
CS640 Computational Complexity

Constructing Expanders: The Zig-Zag Product
Instructor: Manindra Agrawal Scribe: Ramprasad Saptharishi

Over the last few classes we were introduced to expander graphs and
we saw how they could be used to reduce the number of random bits re-
quired for amplification.

The crucial part in that is that, given a vertex v of the expander, we
should be able to pick a random neighbour of that quickly. Though the
graph is of huge size (2m vertices), we want our neighbour computation to
be fast. This is captured by rotation maps.

1 Rotation Maps

Definition 1. Let G be a d-regular n vertex graph. The rotation map, denoted
by RotG, is a map RotG : V × {1, 2, · · · , d} −→ V × {1, 2, · · · d} such that
RotG(u, i) = (v, j) if the i-th neighbour of u is vertex v and the j-th neighbour of
v is u.

From the definition it is clear that this is a permutation on V×{1, 2, · · · , d}
and it is also an involution; that is RotG applied twice successively is the
identity. Therefore, this map can be represented as a symmetric permuta-
tion matrix of dimension nd× nd.

We would want our expander graphs to have rotation maps that are
computable in time poly(log n, log d).

2 Constructing Expander Graphs

Expander graphs are available in plenty. Infact, the following result states
that almost all graphs are expanders

Theorem 1. A random d-regular graph on n vertices has its second largest eigen-
value less than 9/10 with high probability.

Therefore, the existence of such graphs is clearly not an issue. But we
would want to explicitly construct them.

1



A few such constructions were discovered earlier and all of them had a
similar flavour - simple to visualize but really hard to show that they are
indeed good expanders or even find efficient rotation maps. To illustrate
that, consider the following graph. Let p be a prime and consider a graph
on p vertices. For each i, connect it to i − 1, i + 1 and i−1 mod p (put a self
loop on 0). This actually forms an expander graph!

People were looking for explicit constructions of a family of constant
degree expander graphs for a long time. The general idea was to take a
small expander graph, and somehow blow it up or enlarge it to give a larger
expander graph. We shall now look at certain graph products.

3 Graph Products

We shall look at some ways by which we can take two graphs G and H and
try and get a bigger graph by taking some product between them.

3.1 Powering

Suppose G and H are (n, d, λ) and (n, d′, λ′) expanders. Define the adja-
cency matrix of the product graph GH as the product of the adjacency ma-
trices. This may not be a 0, 1 matrix but think of this as a multigraph where
Aij = k means that there are k edges between vertex i and j.

The resulting graph will also be an n vertex graph and have degree dd′.
What about the eigenvalue?

Notice that this new normalized adjacency matrix also has
∣∣1̂〉

as an
eigenvector with eigenvalue 1. Take any other eigenvector orthogonal to
this. Then the adjacency matrix of H shrinks it by λ′ and then G shrinks it
by λ. Therefore, the second largest eigenvalue is λλ′.

Therefore the resulting graph GH is an (n, dd′, λλ′) expander. We shall
denote a product of G with itself k times as Gk.

3.2 Tensor Product

Let G be an (n, d, λ) expander and H be a (n′, d′, λ′) expander. The tensor
product G⊗H is defined as follows:

• The vertex set of G⊗H is VG×VH . Vertices can be thought of as (u, u′)
such that u ∈ G and u′ ∈ H.

• Vertex (u, u′) is connected to (v, v′) if and only if (u, v) ∈ G and
(u′, v′) ∈ H.

2



It is clear from the definition that the number of vertices is nn′ and the
degree is dd′. And it is not hard to check that the adjacency matrix of this
new graph will now be the tensor product of the adjacency matrices of the
old graphs. And therefore, the related eigenvalues and eigenvectors are
also corresponding products. Therefore, the second largest eigenvalue of
G⊗H is max {λ, λ′} .

Therefore, the resulting graph G ⊗ H is an (nn′, dd′,max {λ, λ′}) ex-
pander.

Let us now look at what the two products give us. The powering is
good in the sense that it reduces λ, which is good for us. The number of
vertices however remain the same. The tensor product on the other hand
increases the number of vertices and doesn’t change the eigenvalue much
since it remains the max of the 2 graphs and is therefore under control.

The problem with both the operations is that the degree of the graph
keeps increasing. And with just these two products there is no hope of
getting a family of constant degree expanders.

