
Reachability in vector addition systems
Kosaraju’s proof, exposited in “The Mathematics of Petri

Nets” by C. Reutenauer (translated by I. Craig)

Kamal Lodaya and M. Praveen

The Institute of Mathematical Sciences, Chennai

Formal Methods Update Meeting, IIT Roorkee, July 2009

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

1p2

p1

1p3

t1

p4

t2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

1p2

p1

1p3

t1

p4

t2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

p2

1 p1

1p3

t1

p4

t2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

p2

1 p1

1p3

t1

p4

t2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

p2

1 p1

p3

t1

1

p4

t2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

p2

1 p1

p3

t1

1

p4

t2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

2p2

p1

p3

t1

1

p4

t2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

2p2

p1

p3

t1

1

p4

t2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

2p2

p1

1p3

t1

p4

t2

1

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

2p2

p1

1p3

t1

p4

t2

1

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

p2

2 p1

1p3

t1

p4

t2

1

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

p2

2 p1

1p3

t1

p4

t2

1

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

p2

2 p1

p3

t1

1

p4

t2

1

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

p2

2 p1

p3

t1

1

p4

t2

1

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

4p2

p1

p3

t1

1

p4

t2

1

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

4p2

p1

p3

t1

1

p4

t2

1

p5

Figure: Hopcroft and Pansiot’s example Petri net

Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.

t4

t3

4p2

p1

1p3

t1

p4

t2

2

p5

Figure: Hopcroft and Pansiot’s example Petri net

Reachability problem

Starting from

1

1

Mi =


0
1
1
0
0


, can we reach

2n−3

n − 2

1
n

Mf =


n − 2
2n−3

0
1
n


?

Work on decidability of the reachability problem

I E.W.Mayr gave an algorithm for the general Petri net
reachability problem in 1981/1984.

I S.R.Kosaraju and J.L.Lambert simplified the proofs in 1982
and 1992.

I No upper bound known for the above algorithm. In the
worst case, it requires more than primitive recursive space.

I R.J.Lipton gave an exponential space lower bound for the
general Petri net reachability problem.

I J. Leroux has published a new algorithm that uses a
different approach, but proof of correctness depends on
ideas from the earlier algorithm.

I K. Reinhardt extended the idea to decide reachability in
Petri nets where inhibitor arcs occur in a restricted way.

A naive approach - reachability graph

Start with the initial marking and grow a tree of reachable
markings.

M0

M1

M3 M4

M2

M5 M6

Figure: Reachability graph

Another naive approach - incidence matrix

N =

p1
p2
...

pm


t1 t2 · · · tn
−1
+2

0



Another naive approach - incidence matrix

I State equation
M0(p1)
M0(p2)

...
M0(pm)

+


t1 t2 · · · tn
− 1
+ 2

0




x1
x2
...

xn

 =


Mf (p1)
Mf (p2)

...
Mf (pm)



I If M0
σ−→ Mf , the Parikh vector σ will satisfy the above

equation.
I The converse need not be true.
I Try all solutions.
I If vector I is such that N× I = 0, there will be infinitely

many solutions.
I If N× I = 0, I is called a T -invariant.

Another naive approach - incidence matrix

I State equation
M0(p1)
M0(p2)

...
M0(pm)

+


t1 t2 · · · tn
− 1
+ 2

0




x1
x2
...

xn

 =


Mf (p1)
Mf (p2)

...
Mf (pm)



I If M0
σ−→ Mf , the Parikh vector σ will satisfy the above

equation.
I The converse need not be true.
I Try all solutions.
I If vector I is such that N× I = 0, there will be infinitely

many solutions.
I If N× I = 0, I is called a T -invariant.

Another naive approach - incidence matrix

I State equation
M0(p1)
M0(p2)

...
M0(pm)

+


t1 t2 · · · tn
− 1
+ 2

0




x1
x2
...

xn

 =


Mf (p1)
Mf (p2)

...
Mf (pm)



I If M0
σ−→ Mf , the Parikh vector σ will satisfy the above

equation.
I The converse need not be true.
I Try all solutions.
I If vector I is such that N× I = 0, there will be infinitely

many solutions.
I If N× I = 0, I is called a T -invariant.

Another naive approach - incidence matrix

I State equation
M0(p1)
M0(p2)

...
M0(pm)

+


t1 t2 · · · tn
− 1
+ 2

0




x1
x2
...

xn

 =


Mf (p1)
Mf (p2)

...
Mf (pm)


I If M0

σ−→ Mf , the Parikh vector σ will satisfy the above
equation.

I The converse need not be true.
I Try all solutions.
I If vector I is such that N× I = 0, there will be infinitely

many solutions.
I If N× I = 0, I is called a T -invariant.

Another naive approach - incidence matrix

I State equation
M0(p1)
M0(p2)

...
M0(pm)

+


t1 t2 · · · tn
− 1
+ 2

0




x1
x2
...

xn

 =


Mf (p1)
Mf (p2)

...
Mf (pm)


I If M0

σ−→ Mf , the Parikh vector σ will satisfy the above
equation.

I The converse need not be true.

