
CS681 Computational Number Theory

Lecture 10: Distinct Degree Factoring
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Last class we left of with a glimpse into distant degree factorization. This
class, we shall look at the details of it and also how it can be used as an
irreducibility test.

1 DDF: The Problem

We are given a polynomial f over a finite field Fp of degree say n. We want
to factor them in to degree 1 factors, degree 2 factors etc. To make this more
explicit, let us assume that f factorizes as

f = g11g12 · · · g1m1g21 · · · gdmd

where each gij is an irreducible factor of f of degree i. Hence given f , we
want to return

∏
j gij for each i. That is, return the factor of f that is the

product of all degree i irreducible factors of f. And we want to do this
for all i. This is called distinct degree factorization. We want an efficient
algorithm for this.

But before we start thinking of algorithms, what do we mean by effi-
cient? It is the usual ’polynomial time in input length’ but what is the input
length? We are looking at f(X) = Fp[X] and each coeffiecient of the poly-
nomial is from Fp. And since Fp contains just p elements, we can encode
them in binary using log p bits. Hence the input size is about n log p. Thus
we are interested in algorithms that have running time of (n log p)c for some
constant c.

2 Extracting Square-free Parts

When we said that f factorizes as g11 · · · gdmd
, it is very much possible that

there are some gij = gik or in other words the square of gij divides f. The
first step of any factoring algorithm is to remove such multiple factors and

1

make f square free (make sure that f is not divisible by any square).

Suppose we were looking at polynomials over Z[X] or something. Then
we have a very nice way of checking for such multiple factors. We know
that if f has a repeated root α , then the derivative f ′ has α as a root as well.
Infact, if (x−α)m divided f then (x−α)m−1 will divide f ′. And hence, the
gcd of f and f ′ will have (x − α)m−1 as a factor. Thus, we can divide f by
this gcd and get rid of higher multiplicity terms.

But in the case of Z[X], we had an interpretation of real numbers, limits
and hence we could define what a derivative is. But when it comes to finite
fields, what does differentiation mean? How can we use this technique to
get extract the square-free part?

Note that we don’t need the notion of a derivative as a tangent or some-
thing. That is where the limits come in. What we need is a condition where
if some gm divides f then gm−1 should divide f ′ for the f ′ that we are going
to define. Thus, since we are just in the realms of polynomials, we shall use
the rules of differentiation as just a formula.

Thus let D be a map that sends Xm to mXm−1. Now extend this linearly
to all polynomials to get

D
(
a0 + a1X + a2X

2 + · · · amXm
)

= a1 + 2a2X + · · ·mamXm−1

Now, we leave the following things to be proven as an exercise.

Exercise

1. D(f + g) = D(f) + D(g)

2. D(fg) = fD(g) + gD(f)

3. D(fm) = mfm−1D(f)

4. Theorem: If h is a factor of f such that hm | f then hm−1 | g. And
further, if hm is the highest power of h that divides f then hm−1 is the
highest power of h that divides f ′.

Once we have these properties, we can extract the square-free part of f
easily. Given an f construct the formal derivative f ′. Let g = gcd(f, f ′). The
polynomial f/g consists is the square free extraction of f.

2

There is, however, a small catch here. But we shall get back to it in the
end of the class and discuss it in the next class in detail. For the moment,
let us proceed with distinct degree factorization.

3 Distinct Degree Factorization

Given f ∈ Fp[X] of degree n, we want to get the distant degree factoriza-
tion of f. That is, we want to get g1, g2, · · · , gn such that f = g1g2 · · · gn

where each g is the product of all irreducible factors of f of degree i. And
we want to do this efficiently.

The key idea is the formula we proved last class:

Xpm − X =
∏

f∈Irr(Fp,d)
d|m

f(X)

Firstly, let us look at the case when m = 1. Then Xp − 1 is the product
of all irreducible polynomials over Fp of degree 1. And thus, in particular,
it contains the degree 1 irreducible factors of f within it.

Thus, g1 = gcd(f,Xp−X) will be the product of all degree 1 irreducible
factors of f as Xp−X has just degree 1 irreducible factors and all those that
divide f will be a part of the gcd. Thus, we have obtained the required g1.