The degree blows up because of the freedom that both the products
allows. In case of powering, if you look at GH , it is equivalent to taking
one edge in H and then one in G. So in essence you have complete freedom
of choosing any edge in G as long as it is incident in the vertex you are
on after the H-edge. In case of tensoring, they are essentially two parallel
moves, one on G and one on H and therefore allows tremendous freedom.

What we need to do is reduce this freedom; somehow make the edge in
one of the graphs “influence” the other edge. This is exactly what happens
in the zig zag product which finally solves the problem of degree blow-up.

4 The Zig-Zag Product

Suppose G is an (N,D, λ1) expander and H is an (D, d, λ2) expander. We
can then define what the zig-zag product of the two graphs are. It is de-
noted by G z©H.

We shall first define it informally so that the readers get a good picture
of what it is. Take the graph G. Each vertex u has degree D and therefore
has D edges going out. Now replace each vertex u by a cloud of D vertices
such that each new vertex ui represents the i-th edge going out of u. There-
fore, the vertex set of G z©H is of size ND since each vertex in G is now
blown up by a D vertex cloud. To make the understanding, we shall think
of the new vertices as pairs (u, i) which corresponds to the i-th vertex in the

3



cloud of u. We hence have ND vertices, identified as clouds, present with
absolutely no edges between them. We need to now define the edges.

Any edge in the zig-zag product will correspond to a 3-step walk which
is as follows. You start at vertex (u, i) which is the i-th vertex in the cloud
of u. Now think of the vertices in this cloud as vertices of H. Take one edge
in H to go from (u, i) to (u, j) where j is a neighbour of i in H. Now you
are at vertex (u, j). The vertex j corresponds to the j-th edge going out of u;
take that edge in G to go to vertex v in G and thereby going from a vertex
in cloud u to a vertex in cloud v. Now we would go from u to v through
some edge of v, say the k-th edge. This corresponds to (v, k) in the cloud.
So we end up there. Now think of the cloud of v as the graph H and go
to some neighbour of k, say l. Therefore, you finally end up in (v, l). This
three step walk defines a single edge in G z©H ; you then connect (u, i) and
(v, l) by an edge.

OK, let us first find out what the degree of the new graph is. How many
neighbours does (u, i) have? Let us see what the freedom is. From (u, i) we
can take any edge in H for the first step of the walk; that gives us d choices.
Then the new vertex defines the intercloud edges so there is no choice there.
After that, we take one more edge in H in the new cloud which again gives
us d choices. Therefore, the degree of this new graph is d2.

Infact we can say that (u, i)’s (a, b)-th neighbour is (v, k) if your first
walk took the a-th neighbour of a and then in the last step too the b-th
neighbour to k. Therefore, the edge labels can also be thought of as tuples
(a, b) where 1 ≤ a, b ≤ d.

Let us now formally define the edges. Recall that the rotation map
RotG z©H is a map that takes a vertex and edge number and returns the
destination vertex and its edge number that we took to get there.

To compute RotG z©H ((u, i), (a, b)), let RotH (i, a) = (j, a′) and let RotG (u, j) =
(v, j′) and then let RotG (j, b) = (k, b′) . Then, define RotG z©H ((u, i), (a, b))
as ((v, k), (b′, a′)) .

This rotation map therefore defines all the edges of G z©H. Now for the
bounds on eigenvalues.

4.1 Eigenvalue Bounds

We now need to argue that he second largest eigenvalue isn’t too large.
Note that we don’t need the eigenvalue to actually decrease. The graph
powering reduces the eigenvalue a lot. Therefore if we reduce it enough

4



through powering and then use the zig-zag product to get the degree down
and a slight increase in eigenvalue will not cause too much of trouble.

The following theorem gives a bound on the eigenvalue of the new
graph.

Theorem 2. The graph G z©H is an (ND, d2, λ) expander where λ = 1 − (1 −
λ1)(1− λ2)2.

Proof. The adjacency matrix of G z©H isn’t as difficult as it seems. Every
edge in the new graph corresponds to a 3 step walk. You start at (u, i) and
go to a neighbour j of i in cloud u and therefore to (u, j). This is like the
adjacency matrix of H acting on the second coordinate and keeping the first
coordinate fixed; this is what is captured by the matrix I ⊗ H where H is
the normalized adjacency matrix of the graph H.

