

restrictions would apply. These blocks of overs are known as “powerplays”. At this time the 

“supersub” rule was introduced, which would allow each side to make one player substitution 

at any stage of the game. In March 2006 the supersub rule was cancelled, while the powerplay 

rule continued. Finally, in October 2008 the powerplay rule was changed to enable the batting 

side to control when one of the two blocks of powerplay overs was taken. The number of 

games in our dataset played under each of the four rule regimes are 441, 58, 193, 92. As 

described in Brooker (2011), there is some evidence that these rule changes have brought 

about structural breaks in the data, but the sample sizes for all but the first of these regimes 

are simply too small for us to be able to meaningfully estimate each regime separately. 

Accordingly, in this paper we group all 784 matches as a single dataset and treat the changing 

rules as one of the factors leading to variation in batting conditions across the games. As more 

games are played under the current set of rules, it will become feasible to resestimate the 

parameters of the model using just those games.  

5. Results.  

First-Innings Data: 

Our estimation procedure relies on the maintained assumption that both the conditions 

and performance distributions are normal, implying that the distribution of first-innings scores 

is also normal. We can’t test the base assumptions directly, but we can investigate whether the 

implied normality of first-innings scores is a good approximation. Figure 1 below shows the 

frequency of the first-innings scores, in bins of thirty runs. The summary statistics for these 

data are given in Table 3.  

                                                 
4 At the time of the rule change the old rules were still used for some games for a short period of time. 
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Figure 1: Distribution of first-innings scores 

 

Table 3: Summary Statistics for First-innings Scores 

Statistic Value 
n 784 

Mean, ( Sμ ) 243.3 
Median 247.5 

Variance, ( 2
Sσ ) 3412.5 

Skewness -0.228 
Kurtosis 2.888 

Excess Kurtosis -0.112002 
 

The Jarque-Bera test statistic for normality is 

  2 21( )
6 4
nJB Kς= +  

where n is the number of observations in the sample, ς is the sample skewness and K is the 

sample excess kurtosis. The Jarque-Bera statistic has an asymptotic chi-square distribution 

with two degrees of freedom. This chi-square distribution is an approximation of the true 

distribution of the Jarque-Bera statistic and is prone to making Type I errors. We identify the 

true distribution of the Jarque-Bera statistic for a sample size of 784 by Monte Carlo 

simulation. We generate 784 values from the standard normal distribution, calculate the 
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skewness and excess kurtosis before finally calculating the JB statistic. Repeating this process 

10,000 times gives us a distribution of 10,000 JB statistics under the assumption of normality. 

We are asking the question, were our data normal, how likely are would we be to get a JB 

statistic as extreme as the one we observe by random chance alone in a sample of the same 

size as ours. In our data set, . This value occurs between the 9692nd and 

9693rd observations of our simulated distribution of 10,000 JB statistics and therefore we are 

able to reject the null hypothesis that the data are normally distributed at the 5% significance 

level but not at significance levels of 3% or less.  

JB  7.186640=

As we have previously noted, the assumption of normality cannot be literally true, and 

so it is perhaps not surprising that one can reject normality at the 5% significance level given 

how large a sample size we have. We therefore consider the practical significance of any 

deviation from normality. Figure 2 below compares the distribution function of the first-

innings score data with the distribution function of a normal distribution with the same mean 

and variance.  

Figure 2: Distribution function comparison: Data vs. Normal Distribution 
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To the eye, the assumption of normality does not appear to be a reasonable 

approximation. As a final check, we provide a numerical descriptive-statistic measure of the 

deviation of our sample data from a normal distribution. We sort our data in ascending order 
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of first-innings score, if the data is normally distributed the ith score should be approximately 

equal to the inverse normal of i/784 our mean and variance. Ignoring the first and last five 

observations in a bid to eliminate any outliers, the mean-absolute deviation of our observed 

score from the theoretical score implied by the normal distribution is 4.1 runs, which is small 

relative to the data average of 243. We take this as indicating that normality is a reasonable 

approximation for the data distribution.  