I Try all solutions.
I If vector I is such that N× I = 0, there will be infinitely

many solutions.
I If N× I = 0, I is called a T -invariant.

Another naive approach - incidence matrix

I State equation
M0(p1)
M0(p2)

...
M0(pm)

+


t1 t2 · · · tn
− 1
+ 2

0




x1
x2
...

xn

 =


Mf (p1)
Mf (p2)

...
Mf (pm)


I If M0

σ−→ Mf , the Parikh vector σ will satisfy the above
equation.

I The converse need not be true.
I Try all solutions.

I If vector I is such that N× I = 0, there will be infinitely
many solutions.

I If N× I = 0, I is called a T -invariant.

Another naive approach - incidence matrix

I State equation
M0(p1)
M0(p2)

...
M0(pm)

+


t1 t2 · · · tn
− 1
+ 2

0




x1
x2
...

xn

 =


Mf (p1)
Mf (p2)

...
Mf (pm)


I If M0

σ−→ Mf , the Parikh vector σ will satisfy the above
equation.

I The converse need not be true.
I Try all solutions.
I If vector I is such that N× I = 0, there will be infinitely

many solutions.
I If N× I = 0, I is called a T -invariant.

Idea of the algorithm

I If something is finite, hold on to it!

I All solutions to the state equation M0 + NX = Mf are
contained in B + J∗, where

I B = {B1, . . . ,Br} is the finite set of minimal solutions.
I J = {I1, . . . , Is} is a finite set of T -invariants, that generates

all invariants.
I If the co-ordinate corresponding to a transition t is 0 in all

the vectors I1, . . . , Is, then it is not part of any T -invariant.
I t may be used at most w times, determined by B1, . . . ,Br .
I Create w new Petri nets N1, . . . ,Nw , where Ni allows t to

be fired exactly i times.

Idea of the algorithm

I If something is finite, hold on to it!
I All solutions to the state equation M0 + NX = Mf are

contained in B + J∗, where
I B = {B1, . . . ,Br} is the finite set of minimal solutions.
I J = {I1, . . . , Is} is a finite set of T -invariants, that generates

all invariants.

I If the co-ordinate corresponding to a transition t is 0 in all
the vectors I1, . . . , Is, then it is not part of any T -invariant.

I t may be used at most w times, determined by B1, . . . ,Br .
I Create w new Petri nets N1, . . . ,Nw , where Ni allows t to

be fired exactly i times.

Idea of the algorithm

I If something is finite, hold on to it!
I All solutions to the state equation M0 + NX = Mf are

contained in B + J∗, where
I B = {B1, . . . ,Br} is the finite set of minimal solutions.
I J = {I1, . . . , Is} is a finite set of T -invariants, that generates

all invariants.
I If the co-ordinate corresponding to a transition t is 0 in all

the vectors I1, . . . , Is, then it is not part of any T -invariant.
I t may be used at most w times, determined by B1, . . . ,Br .

I Create w new Petri nets N1, . . . ,Nw , where Ni allows t to
be fired exactly i times.

Idea of the algorithm

I If something is finite, hold on to it!
I All solutions to the state equation M0 + NX = Mf are

contained in B + J∗, where
I B = {B1, . . . ,Br} is the finite set of minimal solutions.
I J = {I1, . . . , Is} is a finite set of T -invariants, that generates

all invariants.
I If the co-ordinate corresponding to a transition t is 0 in all

the vectors I1, . . . , Is, then it is not part of any T -invariant.
I t may be used at most w times, determined by B1, . . . ,Br .
I Create w new Petri nets N1, . . . ,Nw , where Ni allows t to

be fired exactly i times.

Using a transition boundedly many times

T \ {t}

T \ {t}t t T \ {t}t
p1 q1 p2 q2 pw qw

Figure: A chain of Vector Addition System with States

I pi are entry states and qi are exit states.
I With each transition t is associated a vector effect(t) that

denotes its effect on the places of the Petri net.
I We need to check if starting from (p1,M0), we can reach

(qw ,Mf). This is a chain of Constrained Vector Addition
System with States (CVASS chain).

I Number of transitions in each CVASS of the chain is strictly
less than the number of transitions in the original CVASS.

Using a transition boundedly many times

T \ {t} T \ {t}t

t T \ {t}t
p1 q1 p2 q2 pw qw

Figure: A chain of Vector Addition System with States

I pi are entry states and qi are exit states.
I With each transition t is associated a vector effect(t) that

denotes its effect on the places of the Petri net.
I We need to check if starting from (p1,M0), we can reach

(qw ,Mf). This is a chain of Constrained Vector Addition
System with States (CVASS chain).

I Number of transitions in each CVASS of the chain is strictly
less than the number of transitions in the original CVASS.

Using a transition boundedly many times

T \ {t} T \ {t}t t T \ {t}t

p1 q1 p2 q2 pw qw

Figure: A chain of Vector Addition System with States

I pi are entry states and qi are exit states.
I With each transition t is associated a vector effect(t) that

denotes its effect on the places of the Petri net.
I We need to check if starting from (p1,M0), we can reach

(qw ,Mf). This is a chain of Constrained Vector Addition
System with States (CVASS chain).

