CS681

Computational Number Theory

Lecture 17: Primality is in NP \cap coNP

Instructor: Piyush P Kurur

Scribe: Ramprasad Saptharishi

Overview

We shall get into primality testing for integers in the next few classes. We shall build up the details starting with showing that it is in NP \cap coNP, discuss randomized algorithm, and then finally get into deterministic polynomial time testing.

We shall prove Pratt's result that it is in NP \cap coNP.

1 Pratt's Theorem

The problem is the following: we are given a number N as input and we want to check if this is prime.

Remember that the input is given in binary. It would be trivial if N was specified in unary in which case the input size is N and hence primality testing in $O(N^c)$ is trivially accomplished by checking every number less than N if it's a factor or not.

The input is provided in binary and therefore we are looking for an algorithm that runs in time polynomial in the input size, which is $\log N$.

Recall the definition of the classes NP and coNP.

Definition 1. NP is the class of languages L such there exists a polynomial time verification scheme A(x, y) such that $x \in L$ if and only there exists a witness y such that $|y| < |x|^c$ for some constant c and A(x, y) = 1.

coNP is the class of languages L such that $L \in NP$.

To get a more intuitive picture, NP is the class of problems that have very short proofs or witnesses. Though it might not be clear if $x \in L$, given a witness y, it is easy to check that (x, y) is a proper solution. For example, sudoku. It might be hard to find a solution but once someone gives us a solution, it is easy to check if the solution is correct.

One could also think of this as guessing a witness y and verifying it using A.

Here is an obvious observation:

Observation 1. *Primality testing is in* coNP.

This equivalent to saying that checking if a number N is composite is in NP which is immediate since the witness is the factor d of the number. Hence, our verification scheme A(N, d) is just checking if d divides N.

Pratt showed that primality testing is infact in NP.

Theorem 2. Primality testing is in NP.

Proof. Note that the group $(\mathbb{Z}/N\mathbb{Z})^*$ is of order N - 1 if and only if N is prime. And more over, it is a cyclic group of order N - 1 if and only if N is a prime. Thus, we shall find a witness or a certificate that the group is cyclic.

How do we show that a group is cyclic? We guess a generator a. If we are able to show that $a^n \neq 1$ for any n < N - 1, we are done. Note that $a^{N-1} = 1$ anyway. Therefore, we just need to check that $a^{(N-1)/p_i} \neq 1$ for every prime divisor p_i of N - 1.

Therefore, we not only guess the generator a, we guess the factors p_1, p_2, \dots, p_k of N - 1. But how do we know that the guessed p_i s are indeed primes? We guess its witnesses too; induction! Aren't we going in circles? Actually no since the numbers p_i s are quite small and it still won't blow up the size of the final certificate.

Let us try and see how large the witness/certificate can get. How large can the prime factors of N - 1 be? Since N is prime , N - 1 is certainly composite (unless N was 2, a worthless case which can be handled right at the beginning). The largest factor of N - 1 can be of size atmost \sqrt{N} . How many factors can there exist? Atmost $\log(N - 1)$ of them. Thus if $N - 1 = p_1 p_2 \cdots p_k$ then our witness would be $(a, p_1, p_2, \cdots, p_n)$ and the certificates of each of the p_i s. The input is of size $\log N$ and let S(l) be the size of the witness for input of length l. Then:

$$S(\log N) = \log^2 N + S(\log p_1) + S(\log p_2) + \dots + S(\log p_k)$$

= $\log^2 N + (\log p_1)^c + (\log p_2)^c + \dots + (\log p_k)^c$
 $\leq \log^2 N + (\log p_1 + \log p_2 + \dots + \log p_k)^c$
= $\log^2 N + (\log(N-1))^c$
= $O((\log N)^c)$

And since the witness is just polynomially bounded in the size of the input, we can guess the entire certificate and verify. Thus primality testing is in NP. $\hfill \square$

And since primality is in NP and coNP, it is in NP \cap coNP.