Second-Innings Results:  

We estimate the following probit regression,  

  1 1Pr( 1| ) ( ),S Sω α β= =Φ +  

for which the estimated parameters are 

  ˆ 3.292α = −  and 5ˆ 0.013.β =  (13) 

The function, is the cumulative standard normal distribution so that  ,Φ

  2

2

1
1.

S

S

S
Z S

μ
α β

σ
−

= = +   (14) 

Setting 
21 SS μ= in Equation (14) gives  

  
2

,S
αμ
β
−

=  (15) 

and hence that  

  
2

1 ,Sσ β
=  so 

  
2

2
2

1 .Sσ β
=  (16) 

Putting our estimated parameters, (13), into Equations (15) and (16) gives 

  
2

ˆ 247.981S
αμ
β
−

= = , and  (17) 

                                                 
5  Six of the 784 games in our dataset resulted in a tie. Rather than complicating the model by estimating an 

ordered probit to account for this small number of tied games, we simply repeat each tied match in the data 
set as one win and one loss and give each of these observations a weight of 0.5. All other observations have a 
weight of one in the regression, meaning that each match has a total weight of one. 
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2

2
2

1ˆ 5673.117.Sσ β
= =  (18) 

Estimates of the Conditions and Performance Distributions. 

The sample first-innings mean and variance from Table 3, and the estimated second-

innings mean and variance from Equations (17) and (18) give us the necessary information to 

estimate δ and γ. Putting this information into Equations (11) and (12) gives  

  0.249,δ =  and  

  3.526.γ =  

From this estimate, that roughly 25% of the variation in first-innings scores is attributed to 

variance in the conditions under which matches were played and 75% to variation in the 

relative performance of the batting team relative to the bowling team, we can parameterise the 

two distributions as  

  ( ) ~ (243.387,849.076),F Nχ  and (19) 

  ( ) ~ (0,2,563.412),G Nρ  (20) 

which leads to a combined distribution for first-innings scores  

   1( ) ~ (243.387,3,412.488).H S N

The densities for three distributions are shown in Figure 3.  
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Figure 3: The performance, conditions and score distributions 
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Selected Results: 

The parameterised distributions given by (19) and (20) give us the information needed 

to infer a posterior distribution for conditions in any particular match, using Equations (6) and 

(7). In this subsection, we present some illustrative examples of how the data on the first-

innings score and match result can affect the estimated distribution of the conditions applying 

in that match.  

Figure 4 and Table 4 show the posterior distributions of conditions for the two match 

outcomes where Team 1 scores 243 runs, which is the closest integer to the overall mean in 

the dataset. It also shows the prior distribution of conditions for comparison. There are two 

important things to note about these distributions. First, the conditional distributions provide 

more certainty about what the conditions are like in each game, as their variances are 

substantially lower than the prior distribution. Second, knowing the result of the game makes 

a substantial difference to the mean of the conditional distribution. An average score resulting 

in a win shifts the conditional mean further from the prior mean than an average score 

resulting in a loss, as there is a smaller than 50% chance of an average score resulting in a 

win, due to the second-innings performance advantage. 
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Figure 4: Inferred conditions under different match results 

 

Table 4: Mean and Variance of inferred conditions under different match results. 

Conditions Distribution Mean Variance 

Prior Distribution 243.3 849.1 

1 243, 0S ω= =  251.7 558.8 

1 243, 1S ω= =  233.7 555.1 

 

Figure 5 and Table 5 show the posterior distributions of conditions for a match with a 

particularly low first-innings score of 200, and a particularly high score of 300, both of which 

resulted in losses for Team 1. The conditional mean shifts much further away from the prior 

mean when 300 were scored as for Team 1 to lose when they have scored a very high score is 

a surprising result. The variance is also lower in this situation, implying a greater level of 

certainty about the conditions. 
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Figure 5: Inferred conditions under different first-innings scores. 

 

Table 5: Mean and Variance of inferred conditions under different scores. 

