
CS681 Computational Number Theory

Lecture 13: Codes: An Introduction
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Over the next few lectures we shall be looking at codes, linear codes in
particular. In this class we shall look at the motivation and a glimpse at
error detection. The details shall be done in the lectures to come.

1 Codes

Suppose you have two parties Alice and Bob who wish to communicate
over a channel which could potentially be unreliable. What we mean by
unreliable is that some parts of the message could be corrupt or changed.
We want to make sure that the recepient can detect such corruption if any,
or sometimes even recover the message from the corrupted.

We can assume that the channel sends allows sending some strings over
a fixed finite alphabet (a finite field, or bits, or the english alphabet etc). The
two questions we need to address here is detection and correction.

1.1 Block Codes

What if Alice needs to send a message, in say english, and the channel
has a different alphabet, say binary strings. Then we need some way of
converting strings of one alphabet into another. This is achieved by looking
at blocks of code.

In the example of english to binary, we could look at ascii codes. Each
letter would correspond to a block of letters in the channel.

Of course, not all blocks of bits could correspond to meaningful sen-
tences or messages. A block code is in general just a subset of strings. To
formally define it:

Definition 1. Let Σ be the fixed finite alphabet for the channel of communication.
A block code C of length n over this communication is a subset of Σn.

Elements of C are called code words.

1

Definition 2. For any two strings x and y of the same length, the hamming
distance is defined as the number of indices that x and y differ in.

d(x, y) = |{i : xi 6= yi}|

Definition 3. The distance of a code C is the minimum distance between its code-
words. That is,

d(C) = min
x 6=y

d(x, y)

In a sense, the distance of a code is a measure of how much one needs to
change to alter one code to another. For example, if the distance of a code
was say 5, then it means that there are two strings (messages) x and y that
differ at just 5 places. Now suppose x was sent through the channel and
those 5 bits were changed due to the noise in the channel, then Bob would
receive the message y from Alice while she had sent x. And since y was
also a message, Bob could completely misinterpret Alice’s message.

We would like codes to have large distance so that it takes a lot of cor-
ruption to actually alter one codeword into another. From this, we have a
simple observation.

Observation 1. Let d be the distance of a code C. Then the code is d−1-detectable,
or if the channel corrupts atmost d − 1 letters of the message, then the other party
can detect that the code word has been corrupted.

Proof. As we remarked earlier, since the distance is d, it takes atleast d cor-
ruptions to change one code word into another. Therefore, on any code
word x, something less than d corruptions cannot change it to another code-
word. Therefore, if the string Bob received was a codeword, then he knows
for sure that Alice had sent that string for sure.

Therefore, if the channel changed atmost t bits, any code with distance
atleast t + 1 would allow error detection. But of course, if Bob received “I
hobe you”, he knows that the message was corrupted but he has no way
of determining whether the message was “I love you” or “I hate you”. In
order to correct t errors, you need a more than just a distance of t + 1.

Observation 2. If C is a code of distance atleast 2t + 1, then any message that
is corrupt by atmost t bits can be recovered. Or in other words, the code is t-
correctable.

Suppose Alice had sent some codeword x and let us say this was altered
through the channel and Bob received it as y. Given that atmost t bits were
altered, we want to show that Bob can infact recover the message.

2

Since Bob knew that atmost t bits are corrupted, he looks at all code-
words at a hamming distance of atmost t from y.1 Now clearly x is a code-
word that is present at a hamming distance at most t from y. If x was the
only such code word, then Bob knows for sure that the message Alice sent
has to be x.

But it must be the case that x is the only such codeword. Suppose not,
say there was some other codeword x′ 6= x at a distance atmost t from y.
Now since x and y differ at most t places and y and x′ at atmost t, by the
triangle inequality x and x′ differ at atmost 2t places. But this contradicts
the assumption that the distance of the code is atleast 2t + 1.

Or in other words, if you want to move from one codeword to another
through corruption, you need to corrupt 2t+1 bits atleast. And therefore if
you corrupt just t place, you are definitely closer to where you started from
than any other codeword.

But of course, it does not make sense to look at all code words of dis-
tances less than t from y to decode. Even besides that, how do we even
figure out if a given word is a code word or not. So two important proper-
ties that we would want the code to have is efficient detection of codewords
and effecient decoding.

