
CS681 Computational Number Theory

Lecture 17: Primality is in NP ∩ coNP

Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

We shall get into primality testing for integers in the next few classes. We
shall build up the details starting with showing that it is in NP∩ coNP, dis-
cuss randomized algorithm, and then finally get into deterministic polyno-
mial time testing.

We shall prove Pratt’s result that it is in NP ∩ coNP.

1 Pratt’s Theorem

The problem is the following: we are given a number N as input and we
want to check if this is prime.

Remember that the input is given in binary. It would be trivial if N was
specified in unary in which case the input size is N and hence primality
testing in O(N c) is trivially accomplished by checking every number less
than N if it’s a factor or not.

The input is provided in binary and therefore we are looking for an
algorithm that runs in time polynomial in the input size, which is log N.

Recall the definition of the classes NP and coNP.

Definition 1. NP is the class of languages L such there exists a polynomial time
verification scheme A(x, y) such that x ∈ L if and only there exists a witness y
such that |y| < |x|c for some constant c and A(x, y) = 1.

coNP is the class of languages L such that L̄ ∈ NP.

To get a more intuitive picture, NP is the class of problems that have
very short proofs or witnesses. Though it might not be clear if x ∈ L, given
a witness y, it is easy to check that (x, y) is a proper solution. For example,
sudoku. It might be hard to find a solution but once someone gives us a
solution, it is easy to check if the solution is correct.

One could also think of this as guessing a witness y and verifying it
using A.

Here is an obvious observation:

1

Observation 1. Primality testing is in coNP.

This equivalent to saying that checking if a number N is composite is
in NP which is immediate since the witness is the factor d of the number.
Hence, our verification scheme A(N, d) is just checking if d divides N.

Pratt showed that primality testing is infact in NP.

Theorem 2. Primality testing is in NP.

Proof. Note that the group (Z/NZ)? is of order N − 1 if and only if N is
prime. And more over, it is a cyclic group of order N − 1 if and only if N
is a prime. Thus, we shall find a witness or a certificate that the group is
cyclic.

How do we show that a group is cyclic? We guess a generator a. If we
are able to show that an 6= 1 for any n < N − 1, we are done. Note that
aN−1 = 1 anyway. Therefore, we just need to check that a(N−1)/pi 6= 1 for
every prime divisor pi of N − 1.

Therefore, we not only guess the generator a, we guess the factors p1, p2, · · · , pk

of N − 1. But how do we know that the guessed pis are indeed primes? We
guess its witnesses too; induction! Aren’t we going in circles? Actually no
since the numbers pis are quite small and it still won’t blow up the size of
the final certificate.

Let us try and see how large the witness/certificate can get. How large
can the prime factors of N − 1 be? Since N is prime , N − 1 is certainly
composite (unless N was 2, a worthless case which can be handled right
at the beginning). The largest factor of N − 1 can be of size atmost

√
N.

How many factors can there exist? Atmost log(N − 1) of them. Thus if
N − 1 = p1p2 · · · pk then our witness would be (a, p1, p2, · · · , pn) and the
certificates of each of the pis. The input is of size log N and let S(l) be the
size of the witness for input of length l. Then:

S(log N) = log2 N + S(log p1) + S(log p2) + · · ·+ S(log pk)
= log2 N + (log p1)c + (log p2)c + · · ·+ (log pk)c

≤ log2 N + (log p1 + log p2 + · · ·+ log pk)c

= log2 N + (log(N − 1))c

= O((log N)c)

And since the witness is just polynomially bounded in the size of the input,
we can guess the entire certificate and verify. Thus primality testing is in
NP.

And since primality is in NP and coNP, it is in NP ∩ coNP.

2

	Pratt's Theorem