Conditions Distribution Mean Variance 

Prior Distribution 243.3 849.1 

1 200, 0S ω= =  237.5 577.3 

1 300, 0S ω= =  271.9 541.1 

 

More generally, we plot the means and variances of the inferred conditions distributions 

for each score and result of the game in Figures 6 and 7, respectively. As expected, the mean 

of the conditions distribution is higher in games lost by Team 1 than in games won by Team 

1, for a given first-innings total. We also note that the further away from the overall mean the 

first-innings score is, the larger the impact of one result compared with the other on the 

conditions distributions. Figure 7 shows that we have a higher level of certainty about the 

value of conditions when the result observed is the less likely one, given the first-innings 

score.  
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Figure 6: Inferred conditions means. 

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500

In
fe
rr
ed

 c
on

di
ti
on

s 
m
ea
n

Score

ω=0

ω=1

 

Figure 7: Inferred conditions variances. 
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6. Diagnostic Assessment of the Posterior Distributions. 

As we noted in the introduction, estimates of the conditions applying in a match are 

useful as they provide a means that a researcher can control for a potentially important 

confounding variable in empirical work. Our approach does not produce a specific number for 

each match, but rather a distribution. The ideal way to use this information in empirical work 

is to sample from this distribution to create an expanded dataset. In this case, it would be 

useful if the posterior distributions were easily characterised by their mean and variance so 

that the computer memory requirements required to handle a database with a large number of 

matches is not excessive.  

Testing the Posterior Distributions for Normality. 

We choose three situations from our analysis in the previous section in to examine for 

normality. If the distributions are perfectly normal then they should have skewness and excess 

kurtosis equal to zero. Additionally, if we take Z-scores of the cumulative probability at each 

value of conditions, these Z-scores should be perfectly linear and therefore a linear regression 

through these Z-scores should have an R-square value equal to one. We show this information 

in Table 6. 

Table 6: Normality checks for selected conditions distributions. 

Conditions Distribution Skewness Kurtosis 2R of Z-score OLS 

1 200, 0S ω= =  0.0291 0.0034 0.999899 

1 243, 1S ω= =  -0.0230 0.0060 0.999929 

1 300, 0S ω= =  0.0164 0.0052 0.999962 

 

Table 4.8 shows that for our three selected situations, the conditional distributions are 

very slightly skewed, but are hardly discernable from a normal distribution, with the R-

squared of the OLS regression of Z-scores on score being so close to one. More generally, we 

plot the skewness and excess kurtosis for all scores from zero to 500, in Figures 8 and 9, 

respectively. We see that the conditions distributions are positively skewed when Team 1 

loses and negatively skewed when Team 1 wins, with the skewness distributions themselves 

having the opposite skewness. The kurtosis distributions are more complicated; however, we 
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see that regardless of the game result the excess kurtosis tends to be positive in the scores 

around the overall mean score of 243.3, where most scores would actually occur. 

Figure 8: Skewness of conditions distributions. 
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Figure 9: Kurtosis of conditions distributions. 
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Despite the systematic skewness and kurtosis shown in Figures 8 and 9, the numbers 

involved are very small. We demonstrate in Figure 10 that assuming normality causes few 

problems by plotting one of our conditions distributions along with a normal distribution with 

the same mean and variance. We choose the situation where Team 1 scores 243 and loses the 

match, as this is a situation resulting in a relatively high combination of skewness and excess 

kurtosis and therefore should provide an approximate upper bound of the negative impact of 

assuming normality. The graph shows that we should not be concerned about assuming 

normality and the cost of this slight simplifying assumption is likely to be trivial in 

comparison to the benefits provided by the simulation of a larger number of values for 

conditions in subsequent analyses. To confirm this, we perform the same normality test that 

we performed on the first-innings score distribution. That is, we simulate 1000 values of 

conditions from our posterior distribution and sort the data in ascending order of drawn 

conditions. If the data is normally distributed the ith score should be equal to the inverse 

normal of i/1,000 for the simulated mean and variance of conditions. Eliminating the five 

lowest and five highest observations in order to defend against outliers, the mean-absolute 

deviation of drawn conditions from what would be expected under a normal distribution is 0.7 

runs. We conclude from this that, as a practical matter, the posterior distributions can be 

assumed to be normal in any empirical analysis employing them.  
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Figure 10: Implied conditions distribution with normality approximation 
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Assessing the fit of the conditional distributions to the data 