I Number of transitions in each CVASS of the chain is strictly
less than the number of transitions in the original CVASS.

Using a transition boundedly many times

T \ {t} T \ {t}t t T \ {t}t
p1 q1 p2 q2 pw qw

Figure: A chain of Vector Addition System with States

I pi are entry states and qi are exit states.

I With each transition t is associated a vector effect(t) that
denotes its effect on the places of the Petri net.

I We need to check if starting from (p1,M0), we can reach
(qw ,Mf). This is a chain of Constrained Vector Addition
System with States (CVASS chain).

I Number of transitions in each CVASS of the chain is strictly
less than the number of transitions in the original CVASS.

Using a transition boundedly many times

T \ {t} T \ {t}t t T \ {t}t
p1 q1 p2 q2 pw qw

Figure: A chain of Vector Addition System with States

I pi are entry states and qi are exit states.
I With each transition t is associated a vector effect(t) that

denotes its effect on the places of the Petri net.

I We need to check if starting from (p1,M0), we can reach
(qw ,Mf). This is a chain of Constrained Vector Addition
System with States (CVASS chain).

I Number of transitions in each CVASS of the chain is strictly
less than the number of transitions in the original CVASS.

Using a transition boundedly many times

T \ {t} T \ {t}t t T \ {t}t
p1 q1 p2 q2 pw qw

Figure: A chain of Vector Addition System with States

I pi are entry states and qi are exit states.
I With each transition t is associated a vector effect(t) that

denotes its effect on the places of the Petri net.
I We need to check if starting from (p1,M0), we can reach

(qw ,Mf). This is a chain of Constrained Vector Addition
System with States (CVASS chain).

I Number of transitions in each CVASS of the chain is strictly
less than the number of transitions in the original CVASS.

Using a transition boundedly many times

T \ {t} T \ {t}t t T \ {t}t
p1 q1 p2 q2 pw qw

Figure: A chain of Vector Addition System with States

I pi are entry states and qi are exit states.
I With each transition t is associated a vector effect(t) that

denotes its effect on the places of the Petri net.
I We need to check if starting from (p1,M0), we can reach

(qw ,Mf). This is a chain of Constrained Vector Addition
System with States (CVASS chain).

I Number of transitions in each CVASS of the chain is strictly
less than the number of transitions in the original CVASS.

Calculating bound on transitions - another way

Ai
pi

M1

qi

M2

Figure: A constrained CVASS

I Consider the regular language L ⊆ A∗i consisting of paths
from pi to qi (ignore the effect on the vector).

I The set of Parikh images of strings in L will be of the form
L = B + J∗.

I A set of vectors of the form B1 + J∗ is called a linear set.
Finite union of linear sets is a semilinear set. Vectors in J
are called periods.

I We need to handle entry and exit constraints also.

Calculating bound on transitions - another way

Ai
pi

M1

qi

M2

Figure: A constrained CVASS

I Consider the regular language L ⊆ A∗i consisting of paths
from pi to qi (ignore the effect on the vector).

I The set of Parikh images of strings in L will be of the form
L = B + J∗.

I A set of vectors of the form B1 + J∗ is called a linear set.
Finite union of linear sets is a semilinear set. Vectors in J
are called periods.

I We need to handle entry and exit constraints also.

Calculating bound on transitions - another way

Ai
pi

M1

qi

M2

Figure: A constrained CVASS

I Consider the regular language L ⊆ A∗i consisting of paths
from pi to qi (ignore the effect on the vector).

I The set of Parikh images of strings in L will be of the form
L = B + J∗.

I A set of vectors of the form B1 + J∗ is called a linear set.
Finite union of linear sets is a semilinear set. Vectors in J
are called periods.

I We need to handle entry and exit constraints also.

Calculating bound on transitions - another way

Ai
pi

M1

qi

M2

Figure: A constrained CVASS

I Consider the regular language L ⊆ A∗i consisting of paths
from pi to qi (ignore the effect on the vector).

I The set of Parikh images of strings in L will be of the form
L = B + J∗.

I A set of vectors of the form B1 + J∗ is called a linear set.
Finite union of linear sets is a semilinear set. Vectors in J
are called periods.

I We need to handle entry and exit constraints also.

Calculating bound on transitions - Contd. . .

I Suppose there are m places to be handled by the vector
and n transitions.

I For a string σ ∈ A∗i , (σ,effect(σ)) is a vector in Zn+m. First
n co-ordinates is the Parikh image of σ and last m
co-ordinates gives the change induced by σ on the places.
This is the extended commutative image eci(σ).

I (0n,M1) + eci(σ) is a vector, which gives
I Parikh image of σ in the first n co-ordinates.
I Final vector reached if σ is fired from M1, in the last m

co-ordinates.
I (0n,M1) + eci(L) is a semilinear set. Intersect it with the

set of vectors (Nn,M2). We will get another semilinear set
that represents Parikh images of paths from pi to qi that
satisfy the constraint.