2 Linear Codes

Recall that a block code C is an arbitrary subset of Σn. These codes could
have no structure underlying them and that inherently makes detecting if
a string is a codeword hard. Hence comes the idea for linear codes.

Since our alphabet is finite, we shall assume that the alphabet is infact
a finite field Fq. Now our space is Fn

q which is infact a vector space over Fq

of dimension n. Instead of looking at arbitrary subsets of this space, linear
codes restrict themselves to subspaces of Fn

q .

Definition 4. A [n, k, d]q linear code C such that C is a k-dimensional subspace
of Fn

q and has distance d.
That is, if x, y ∈ C then so is αx + βy for all α, β ∈ Fq.

To intuitively understand the parameters, we would be encoding mes-
sages of length k with codes of length n so that it can error-correct up to
d/2 errors. Thus we want k to be as close to n as possible and also try to

1can be thought of as putting a ball of radius t around y

3

make d large. It is not possible to arbitrarily increase both but we want
some reasonable values.

To see an example of a linear code, consider our field to be F2. Then if
C = {(0, 0, 0), (1, 1, 1)} then this is a [3, 1, 3]2 linear code.

Definition 5. The weight of any string x is the number of indices of x that have a
1 in it.

wt(x) = |{i : xi = 1}|

Then we have the following easy observation.

Observation 3. If C is a linear code, then

d(C) = min
x 6=0

wt(x)

Proof. By definition, d(C) = d(x, y) but d(x, y) = wt(x − y). Note that since
we are looking at a linear code, x, y ∈ C also tells us that x−y ∈ C. Therefore,
for every x 6= y we have a corresponding 0 6= z = x − y that is a codeword
whose weight is exactly the distance between x and y.

2.1 Detection

Suppose we have a linear code C and given a string x we want to check if
this is in the code or not. Since we know that our code is a subspace of Fn

q ,
we can represent C using a basis. Let us say we are looking at [n, k,]q codes
and our basis be {b1, b2, · · · , bk} where each bi ∈ Fn

q .
The idea is that we want to construct a matrix H such that Hx = 0̄ if

and only if x ∈ C. Thus, in terms of tranformations, we want a linear map
H such that the kernel of this map is precisely (nothing more, nothing less)
C. The question is, how do we find such a matrix?

We first find a transformation that achieves what we want and then try
and figure out what the matrix of the transformation should look like. We
have a basis {b1, b2, · · · , bk} for our code. Let us extend this first to a basis
{b1, b2, · · · , bn} of Fn

q .
Thus, every vector v ∈ Fn

q can be written as a unique linear combination
of bis. We do the obvious transformation: map all bi where i ≤ k to 0 and
the rest of the basis elements to identity.

v = α1b1 + α2b2 + · · · + αkbk + αk+1bk+1 + · · · + αnbn

Hv = αk+1bk+1 + · · · + αnbn

4

Now a vector v will be in the kernel of H if and only if all αi where i > k
is zero. Then v has to be a linear combination of just the basis elements of
C and therefore must itself be a codeword.

Now comes the question of how to compute the matrix of transforma-
tion of H. Suppose it turns out that that the basis we chose was actually the
standard basis {e1, e2, · · · , en} . Then what can we say about the matrix H?
Then clearly, it should map all vector (α1, α2, · · · , αn) to (0, 0, · · · , 0, αk+1, · · · , αn).
And this matrix is just

Ĥ =
[

0 0
0 I

]
n×n

where the I is the identity matrix of order n − k. But it’s unlikely that we
start with such a nice basis. The good news is that we can easily move
from one basis to another. We just want a way to send each bi to ei so that
we can then use the transformation Ĥ to send it to 0 if i ≤ k and keep it
non-zero otherwise. Instead of sending bi to ei, the other direction is easy
to compute.

What if we ask for a matrix B such that Bei = bi? This is easy because
Bei is just the i-th column of the matrix B. Thus the matrix is just [b1b2 · · · bn]
where each bi is now expanded as a column vector; just place each basis
element side by side as a column vector and that is the transformation.
Now that we have a matrix B that sends ei to bi, how do we get a matrix
that sends bi to ei? Take B−1!

Now look at ĤB−1 as a transformation. ĤB−1bi = Ĥei which is 0 if
i ≤ k and ei otherwise. Thus this matrix ĤB−1 is the matrix we were after:
a matrix whose kernel is precisely the code C.

5

	Codes
	Block Codes

	Linear Codes
	Detection