Theoretically, matches played in conditions with a particular value should result in an 

average first-innings score of that value. We test our results by employing several Monte-

Carlo simulations. There are two motivations behind this analysis. It is important to confirm 

that our method of calculating conditional distributions for conditions and simulating from 

these distributions for each given score and result actually works. Additionally, it would be 

useful to know if our data set has any abnormalities that might lead to the average score for 

each value of conditions not being approximately equal to that value of conditions. This could 

occur, for example, if an unusual percentage of games had been won by either team around 

any particular score. This information could help explain any strange results in subsequent 

analyses using the conditions variable. 

We test the mechanics of our method by randomly drawing one value from the 

distribution of χ  and two values from the distribution of ρ . We add the first draw of ρ  to 

χ  in order to determine a first-innings score, , which we round to the nearest integer. If the 

first draw of 
1S

ρ  is greater than the sum of the second draw plus the performance advantage, 

this is a win to the team batting first, otherwise it is a loss. We generate 10,000 scores and 

results by repeating these steps. We then can apply the appropriate posterior distribution for 
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conditions to each game and we draw 5,000 conditions values from this distribution, again 

rounding to the nearest integer. This gives us a generated data set with 50,000,000 

observations of score and drawn conditions and we can subsequently determine the average 

score achieved for each (rounded) value of drawn conditions. We plot the results in Figure 11 

below, showing the 2.5th and 97.5th percentiles of the overall conditions distributions to show 

the range of conditions that are most likely to be experienced. 

Figure 11: Average Score in generated data set. 
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It is clear that the average first-innings score in a given set of conditions closely 

approximates the value of those conditions. We have, to this point, simply confirmed that our 

method works in theoretical games and we need to check the relationship between inferred 

conditions and average first-innings score in our data set of matches. Before doing so, we 

need to think about the amount of deviation from the 45-degree line that would be acceptable, 

given our sample size. In order to do this, we randomly sample 784 of the 10,000 scores and 

results previously generated, along with the 5000 draws of conditions for each of those 

games, and we calculate the average first-innings score for each rounded value of drawn 

conditions. We repeat this process 100 times, thus generating 100 samples of 784 simulated 

matches, and generate a 95% confidence interval for the average first-innings score given a 

particular value of drawn conditions. These confidence intervals are shown in Figure 12. Note 
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that we exclude from the confidence interval lines where we did not observe at least one draw 

of a particular value of conditions in all 100 iterations; that is, where in 784 games and 5,000 

drawn conditions for each game, we did not observe the particular value of rounded 

conditions even once. 

Figure 12: Confidence intervals for a sample size of 784. 
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In order to assess the fit of our drawn conditions to the theoretical 45-degree line, we 

take the actual observed first-innings score and result from our 784 games and apply the mean 

and variance for the conditions distribution implied by each score and result. As in the 

previous simulation, we generate 5000 values for conditions from the conditional distribution 

for each match.  

Figure 13 shows the average first-innings score for each value of conditions. We see 

that again the draws from the conditions distributions do a good job of predicting what the 

average first-innings score will be, particularly within the range in which 95% of conditions 

fall. The high draws of conditions result in an average score close to the upper bound of the 

confidence interval over the range that the confidence interval is estimated; this is likely to be 

due to a particularly unusual game where Australia scored an extremely large total of 434 

against South Africa and remarkably lost the match. 
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Figure 13: Average Score in observed data set 
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7. Discussion. 

By assuming a functional form for a model of first-innings score, determining the 

contribution to the total score variance of each component in the model and applying Bayes’ 

Rule, we have obtained information pertaining to a critical but unobservable variable. This 

information is in the form of a distribution that is conditional on the first-innings score and the 

result of the game. We believe this approach can result in a large improvement to empirical 

analysis of data from ODI cricket matches, relative to the current situation in which 

conditions is a missing variable, with highly problematic implications for the inferences made 

from statistical analysis.  