I If the co-ordinate corresponding to a transition t is 0 in all
the periods of the above semilinear set, t can be used only
boundedly many times.

Calculating bound on transitions - Contd. . .

I Suppose there are m places to be handled by the vector
and n transitions.

I For a string σ ∈ A∗i , (σ,effect(σ)) is a vector in Zn+m. First
n co-ordinates is the Parikh image of σ and last m
co-ordinates gives the change induced by σ on the places.
This is the extended commutative image eci(σ).

I (0n,M1) + eci(σ) is a vector, which gives
I Parikh image of σ in the first n co-ordinates.
I Final vector reached if σ is fired from M1, in the last m

co-ordinates.

I (0n,M1) + eci(L) is a semilinear set. Intersect it with the
set of vectors (Nn,M2). We will get another semilinear set
that represents Parikh images of paths from pi to qi that
satisfy the constraint.

I If the co-ordinate corresponding to a transition t is 0 in all
the periods of the above semilinear set, t can be used only
boundedly many times.

Calculating bound on transitions - Contd. . .

I Suppose there are m places to be handled by the vector
and n transitions.

I For a string σ ∈ A∗i , (σ,effect(σ)) is a vector in Zn+m. First
n co-ordinates is the Parikh image of σ and last m
co-ordinates gives the change induced by σ on the places.
This is the extended commutative image eci(σ).

I (0n,M1) + eci(σ) is a vector, which gives
I Parikh image of σ in the first n co-ordinates.
I Final vector reached if σ is fired from M1, in the last m

co-ordinates.
I (0n,M1) + eci(L) is a semilinear set. Intersect it with the

set of vectors (Nn,M2). We will get another semilinear set
that represents Parikh images of paths from pi to qi that
satisfy the constraint.

I If the co-ordinate corresponding to a transition t is 0 in all
the periods of the above semilinear set, t can be used only
boundedly many times.

Calculating bound on transitions - Contd. . .

I Suppose there are m places to be handled by the vector
and n transitions.

I For a string σ ∈ A∗i , (σ,effect(σ)) is a vector in Zn+m. First
n co-ordinates is the Parikh image of σ and last m
co-ordinates gives the change induced by σ on the places.
This is the extended commutative image eci(σ).

I (0n,M1) + eci(σ) is a vector, which gives
I Parikh image of σ in the first n co-ordinates.
I Final vector reached if σ is fired from M1, in the last m

co-ordinates.
I (0n,M1) + eci(L) is a semilinear set. Intersect it with the

set of vectors (Nn,M2). We will get another semilinear set
that represents Parikh images of paths from pi to qi that
satisfy the constraint.

I If the co-ordinate corresponding to a transition t is 0 in all
the periods of the above semilinear set, t can be used only
boundedly many times.

Constraints at intermediate entry/exit states

A1 A2 Aw
p1

Mi

q1 p2 q2 pw qw

Mft1 t2 tw

Figure: A chain of Vector Addition System with States

I L: language of strings from p1 to qw . For σ ∈ L,
project [A1 ∪ {t1} ∪ · · · ∪ Ai](σ) gives the portion of σ up to
qi .

I effect(project [i](σ)) gives the effect at qi of firing σ at p1.
I (Mi + effect [i](σ),Mi + effect(σ)) is a vector in Z2m — first

m co-ordinates give the result at qi and last m co-ordinates
give the result at qw .

I (Mi + effect [i],Mi + effect)(L) is a semilinear set. Intersect
it with (Nm,Mf). Result is a semilinear set, whose vectors
contain possible results at qi while walking from (p1,Mi) to
(qw ,Mf).

Constraints at intermediate entry/exit states

A1 A2 Aw
p1

Mi

q1 p2 q2 pw qw

Mft1 t2 tw

Figure: A chain of Vector Addition System with States

I L: language of strings from p1 to qw . For σ ∈ L,
project [A1 ∪ {t1} ∪ · · · ∪ Ai](σ) gives the portion of σ up to
qi .

I effect(project [i](σ)) gives the effect at qi of firing σ at p1.

I (Mi + effect [i](σ),Mi + effect(σ)) is a vector in Z2m — first
m co-ordinates give the result at qi and last m co-ordinates
give the result at qw .

I (Mi + effect [i],Mi + effect)(L) is a semilinear set. Intersect
it with (Nm,Mf). Result is a semilinear set, whose vectors
contain possible results at qi while walking from (p1,Mi) to
(qw ,Mf).

Constraints at intermediate entry/exit states

A1 A2 Aw
p1

Mi

q1 p2 q2 pw qw

Mft1 t2 tw

Figure: A chain of Vector Addition System with States

I L: language of strings from p1 to qw . For σ ∈ L,
project [A1 ∪ {t1} ∪ · · · ∪ Ai](σ) gives the portion of σ up to
qi .

I effect(project [i](σ)) gives the effect at qi of firing σ at p1.
I (Mi + effect [i](σ),Mi + effect(σ)) is a vector in Z2m — first

m co-ordinates give the result at qi and last m co-ordinates
give the result at qw .

