
CS681 Computational Number Theory

Lecture 15 and 16: BCH Codes: Error Correction
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

In these two lectures, we shall see how error correction is done in a BCH
code.

(most of the class was spent on discussing the solutions for the mid-
semester examination)

1 Error Correction in a BCH Code

Recall that a cyclic code is one where the space of codewords is also in-
variant under cyclic shifts. Last class we identified this with ideals of the
ring Fq[X]/(Xn − 1). We also said that this is an principle ideal domain
when gcd(n, q) = 1 and therefore every cyclic code can be identified by the
polynomial that generates the ideal.

For the BCH code, we pick a principle root of unity ζ and the generator
of code is chosen to be the least degree polynomial that has ζ, ζ2, · · · , ζd−1

and we argued that the distance of that cyclic code is guaranteed to be at
lease d.

How about decoding? Suppose Alice sent a message and that was cor-
rupted at atmost bd

2c places, can Bob recover the message efficiently? The
answer is yes, and we shall see how. Most of the details shall be done in
the next class.

1.1 The Locator and Correction Polynomials

Alice is going to send some polynomial whose degree is bounded by n− 1,
say c(X) = c0 + c1X + · · · + cn−1X

n−1 and Bob would receive c(X) +
e(X) where e is the error. Suppose the channel can corrupt at most bd−1

2 c
coefficients, we know that the number of non-zero coefficients of e(X) is
less than d/2. Let M = {i : ei 6= 0} . And hence, |M | = t ≤ d−1

2 .

1

Now look at the two polynomials:

u(Y) =
∏
i∈M

(1− ζiY)

v(Y) =
∑
i∈M

eiζ
iY

∏
i6=j∈M

(1− ζjY)

The polynomial u(X) is called the locator polynomial and v(Y) is called the
correction polynomial. Suppose we have u(Y), how do we find out which
places of the message are corrupted? This is clear because u(ζ−i) = 0 if
and only if i ∈ M and therefore by just checking u(ζ−i) for all i, we would
know precisely at what places the corruption happened.

OK, now we know where the corruption has happened. How do we
find out what that coefficient of e(Y) was so that we can recover the mes-
sage? This is where v(Y) comes in. Notice that v isn’t too different from the
formal derivative of u. By the chain rule, we can show that

u′(Y) = −
∑
i∈M

ζi
∏

i6=j∈M

(1− ζjY)

So first find out, using the detection polynomial, the places at which the
error has occured. Suppose i was one of the places, what can we say about
v(ζ−i)? Note that every term in the sum other than i will be killed as there
would be the term (1− ζiY) in the product that is zero when Y = ζ−i. And
therefore,

v(ζ−i) = eiζ
iζ−i

∏
i6=j∈M

(1− ζjζ−i)

= ei

∏
i6=j∈M

(1− ζj−i)

What about u′(ζ−i)? For the same reason, the only surviving term in the
summation would be the one with i. Therefore,

v(ζ−i) = ei

∏
i6=j∈M

(1− ζj−i)

u′(ζ−i) = −ζi
∏

i6=j∈M

(1− ζj−i)

=⇒ v(ζ−i)
u′(ζ−i)

= −ei

ζi

2

And we are done! Running over all detected places, we can completely
recover the polynomial e(X) and therefore the actual message.

All that’s left to do is find out how to compute the polynomials u(Y)
and v(Y). Once we do that, we can locate the errors and also correct them.
Finding these two polynomials is the key.

1.2 Computing the Polynomials

There are two important things to note here.

• We don’t need to find u and v exactly. Any αu and αv, where α is
some constant, would do. We just want u and v up to a scale.

• The degree of u and v is |M | = t ≤ d−1
2

And remember, all that Bob has is the knowledge that the code is con-
structed from ζ, ζ2, · · · , ζd−1 and the received word r(X). From this, he
needs to compute u(Y) and v(Y) to error-correct.