Of course, our identification strategy rests on a number of maintained assumptions 

about the normality and independence of the underlying distributions that we feel are justified 

on a priori grounds based on our knowledge of the game of cricket, and are not inconsistent 

with the available data.  

There are, however, two assumptions we have made that could be relaxed in future 

work. First, the identification of the means and variances of the underlying conditions and 

performance distributions took as given the mean and variance of the first-innings scores in 
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our dataset, and the mean and variance of the implied distribution estimated by a probit 

regression of result on first-innings score. These sample means and variances, however, are of 

course subject to sampling error. It would be possible to take that error into account when 

constructing the posterior distributions of conditions. With a large dataset of 784 games, 

however, the effect of mis-estimation of the means and variances is likely to be small and 

would not justify the additional complexity of an estimation strategy taking the sampling error 

into account. 

The second area where a useful extension is possible is in allowing for predictable 

differences in ability between teams. We expect that doing so would result in attributing a 

greater fraction of the variance in first-innings scores to variation in batting conditions. The 

intuition for this is as follows. Some of the variation in ability across teams at any particular 

time is correlated across both batting and bowling/fielding. That is if the expected 

performance of Team 1 against Team 2 is positive, then Team 2’s expected performance 

against Team 1 would be negative (in other words, the distributions  and would not be 

independent. This implies that if there were no variance in conditions, the cumulative density 

of first-innings scores would show a higher variance than the implied distribution from 

regressing the probability of Team 1 winning on first-innings score. Since our method of 

inferring the variance in conditions relies on mapping the excess variance in the implied 

second-innings distribution into the variance of conditions, this non-independence of  and 

 would lead to our underestimating the variance of conditions.  

1G 2G

1G

2G

Making this adjustment remains for later work, as it would require building up a 

dynamic dataset of team ability. For now, we simply note that most existing empirical work 

implicitly assumes a zero variance due to conditions, so even if we have underestimated the 

true conditions variance, our approach does represent a step in the right direction.  
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Appendix : The Necessary Basics of the Game of Cricket 

Cricket is a sport played between two teams of 11 players on a large, approximately 

circular field with a 22-yard-long strip of pressed clay, soil and grass known as a “pitch” in 

the centre. One team will initially be the bowlers and the other team will be the batsmen. All 

11 members of the bowling team are on the field while only two members of the batting team 

are on the field at any one time. The basic idea of the game is relatively simple. A bowler 

bowls a ball from one end of the pitch by releasing it with a straight arm action in the 

direction of the batsman. The ball will usually bounce once before reaching the batsman. The 

two main goals of a batsman are to score “runs” and avoid getting “out”. A run is scored each 

time a batsman, having hit the ball with his bat, running to swap ends of the pitch with the 

other batsman. Alternatively, a batsman may score an automatic four or six runs by hitting the 

ball so far that it leaves the playing field. These automatic runs are known as “boundaries”, 

with four being scored if the ball bounces before leaving the playing field and six otherwise. 

If a batsman is “out” then his turn at batting is over and he must leave the field to be replaced 

by a team mate.  

The batting side may continue batting until ten of the 11 members of their side are out, 

then the two teams switch roles. A team’s turn at batting is called an innings and each team 

will have either one or two innings depending on the type of game. In general, the team that 

scores the highest number of runs wins the game. 

There are three main versions of the game. In test cricket, the traditional  form of the 

game, each team bats for two innings and a match lasts a maximum of five days, with the 

match being declared a draw if it is not finished in this time. One Day International (ODI) 

cricket allows each team to bat for one innings but with a limit of 300 balls per innings. The 

innings finishes when ten batsmen are out or the 300 balls are up. As the name suggests, this 

type of game is all over in a day, running for approximately eight hours. Twenty20 cricket is 

the newest form of the game and is similar to ODI cricket except that the limit is 120 balls per 

innings and the game takes approximately three hours. In this paper, we consider only ODI 

cricket. 
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