I (Mi + effect [i],Mi + effect)(L) is a semilinear set. Intersect
it with (Nm,Mf). Result is a semilinear set, whose vectors
contain possible results at qi while walking from (p1,Mi) to
(qw ,Mf).

Constraints at intermediate entry/exit states

A1 A2 Aw
p1

Mi

q1 p2 q2 pw qw

Mft1 t2 tw

Figure: A chain of Vector Addition System with States

I L: language of strings from p1 to qw . For σ ∈ L,
project [A1 ∪ {t1} ∪ · · · ∪ Ai](σ) gives the portion of σ up to
qi .

I effect(project [i](σ)) gives the effect at qi of firing σ at p1.
I (Mi + effect [i](σ),Mi + effect(σ)) is a vector in Z2m — first

m co-ordinates give the result at qi and last m co-ordinates
give the result at qw .

I (Mi + effect [i],Mi + effect)(L) is a semilinear set. Intersect
it with (Nm,Mf). Result is a semilinear set, whose vectors
contain possible results at qi while walking from (p1,Mi) to
(qw ,Mf).

Entry/exit constraints - Contd. . .

I If in the above semilinear set, the entry corresponding to a
co-ordinate j ,1 ≤ j ≤ m is 0 in all periods, that co-ordinate
will never go beyond some bound given by the semilinear
set.

I Such a co-ordinate is said to be constrained at the exit of
i th CVASS, with a bound say w .

I Create w new CVASS chains N1, . . . ,Nw , where Nk puts k
as a constraint in the co-ordinate j at qi .

A1 A2 Aw
p1

Mi

q1 p2 q2

k
...

pw qw

Mft1 t2 tw

Figure: A chain of Constrained Vector Addition System with States

I In each of the w new CVASS chains, number of
unconstrained co-ordinates at exit of i th CVASS has
decreased.

Entry/exit constraints - Contd. . .

I If in the above semilinear set, the entry corresponding to a
co-ordinate j ,1 ≤ j ≤ m is 0 in all periods, that co-ordinate
will never go beyond some bound given by the semilinear
set.

I Such a co-ordinate is said to be constrained at the exit of
i th CVASS, with a bound say w .

I Create w new CVASS chains N1, . . . ,Nw , where Nk puts k
as a constraint in the co-ordinate j at qi .

A1 A2 Aw
p1

Mi

q1 p2 q2

k
...

pw qw

Mft1 t2 tw

Figure: A chain of Constrained Vector Addition System with States

I In each of the w new CVASS chains, number of
unconstrained co-ordinates at exit of i th CVASS has
decreased.

Entry/exit constraints - Contd. . .

I If in the above semilinear set, the entry corresponding to a
co-ordinate j ,1 ≤ j ≤ m is 0 in all periods, that co-ordinate
will never go beyond some bound given by the semilinear
set.

I Such a co-ordinate is said to be constrained at the exit of
i th CVASS, with a bound say w .

I Create w new CVASS chains N1, . . . ,Nw , where Nk puts k
as a constraint in the co-ordinate j at qi .

A1 A2 Aw
p1

Mi

q1 p2 q2

k
...

pw qw

Mft1 t2 tw

Figure: A chain of Constrained Vector Addition System with States

I In each of the w new CVASS chains, number of
unconstrained co-ordinates at exit of i th CVASS has
decreased.

Entry/exit constraints - Contd. . .

I If in the above semilinear set, the entry corresponding to a
co-ordinate j ,1 ≤ j ≤ m is 0 in all periods, that co-ordinate
will never go beyond some bound given by the semilinear
set.

I Such a co-ordinate is said to be constrained at the exit of
i th CVASS, with a bound say w .

I Create w new CVASS chains N1, . . . ,Nw , where Nk puts k
as a constraint in the co-ordinate j at qi .

A1 A2 Aw
p1

Mi

q1 p2 q2

k
...

pw qw

Mft1 t2 tw

Figure: A chain of Constrained Vector Addition System with States

I In each of the w new CVASS chains, number of
unconstrained co-ordinates at exit of i th CVASS has
decreased.

Constrained co-ordinates that are bounded

Ai
pi


k1
K2
ω
...

km

 qi

M2

Figure: A constrained CVASS

I We want to find if within i th CVASS, a co-ordinate can be
bounded.

I Suppose the following sequence of transitions can be

obtained:

 1
2
2

,. . . ,

 5
3
3

,. . . ,

 6
3
3

, where (5,3,3) and

(6,3,3) are in the same state.

Constrained co-ordinates that are bounded

Ai
pi


k1
K2
ω
...

km

 qi

M2

Figure: A constrained CVASS

I We want to find if within i th CVASS, a co-ordinate can be
bounded.

I Suppose the following sequence of transitions can be

obtained:

 1
2
2

,. . . ,

 5
3
3

,. . . ,

 6
3
3

, where (5,3,3) and

(6,3,3) are in the same state.

Bounded co-ordinates - Contd. . .

I A co-ordinate is unbounded iff there is such a “self
covering” sequence. Existence of such sequences is
decidable.

