CS681 Computational Number Theory

Lecture 20 and 21: Solovay Strassen Primality Testing

Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Last class we stated a similar reciprocity theorem for the Jacobi symbol. In
this class we shall do the proof of it, discuss the algorithm, and also do the
Solovay-Strassen primality testing.

1 Proof of the Reciprocity of (%)

The proof will just be induction on m. Recall the statement of the theorem
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We shall just prove the second part here. The first part uses the same tech-
nique. Let us assume that the theorem is true for all m’ < m. If m is a prime,

we do induction on n.
Suppose m = mimg, then
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From now on, the work shall be happening on the exponent and let
us just denote 271 E for the exponent of —1. We want to evaluate £ mod
2 since we are looking at (—1) power the exponent and only the parity

matters.




Let m1 = 4k1 + b1 and my = 4ky + by where by, by = *1 since m is odd.
4k + 4ko + b1 + by — 2
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And now it is easy to check that for b1, b2 = £1,
biby — 1 by +by—2
= 2
5 > mod
and therefore, £ = mTfl mod 2 and hence,
m n n—1 n—1m—1
—)(=)=-=zf=(-1D"7 =T O
() () = F =y

2 Algorithm to compute (2)

The reciprocity laws give a polynomial time algorithm to compute the Ja-
cobi symbol 2. Note that () depends only on m mod n and therefore we
can reduce m modulo n and compute. When m < n, we use the reciprocity
to get (2) and we reduce again.

The bases cases (cases when either of them is 1 or ged(m,n) > 1 or
m = 28m/ or n = 2¥m’ etc) are omitted[]

The running time of this algorithm is (log m log n)°(").

3 Solovay Strassen Primality Testing

The general philosophy of primality testing is the following;:

e Find a property that is satisfied by exactly the prime numbers.

!the TgXsource file of this lecture note has them commented out. Uncomment them and
recompile if needed



Algorithm 1 JACOBI SYMBOL (%)
./ /base cases omitted

—_

2: if m > n then

3: return (%Od”)

4. else -

5  return (1) z 2z (Z)
6: end if

¢ Find an efficient way to check if the property is satisfied by arbitrary
numbers.

e Show that for any composite number, one can “easily” find a witness
that the property fails.

In the Solovay-Strassen algorithm, the property used is the following.

Proposition 1. n is prime if and only if for all a € (Z/nZ)*,

(5o
And with the following claim, we have the algorithm immediately.

Claim 2. If n was composite, then for a randomly chosen from (Z /nZ)*,
a n—1 ].
P — 2| >
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Thus, the algorithm is the following.
All that’s left to do is prove the claim. For that, let us look at a more
general theorem which would be very useful.

Theorem 3. Let 11 and 2 be two homomorphisms from a finite group G to a
group H. If 11 # 1o, that is there is atleast one g € G such that ¢¥1(g) # ¥2(9),
then vy and <) differ at atleast |G|/2 points.

This intuitively means that two different homomorphisms can either be
the same or have to be very different.

Proof. Consider the set

H={g9eG : P1(g9) =v2(9)}



Algorithm 2 SOLOVAY-STRASSEN: check if n is prime

1: Pick a random element a < n.
if gcd(a,n) > 1 then
return COMPOSITE
end if
Compute a"T using repeated squaring and (%) using the earlier algo-
rithm.
if (2) #£a"7 then
return COMPOSITE
else
return PRIME
10: end if

RN

Note that clearly 1 belongs to H and if a,b € H, then so is ab as ¢ (ab) =
P1(a)1(b) = Pa(a)ha(b) = 1a(ab). Inverses are inside as well and there-
fore, H is a subgroup of G. Also since 11 # 19, they differ at atleast one
point say go. Then gy ¢ H and hence H is a proper subgroup of G.

By Lagrange’s theorem, |H| divides |G| and since |H| < |G|, |H| can
atmost be |G|/2. Since every element in G \ H is a point where v; and 1,
differ, it follows that ¢); and v, differ at atleast |G|/2 points. O

The claim directly follows from the theorem since both the Jacobi sym-
n—1

bol and the map a +— a2 are homomorphisms and hence will differ in
atleast half of the elements of (Z/nZ)*.

Thus, the Solovay-Strassen algorithm has the following error bounds:
e If n is a prime, the program outputs PRIME with probability 1.

e If nis not a prime, the program outputs COMPOSITE with probability
atleast 1.

Of course, the confidence can be boosted by making checks on more such
a’s.

All that’s left to do is to prove the proposition.



4 Proof of the Proposition

We want to show that if n is not a prime, there the two homomorphisms

a— a"T anda — (%) are not the same. Thus, it suffices to find a single
a € (Z/nZ)* such that (%) #a "

Case 1: n is not square free

Suppose n had a prime factor p such that p? divides n. Recall that for all

n = p'py? - - py¥, the Euler ¢ function evaluates to:

Hpal—l o 1

And hence, if p? | n = p | ¢(n). Now look at the multiplicative
group (Z/nZ)*, this has ¢(n) elements. A theorem of Cayley tells us that if
p | |G| then G has an element of order pf|Let g be an element of order p in
(Z/nZ)*.

What is the value of gnT_l ? Can this be £17? If it were £1, then ¢g"~! = 1.
This means that the order of g divides n — 1, or p | n — 1 which is impossible

since p | n. And therefore, g%l # +1 and therefore, certainly cannot be (%)
which takes values only +1 for all g Coprime to n.

Thus g is a witness that (£) # g a

Case 2: n is a product of distinct primes

Now n will be square-free if and only if it is a product of distinct primes.
Suppose n = pip2 - - - pg

. n—1
Suppose there is some some a such thata 2 # (p%) , are we done? Yes

we are. We can use such a a to find a ¢ such that "z # (2).
By the Chinese Remainder Theorem, we know that (Z/nZ)* = (Z/p1Z)* x
X (Z/piZ)*. Let g be the element in (Z/nZ)* such that g +— (a,1,1,--- ,1)
by the CRT map. By the definition of the Jacobi Symbol,

(9)-T1(2) -TT(=22) = () (2) () - (1)

Zactually it is more. It says that for every prime power p® | |G/, there is a subgroup of
order p® in G.




And gnT_l = (anT_l, 1,---,1). What we know is that a7 #+ (p%) . Suppose
(p%) = 1, then (p%) = (£) = 1. But g"7 on the other hand looks like

(anT_l, 1,---,1) and we know that <pi1) =1# a7 . Therefore, gnT_l looks
like (*,1,---,1) where the first coordinate is not 1. And therefore, this is
not 1. Therefore (£) # gnT_l.

Suppose (p%) = —1, then things are even simpler. (£) = —1 but 9"
looks like (%1, ,1) # —1. Therefore (£) # gnT_l.

And of course, it works for any prime factor p of n. Thus, the bad case is
when for all a and for all prime factors p;, (z%) = a"7 . Since n is compos-
ite, there are at least 2 distinct prime factors p; and ps. Pick a € (Z/p1Z)*
which is a quadratic residue ((p%) =1)and a b € (Z/p2Z)* that is a non-

residue ((p%) = —1). Now look at the element g € (Z/nZ)* that maps to
(a,b,1,1,---,1) by the chinese remainder theorem.
1 —1

Now g7 = (anT,bnT_l,l,--- ,1) = (1,-1,1,---1) which is not +1.
And hence clearly, (£) # g7,

That completes the proof of correctness of the Solovay-Strassen primal-
ity test.
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