Now, call f2 = f/g1 and now let g2 = gcd(f2, X
p2 − X) and this will have

precisely all degree 2 irreducible factors of f (degree 1 factors won’t appear
since we have removed all degree 1 factors by dividing by g1). Thus, we
can repeat this procedure.

This is a naive algorithm and has a pretty serious problem. The trou-
ble is that the algorithm would have to compute gcd(fi, X

pi − X) which is
a HUGE degree polynomial. We want our running time as (n log p)c but
this naive algorithm takes about O(p) time! And this is definitely not ac-
ceptable since even finding all linear irreducible factors might take O(p)
time! We definitely need to change this. But the polynomial Xpi − X is a
nice polynomial and hence allows a nice simple trick to make the algorithm
polynomial time.

Let us look at the gcd algorithm. The first step is to compute Xpi −
X mod fi and the problem with this is that the degree of the polynomial is
too large to apply the naive algorithm. But we can do far better in the case
of this special polynomial.

3

Note that Xpi − X mod fi = Xpi
mod fi − X mod fi and the difficulty

was in computing Xpi
mod fi. This can be done quite efficiently using the

technique of repeated squaring.

3.1 Repeated Squaring

In general, we have a polynomial f of degree n and we want to calculate
XM mod f in time (n log M)c for some constant c. The idea is pretty simple.

Firstly assume M to be a power of 2. Then we can do the following.
Start with X , and square it. And square it again and so on. The moment
the degree goes beyond n, take it modulo f to reduce it’s degree back to
less than n. And continue this squaring process, for log M steps. Thus, we
would have computed XM mod f in time (n log M)c.

Now what do we do for M that is not a power of two? The answer
is simple again. Just look at the binary representation of M . Say m =
b0 + b12 + b222 + · · · bl2l. Then

XM = Xb0(Xb1)2
1
(Xb2)2

2 · · · (Xbl)2
l

And since each bi is either 1 or 0, Xbi is either 1 or X. Thus, we can just
compute X2i

mod f for 0 ≤ i ≤ log M and multiply all those residues that
have bi as 1.

Algorithm 1 EVALUATE XM mod f USING REPEATED SQUARING

1: Let M = b0 + b12 + · · · bl2l, the binary representation of M, where l =
blog Mc.

2: g0 = 1 and g = b0X.
3: for i = 1 to l do
4: gi = (gi−1)2 mod f
5: if bi = 1 then
6: g = g · gi mod f
7: end if
8: end for
9: return g

Now, with this repeated squaring algorithm, we can do distinct degree
factorization. The algorithm is given at the end of the lecture.

4

4 A Catch and a Hint

First let us get to the catch that we had mentioned earlier. Our method for
extracting the square free part of f involved taking the formal derivative
and then the gcd of f with f ′. But strange things can happen in a finite
field. For example, let us take the polynomial f(X) = X2p − 3Xp + 5. The
formal derivative is 2pX2p−1 − 3pXp−1 which is 0 in Fp! What do we do
now?

It is easy to see that the derivative can become 0 if the only surviving
terms of the polynomial have degree that’s a multiple of a prime. Then this
polynomial f(X) can be thought of as g(Xp) and we can go on to do our
algorithm for g instead of f. In our example, g(X) = X2 − 3X + 5 which
is well behaved. All we need to do is get the factors of g and replace every
occurance of X by Xp. And more over, since we are in Fp, it is easy to check
that f(X) = g(Xp) = (g(X))p.

So much for the small catch. Now here is a hint. The algorithm for
distinct degree factorization immediately gives us an algorithm to test if a
given polynomial over Fp[X] is irreducible. The reduction is very straight-
forward and the students are encouraged to think about it. We shall discuss
this in the next class.

Algorithm 2 DISTINCT DEGREE FACTORIZATION

Input: f(X) ∈ Fp[X] of degree n.
1: f0 = f.
2: for i = 1 to n do
3: Using repeated squaring, compute si = Xpi

mod fi−1

4: Compute gi = gcd(fi−1, si − X).
5: fi = fi−1/gi

6: end for
7: return {g1, g2, · · · , gn} .

5

	DDF: The Problem
	Extracting Square-free Parts
	Distinct Degree Factorization
	Repeated Squaring

	A Catch and a Hint