I If we find that a co-ordinate is bounded by say b, we will
“get rid” of that co-ordinate and track its changes through
states instead.
If the first co-ordinate is bounded by 100 and the set of
states in i th CVASS is S, the new set of states will be
S × {0, . . . ,100}. If p t−→ q,effect(t) = (−1, . . . ,2), it will be

replaced by (p, k + 1)
t ′−→ (q, k), effect(t ′) = (0, . . . ,2).

I If while exiting at qi , value of the bounded co-ordinate is to
be k , we will make (qi , k) as the exit state.

Bounded co-ordinates - Contd. . .

I A co-ordinate is unbounded iff there is such a “self
covering” sequence. Existence of such sequences is
decidable.

I If we find that a co-ordinate is bounded by say b, we will
“get rid” of that co-ordinate and track its changes through
states instead.
If the first co-ordinate is bounded by 100 and the set of
states in i th CVASS is S, the new set of states will be
S × {0, . . . ,100}. If p t−→ q,effect(t) = (−1, . . . ,2), it will be

replaced by (p, k + 1)
t ′−→ (q, k), effect(t ′) = (0, . . . ,2).

I If while exiting at qi , value of the bounded co-ordinate is to
be k , we will make (qi , k) as the exit state.

Bounded co-ordinates - Contd. . .

I A co-ordinate is unbounded iff there is such a “self
covering” sequence. Existence of such sequences is
decidable.

I If we find that a co-ordinate is bounded by say b, we will
“get rid” of that co-ordinate and track its changes through
states instead.
If the first co-ordinate is bounded by 100 and the set of
states in i th CVASS is S, the new set of states will be
S × {0, . . . ,100}. If p t−→ q,effect(t) = (−1, . . . ,2), it will be

replaced by (p, k + 1)
t ′−→ (q, k), effect(t ′) = (0, . . . ,2).

I If while exiting at qi , value of the bounded co-ordinate is to
be k , we will make (qi , k) as the exit state.

Bounded co-ordinates - Contd. . .

Ai
(pi , k1)

 k1
k2
k3



(qi , k)

 k1
k ′2
k ′3

  k − k1
0
0



Figure: Bounded co-ordinates

The number of non-rigid co-ordinates has reduced in the i th

CVASS.

Reverse bounded co-ordinates

•
p1 p2

Figure: An unbounded Petri net

I Starting from (1,0), can we reach (1,50)?

I p2 is unbounded. Once we reach (1,51), can we go back
to (1,50)?

I Reverse the arcs, let the original final marking to be
reached be the new initial marking and check for
boundedness.

•
p1

50
p2

Figure: The reversed Petri net

Reverse bounded co-ordinates

•
p1 p2

Figure: An unbounded Petri net

I Starting from (1,0), can we reach (1,50)?
I p2 is unbounded. Once we reach (1,51), can we go back

to (1,50)?

I Reverse the arcs, let the original final marking to be
reached be the new initial marking and check for
boundedness.

•
p1

50
p2

Figure: The reversed Petri net

Reverse bounded co-ordinates

•
p1 p2

Figure: An unbounded Petri net

I Starting from (1,0), can we reach (1,50)?
I p2 is unbounded. Once we reach (1,51), can we go back

to (1,50)?
I Reverse the arcs, let the original final marking to be

reached be the new initial marking and check for
boundedness.

•
p1

50
p2

Figure: The reversed Petri net

Reverse bounded co-ordinates - Contd. . .

I In a CVASS, this amounts to reversing the arrows and
making exit constraints as the new entry constraints.

I Just like an unbounded co-ordinate is due to a self
covering sequence that pumps up the value, a reverse
unbounded co-ordinate is due to a “self destroying”
sequence that pumps down the value.

Will it ever stop? — Size of a CVASS chain

I The size of a CVASS |Ni | is a triple (a,b, c) ∈ N3 where
I a = number of non-rigid co-ordinates,
I b = number of arcs and
I c = number of unconstrained entry and exit co-ordinates.

I The size of a CVASS chain C is
|C| = (|N1|, . . . , |Nw |) ∈ (N3)∗.

I If we start with a CVASS chain of size
(a1,b1, c1), (a2,b2, c2), . . . , (aw ,bw , cw) and expand it using
one of the pro-
cedures we saw earlier, the new CVASS chain will have size
(a1,b1, c1), (a21,b21, c21), . . . , (a2r ,b2r , c2r), . . . , (aw ,bw , cw).

I For any k between 1 and r , (a2k ,b2k , c2k) <lex (a2,b2, c2).

Will it ever stop? — Size of a CVASS chain

I The size of a CVASS |Ni | is a triple (a,b, c) ∈ N3 where
I a = number of non-rigid co-ordinates,
I b = number of arcs and
I c = number of unconstrained entry and exit co-ordinates.

I The size of a CVASS chain C is
|C| = (|N1|, . . . , |Nw |) ∈ (N3)∗.

I If we start with a CVASS chain of size
(a1,b1, c1), (a2,b2, c2), . . . , (aw ,bw , cw) and expand it using
one of the pro-
cedures we saw earlier, the new CVASS chain will have size
(a1,b1, c1), (a21,b21, c21), . . . , (a2r ,b2r , c2r), . . . , (aw ,bw , cw).