First, let us look at the following rational function

w(Y) =
v(Y)
u(Y)

=
∑
i∈M

eiζ
iY

1− ζiY

At this point, let us make an outrageous mathematically incorrect Tay-
lor expansion but justify it later in the lecture. Note that we have a term of
the form 1

1−ζiY
and we are going to expand this as a geometric series.1

1mathematically minded people are requested to clench their fists and tolerate this for a
while. it will be justified soon.

3

Then, we have

w(Y) =
∑
i∈M

eiζ
iY

1− ζiY

=
∑
i∈M

eiζ
iY

(∞∑
k=0

(ζiY)k

)

=
∞∑

k=0

Y k+1

(∑
i∈M

ei(ζi)kζi

)

=
∞∑

k=0

Y k+1

(∑
i∈M

ei(ζk+1)i

)

=
∞∑

k=0

Y k+1e(ζk+1)

=
∞∑

k=1

Y ke(ζk)

The first d − 1 coefficient of w(Y) can be found out easily as we can
find e(ζk) easily. Bob has the received code word r(X) = c(X) + e(X). He
doesn’t know what e(X) or c(X) is but all he needs to do is compute r(ζk).
Note that since c is the message, c is a multiple of g(X) and ζk is a root of g
and hence c. Therefore, r(ζk) = c(ζk) + e(ζk) = e(ζk).

Justifying the Mathematical Sin

Of course, you just cannot write every 1
1−x as 1+x+x2 + · · · . For example,

1
1−2 is certainly not 1 + 2 + 22 + · · · . So how do we justify it here?

Now the first thing is that we cannot hope to do anything better than
d − 1 coefficients of w(Y) since we just know that c(X) has ζ, ζ2, · · · , ζd−1

as roots. Therefore, we shall focus on finding w(Y) up till the (d − 1)-th
coefficient. By this, we just mean that we are finding w(Y) mod Y d, which
is just making Y d = 0 in the expression.

Now note that 1− (ζiY)d = 1− ζidY d = 1 and also that (1− x) divides
(1 − xd) and hence (1 − ζiY) divides (1 − (ζiY)d) = 1. Which means that
there exists some polynomial p(Y) such that (1 − ζiY)p(Y) = 1 and hence
(1− ζiY) is invertible modulo Y d.

4

Hence, we can rework as follows:

w(Y) =
∑
i∈M

eiζ
iY

1− ζiY
mod Y d

=
∑
i∈M

eiζ
iY ·

(
1− ζiY

)−1 mod Y d

and it is easy to check that the inverse of (1−ζiY) modulo Y d is
∑d−1

k=0(ζ
iY)k

and hence we have the rest of the equations going through.

w(Y) =
d−1∑
k=1

Y ke(ζk) mod Y d

OK, we now have w(Y), how do we use that to get u and v? The idea is
to solve a system of equations to get u and v. Remember that both u and v
are degree t polynomials and moreover the constant term in u is 1 and the
constant term in v is 0.

Here we shall give an intuitive reasoning and not go into the details of
the method. Suppose u(Y) = 1+u1Y +· · ·+utY

t and v(Y) = v1Y +· · · vtY
t,

then we can just think of coefficients as some parameters to evaluate. Using
the values of w(Y) mod Y k for all 1 ≤ k ≤ d, we can solve for ui, vi by writ-
ing a system of equations. And since the number of parameters we need to
solve for is 2t and this is less than or equal to the number of equations we
have, it can be done efficiently.

There is infact another approach to solve for u and v using something
called the Berlekamp-Welch Decoder. We won’t be covering this in the
course but just to tell you that the locator and corrector polynomials can
be computed efficiently from the received word r(X).

Hence using such efficient algorithms we can compute u and v. Then
we just use u to locate the errors and then v to correct them at those places.
And from the analysis, it is clear that we can’t hope to correct more than t
errors as we would then have more parameters than equations and there
may not exist a solution to that set of equations.

Thus, a BCH code of designed d can be error corrected if the number of
errors is bounded above by bd−1

2 c.

5

	Error Correction in a BCH Code
	The Locator and Correction Polynomials
	Computing the Polynomials

