Complexity Theory II Course Instructor: V. Arvind

Lecture 1 : Aug 2, 2006

Lecturer: V. Arvind Scribe: Kazim Bhojani

1 QOutline of the course
In this course we will discuss following topics

e Hardness vs. Randomness

— Pseudorandom generators

— Error correcting codes
e Extractors
e Expander graphs

— Reingold’s Logspace algorithm for undirected connectivity
— New proof of PCP theorem

Topics discussed in the first part are taken from a survey by Nisan and
Wigderson, Hardness vs. Randomness.

2 Notion of Pseudorandomness and constructing
PRG’s

In this lecture we shall discuss two notions of randomness as formulated by
Blum-Micali and Yao during 80’s ,show that the two definitions are equiva-
lent and then go on to construct a PRG using one way functions.

2.1 Two notions of Pseudorandomness

If a resource bounded observer cannot distinguish between Ideal random
source and another deterministic source A , then A can be used in place of
ideal source and it is as good as an ideal source from the observer’s point of
view.

Such an A will be called a Pseudorandom Generator.

Blum and Micali for the first time in 1980 formalized the notion of ran-
domness and gave the following definition of Pseudorandomness.

Definition 1. Blum-Micali definition(Next bit prediction test)

Let G = {G, : {0,1}'() — {0,1}"} be such that I(n) << n , that is , G
takes a seed of length I(n) and generates a string of length n .

G s called a Pseudorandom Generator for a class C (of algorithms) , if
for every polynomial p(n) and each i and for all the algorithms A € C' the
following holds

1 1
Probyeqo,yiom [AWyz - yi-1) = 4i] — 5| < o)

where z € {0, 1} and G, (z) = 1192 - . . Yn.

Yao in 1982 formulated a different definition of Pseudorandomness and
showed that the two definitions are equivalent

Definition 2. Yao’s Definition(Distinguisher test)

A function G : l(n) — n is a PRG ' for a class C of algorithms if
for every polynomial p(n) and each i and for all the algorithms A € C' the
following holds

1
Probye(o13n[A(y) = 1] = Prob,cg 1 yum [A(G(2)) = 1]| <)

Theorem 3 (Yao). The two definitions of Pseudorandomness given above
are equivalent
2.2 Constructing PRG’s

First we begin with the definition of One way functions.

Definition 4. One way functions
A function f = {fn : {0,1}" — {0,1}"} is a 1-way function if for every
polynomial p(n) and every circuit C' of size p(n) the following holds

1
Probyeqo 1y [C(f(2) ¢ f'(2)] = o)

and f should be computable in polynomial time.

"Henceforth we will use the abbreviation PRG for Pseudorandom generator(s)

The following are two examples of functions are that are believed to be
1-way and no fast algorithms are known for inverting these functions

e Function f that computes product of two n bit primes

fiZp,+)— (Z;, *)

z — a”

Now we state a theorem due to Yao which relate 1-way functions with
PRGs.

Theorem 5. (Yao’s theorem).
If there is a 1-way function f then for every e > 0 there is a PRG

G:n"—n

such that G runs in polynomial time and is secure against all polynomial
size circuils.

But how do we get hold of G , given a 1-way function ?

Here is a rough procedure how we can use 1-way function to get hold of
a PRG

e f is a l-way function.
e Get hold of g which is 1-way with amplified hardness
e Then compute z, g(z), g(g(x)), ..., "™ ().

e Extract one bit from each of the above strings and this xgx; ...z, is
the output of the PRG

One immediate corollary of the Yao’s theorem is the following result

Corollary 6. If I-way functions exist then BPP C DTIME(2™) for some
e>0.

Also the converse of Yao’s of theorem is also true.

Theorem 7. (Converse of Yao’s Theorem).
If there is a PRG

G:n"—n

then 1-way functions exist.

2.3 Nisan-Wigderson design
First we begin with definition of quick PRG.

Definition 8. (quick PRG).
G : I(n) — n is called a quick PRG if it is computable in time 2°0¢() (deterministic)
and for every circuit C of size n® the following holds

1
Probye(o137[C(y) = 1] = Prob,cqo 1 ym[C(G(2)) =1]| < -
Lemma 9. If a quick PRG G : l(n) — n exists then for every time con-
structible function t(n)

BPTIME(t(n)) € DTIM E(200tM)

Proof. Let L € BPTIME(t(n)) and M be a machine which accepts lan-
guage L and x be an input instance.