I For any k between 1 and r , (a2k ,b2k , c2k) <lex (a2,b2, c2).

Will it ever stop? — Size of a CVASS chain

I The size of a CVASS |Ni | is a triple (a,b, c) ∈ N3 where
I a = number of non-rigid co-ordinates,
I b = number of arcs and
I c = number of unconstrained entry and exit co-ordinates.

I The size of a CVASS chain C is
|C| = (|N1|, . . . , |Nw |) ∈ (N3)∗.

I If we start with a CVASS chain of size
(a1,b1, c1), (a2,b2, c2), . . . , (aw ,bw , cw) and expand it using
one of the pro-
cedures we saw earlier, the new CVASS chain will have size
(a1,b1, c1), (a21,b21, c21), . . . , (a2r ,b2r , c2r), . . . , (aw ,bw , cw).

I For any k between 1 and r , (a2k ,b2k , c2k) <lex (a2,b2, c2).

The computation tree

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

Figure: Computation tree

The computation tree

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

Figure: Computation tree

The computation tree

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

Figure: Computation tree

The computation tree

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗

(N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

(N3)∗ (N3)∗

(N3)∗ (N3)∗ (N3)∗

Figure: Computation tree

Computation tree - Contd. . .

(a,b, c)

(a,b, c)

(a1,b1, c1) (a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31) . . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

Figure: Growth of the infinite path

Computation tree - Contd. . .

(a,b, c)

(a,b, c)

(a1,b1, c1) (a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31) . . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

Figure: Growth of the infinite path

Computation tree - Contd. . .

(a,b, c)(a,b, c)

(a1,b1, c1) (a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31) . . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

Figure: Growth of the infinite path

Computation tree - Contd. . .

(a,b, c)(a,b, c)

(a1,b1, c1) (a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31) . . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

Figure: Growth of the infinite path

Computation tree - Contd. . .

(a,b, c)(a,b, c)

(a1,b1, c1) (a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31) . . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

Figure: Growth of the infinite path

Computation tree - Contd. . .

(a,b, c)(a,b, c)

(a1,b1, c1) (a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31) . . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

(a,b, c)

(a1,b1, c1)

(a11,b11, c11) . . . (a1r ,b1r , c1r)

(a2,b2, c2) (a3,b3, c3)

(a31,b31, c31)

(a311,b311, c311) . . . (a31k ,b31k , c31k)

. . . (a3r ,b3r , c3r)

Figure: Growth of the infinite path

What if everything is infinite?

A1 A2 Aw
p1

Mi

q1 p2

 1
ω
2


q2

 ω
2
3


pw qw

Mft1 t2 tw

Figure: Everything infinite

I Kosaraju’s condition θ: suppose there is a path from
(p1,Mi) to (q1,Mf) and that

I Every internal transition can be used unboundedly many
times,

I Every co-ordinate constrained at entry state is unbounded
and

I Every co-ordinate constrained at exit state is “reverse
unbounded”.

I No more finite things to hold on to. What do we do?

What if everything is infinite?

A1 A2 Aw
p1

Mi

q1 p2

 1
ω
2


q2

 ω
2
3


pw qw

Mft1 t2 tw

Figure: Everything infinite

I Kosaraju’s condition θ: suppose there is a path from
(p1,Mi) to (q1,Mf) and that

I Every internal transition can be used unboundedly many
times,

I Every co-ordinate constrained at entry state is unbounded
and

I Every co-ordinate constrained at exit state is “reverse
unbounded”.

I No more finite things to hold on to. What do we do?

What if everything is infinite? The answer

I If everything is infinite, answer to the reachability question
is yes!

I There is a path from (p1,Mi) to (qw ,Mf), but co-ordinates
may become negative while firing internal transitions.

I Since unconstrained co-ordinates can exceed any value,
choose a path from (p1,Mi) to (qw ,Mf) that assigns high
enough values to all unconstrained co-ordinates.

I What about constrained co-ordinates?
I Pump them up! Use the self covering sequence to reach

high enough values.
I Self covering sequence is not part of the path from (p1,Mi)

to (qw ,Mf), so it will cause some damage. Can we repair
it?

I Yes, by using the self destroying sequence!. This will need
the fact that all transitions can be used unboundedly many
times.

What if everything is infinite? The answer

I If everything is infinite, answer to the reachability question
is yes!

I There is a path from (p1,Mi) to (qw ,Mf), but co-ordinates
may become negative while firing internal transitions.

I Since unconstrained co-ordinates can exceed any value,
choose a path from (p1,Mi) to (qw ,Mf) that assigns high
enough values to all unconstrained co-ordinates.

I What about constrained co-ordinates?

I Pump them up! Use the self covering sequence to reach
high enough values.

I Self covering sequence is not part of the path from (p1,Mi)
to (qw ,Mf), so it will cause some damage. Can we repair
it?

I Yes, by using the self destroying sequence!. This will need
the fact that all transitions can be used unboundedly many
times.