From (u, j), you go the j-th neighbour, say v, of u. You would be taking
v’s k-th edge into v and hence you end up at (v, k). This means that u’s j-th
neighbour is v and as a k-th neighbour of v. This is exactly the rotation map
of G, takes (u, j) and returns (v, k).. Let us call the matrix representing the
rotation map as RG. Then this matrix captures the second step.

The third step is again keeping the first coordinate fixed and the second
coordinate changing based on H. Therefore, the third step is I ⊗H as well.
Hence, the normalized adjacency of G z©H is (I ⊗H)RG(I ⊗H).

We need to compute the 2nd largest eigenvalue of Z = (I ⊗H)RG(I ⊗
H). Write H = (1− λ2)J + λ2C where J is the vector with all 1/Ds.

Z = (I ⊗H)RG(I ⊗H)
= (I ⊗ ((1− λ2)J + λ2C))RG(I ⊗ ((1− λ2)J + λ2C))
= (1− λ2)2(I ⊗ J)RG(I ⊗ J) + (1− λ2)λ2(I ⊗ C)RG(I ⊗ J)

+(1− λ2)λ2(I ⊗ J)RG(I ⊗ C) + λ2(I ⊗ C)RG(I ⊗ C)
= (1− λ2)2(I ⊗ J)RG(I ⊗ J) + (1− (1− λ2))2E

where E is the rest of the matrices. After this, it’s just some verification
using the eigenvectors. It can be shown that ‖E‖ ≤ 1. We leave it to the
reader to think about it.

As for the other term, look at the matrix (I ⊗ J)RG(I ⊗ J). Thinking
of it graphically, the first (I ⊗ J) preserves the first coordinate and sends
the second coordinate to “any” vertex in H. Then RG then goes to “any”
neighbour of G and then the final I ⊗ J fixes the first component again.
Hence, it can be formally shown as well, (I ⊗ J)RG(I ⊗ J) = G⊗ J.

5



Now the only eigenvalues of J are 1 and 0 (0 has multiplicity D − 1)
and therefore the second largest eigenvalue of J is 0. Therefore, the second
largest eigenvalue of G⊗ J is λ1.

Therefore,

λ ≤ (1− λ2)2λ1 + 1− (1− λ2)2 = 1− (1− λ1)(1− λ2)2

4.2 Revisiting Probability Amplification

Recall the part when we discussed amplifying the success probability in an
RP algorithm. We had an algorithm that used m random bits and whose
error was less than say δ. We used m + k log D bits to get the error down
to 2−Ωk. Think of this as a first block of m bits to figure out the first vertex,
and then k chunks of log D bits. In this k chunks of log D bits, you can
recursively apply the procedure. Think of log D = m′ and this looks like
k repeated applications of the naive algorithm that uses m′ random bits.
Therefore, you can think of an expander on 2m′

= D vertices say of degree
d and do a random walk there to reduce the random bits again.

Therefore we would now be using log m + log D + log d + log d + · · · .
One could group the first two chunks to get a chunk of log mD random bits
and then followed by a lot of log d chunks. This is like a random walk on
an expander on mD vertices and degree 2O(log d) which say is d2. And this
is essentially what we get in the zig-zag product!

Thus, we can think of the probability amplification in two steps: start
with an expander on 2m vertices but not necessarily of constant degree D.
Now use the smaller expander on D vertices to reduce the random bits
even further. This corresponds to using the expander which is the zigzag
product of the two expanders.

5 Efficient Computable Family of Constant Degree Ex-
panders

Using the 3 graph products that we discussed, we can now go ahead and
construct a family of efficiently computable expander graphs with constant
degree. To start with, let us pick a small constant sized graph with λ < 1/2.
This can be picked by bruteforce.

6



Let H be a (d8, d, 1/2) expander. Define G1 = HH. Therefore, G1 will
be an d16 vertex d2 regular graph. Now interatively, define Gk for k ≥ 2 as

Gk = (Gk−1 ⊗Gk−1)2 z©H

The following claim is very straightforward to check.

Claim 3. The family of graphs {Gi} form a family of expander graphs each of
degree d2. And Gk is a (8(2k − 1), d2, 1/4) expander. And further, the rotation
maps of Gk can be computed in time O(k) which is logarithmic in the size of the
vertex set of the graph and is hence efficient.

7


	Rotation Maps
	Constructing Expander Graphs
	Graph Products
	Powering
	Tensor Product

	The Zig-Zag Product
	Eigenvalue Bounds
	Revisiting Probability Amplification

	Efficient Computable Family of Constant Degree Expanders