Let |z| = t(n) , we can assume that the r random bits used in the
computation are given with input.

Look at the tableau of computation it has ¢(n) configurations.

Now Gyny : O(I(t(n))) — O(t(n)) , so we can cycle over all string s of
length I(t(n)) and use G(s) as a random string in computation so the whole
simulation can be done in DT TM E(20UHn)

Hence proved.

Now we define the notion of hardness of a boolean function.

Definition 10. A boolean function f :{0,1}" — {0,1} is called (¢, S)-hard
, if for all circuits of size S the following holds,

1
Prob,cioqym[C(x) = f(z)] —) <€

Also a function f is said to have hardness H(f) = m , where is m is the
largest number such that f is (m, %)-hard.

We can now use hard functions to build PRGs using the Nisan-Wigderson
design

2.3.1 The (n,l,m,k) design
o Let S1,59,...,5, C{1,2,...,1} such that |S;| =m

Let f:{0,1}" — {0,1} be the given hard function.

o Let x = x129...2; be the seed where [is the seed length.

Now project = onto each coordinate of S; to get a string of length m
and apply f to that string to obtain bit y; , that is y; = f(«x|S;) for
i=1,2,...,n.

® Yy =1Y1Y2...Yn is the output of the Pseudorandom generator.

So we have a function Gy : [— n.

Theorem 11. If f : {0,1}™ — {0,1} is a boolean function with hardness
n? and Gy is built from a (n,l,m,logn) design , then G is a quick PRG.

Proof. Suppose C'is a circuit of size n? that distinguishes G ¢’s output from
random source , that is ,

1
Probyeio,132[Cy) = 1] — Pmbxe{o,L}l(") [C(Gy(x)) =1] > -

Let E; be the uniform distribution and E,, be the distribution of G(z) ,
now we advance a hybrid argument to obtain a contradiction.

Define the intermediate distributions Fs,. .., E,_1) as follows ,
e F)j has distribution 71,79, ...,r, where r;’s are true random bits.
e F; has distribution wuy,...,u;, 741, ..,7n , where ug,...,u; are first ¢

bits of output of pseudorandom generator G.

e F, has distribution uy, us, ..., u, where u;’s are output of G.

So we have ,

1
Probycg,[C(y) = 1] — Probycg, [C(y) = 1] > -
n—1 1
= > [Probyes,[Cly) =1] = Probyep,,, [C(y) =1]] > ~
=0
, 1
—> Ji: Probycg,[C(y) = 1] — Probycg, ,[C(y) = 1] > 2
So now we have a randomized algorithm D(yi,y2,. .., y,) where input is

first ¢ bits of G’s output and outputs ;11 with probability > % + 7712
e Pick r;41,...,r, ideal random bits.
o Let C(y1,.--,YisTitly---yTn) =0
e if b =1 then predict y;11 = ri11 else Y11 = Tit1
Claim

1 1
PTObe,THhmJ"n [D(yb cees yi) = yi—l-l] > 5 + ﬁ
This shows that functions obtained using Nisan-Wigderson design are
Pseudorandom generators if the function used is a hard function , assuming
the claim.

O]

Now we prove the claim stated above.

Proof of Claim.

Required probability

Prob[D(yi,...,y;) = 0]

Required probability

Y

Prob[D(yi,. ..
Prob[D(yy,. ..

Prob[D(y1, ...

1—p;

Prob[D(yi, ...

Prob[D(y, . ..

1' +o¢
2pz+1 B)

1
Yi) = Yir1|Ti1 = yi+1]-§
1
Yi) = Yir1|Tiv1 = yi+1]-§
1 1
,yi) = yz‘+1|7"z'+1 = yz’+1]-* + -«
2 2
1
s Yis Yit 1, - - -)T’n) = yi+1’ri+1 = yi-i—l]‘i
_ 1
s Yis Yit1s - - - ,Tn) = yi+1!7°z'+1 = yi+1]-§

1
1 —pi— (1 = pit1)

2
1

1

L —pi+ spiv1 — 5 (1 — piy1)

2

2
[t
2 n?

1
=+ (Pig1 — i)

2

This also proves that a distinguisher circuit can also be used to construct
a next bit predictor which proves one direction of theorem 1 due to Yao

stated in the beginning.

O]