What if everything is infinite? The answer

I If everything is infinite, answer to the reachability question
is yes!

I There is a path from (p1,Mi) to (qw ,Mf), but co-ordinates
may become negative while firing internal transitions.

I Since unconstrained co-ordinates can exceed any value,
choose a path from (p1,Mi) to (qw ,Mf) that assigns high
enough values to all unconstrained co-ordinates.

I What about constrained co-ordinates?
I Pump them up! Use the self covering sequence to reach

high enough values.
I Self covering sequence is not part of the path from (p1,Mi)

to (qw ,Mf), so it will cause some damage. Can we repair
it?

I Yes, by using the self destroying sequence!. This will need
the fact that all transitions can be used unboundedly many
times.

What if everything is infinite? The answer

I If everything is infinite, answer to the reachability question
is yes!

I There is a path from (p1,Mi) to (qw ,Mf), but co-ordinates
may become negative while firing internal transitions.

I Since unconstrained co-ordinates can exceed any value,
choose a path from (p1,Mi) to (qw ,Mf) that assigns high
enough values to all unconstrained co-ordinates.

I What about constrained co-ordinates?
I Pump them up! Use the self covering sequence to reach

high enough values.
I Self covering sequence is not part of the path from (p1,Mi)

to (qw ,Mf), so it will cause some damage. Can we repair
it?

I Yes, by using the self destroying sequence!. This will need
the fact that all transitions can be used unboundedly many
times.

Detailed proof of Sufficiency theorem

I Ei = Set of constrained entry co-ordinates at Ni ,
I Si = Set of constrained exit co-ordinates at Ni and
I Ri = Set of rigid co-ordinates at Ni .

The following morphism gives a semilinear set of extended
commutative images of constrained paths from (P1,Mi) and
(qw ,Mf).

(entry [1],exit [1], . . . ,entry [w],exit [w],Parikh[1], . . . ,Parikh[w])

I First 2m co-ordinates gives the entry and exit co-ordinates
of N1.

I n co-ordinates associated with Parikh[1] gives the Parikh
image of the path in N1.

I If a co-ordinate j /∈ E1, there will be corresponding
non-zero entry in a period. Similarly for S1.

Detailed proof of sufficiency theorem - Contd. . .

I Since all internal transitions can be used unboundedly
often, every internal transition will have a corresponding
non-zero entry in a period.

I Let c be a “constant” vector in the above semilinear set
and q be the sum of all the “witnessing” periods.

I For any k ∈ N, c + kq is a vector corresponding some
constrained walk from (p1,Mi) to (qw ,Mf).

I We can assign large values to k to get large values at
unconstrained co-ordinates and to use internal transitions
large number of times.

I Now we concentrate on building a constrained positive
path in Ni .

I Let σ(j) denote the Parikh vector of the path in Ni given by
c + jq.

I Let xi (yi) be the entry (exit) co-ordinate given by the
constant vector c.

Detailed proof of sufficiency theorem - Contd. . .

I Let ui (wi) be the entry (exit) constraints given by q.

I (pi , xi)
σ(0)−−→ (qi , yi) and (pi , xi + ui)

σ(1)−−→ (qi , yi + wi).

I (pi , xi + ui)
σ(0)−−→ (qi , yi + ui)

σ−→ (qi , yi + wi), where
σ(1) = σ(0) + σ.

I (qi ,ui)
σ−→ (qi ,wi). effect(σ) = wi − ui .

I Let σ1 be the pumping up sequence that pumps up
constrained co-ordinates: (pi , xi

σ1⇒Ei xi + Γi),
Γi �Ei≥ (1, . . . ,1).

I Let σ4 be the pumping down sequence:
(qi , yi + ∆i)

σ4⇒Si (qi , yi), ∆i �Si≥ (1, . . . ,1).
I Let δ ≥ 1 be an integer greater than the absolute value of

all co-ordinates of Γi ,∆i , σ1 + σ4.
I Consider the sequence σ3 such that σ3 = δσ − σ1 − σ4.

Detailed proof of sufficiency theorem - Contd. . .

I Consider the “magic sequence of ` repetitions”
ms(`) = σ`1σ(0)σ`3σ

`
4.

I If k = δ`, then

(pi , xi + kui)
σ`

1⇒(pi , xi + kui + `Γi)
σ0⇒(qi , yi + kui + `Γi)

σ`
3⇒

(qi , yi + kwi + `∆i)
σ`

4⇒(qi , yi + kwi).

I All the walks above can be made positive by choosing high
enough value for k .

Conclusion

I Reachability in Petri nets is decidable.
I If some aspect of the net is bounded, unfold the net.

Continue checking for boundedness of aspects in the
expanded net.

I Termination of this process is shown by carefully defining a
size and showing that it is well founded.

I If all aspects of the net are unbounded, conclude that
answer to the reachability question is positive.

I The fact that all aspects of the net are unbounded can be
expressed in terms of linear algebraic relations.

Thank you.

Questions?

	Introduction
	Naive approaches
	Idea of the algorithm
	Further steps in the algorithm
	Termination of the algorithm
	The sufficiency theorem
	Conclusion

