
Modelchecking counting properties of 1-safe nets

with buffers in paraPspace

M. Praveen and Kamal Lodaya
The Institute of Mathematical Sciences

Chennai, India

October 2009

Abstract

We consider concurrent systems that can be modelled as 1-safe Petri
nets communicating through a fixed set of buffers (modelled as unbounded
places). We identify a parameter K, which we call “benefit depth”, formed
from the communication graph between the buffers. We show that for our
system model, the coverability and boundedness problems can be solved
in polynomial space assuming K to be a fixed parameter, that is, the
space requirement is f(K)p(n), where f is an exponential function and p
is a polynomial in the size of the input. We then obtain similar complex-
ity bounds for modelchecking a logic based on such counting properties.
This means that systems that have sparse communication patterns can
be analyzed more efficiently than using previously known algorithms for
general Petri nets.

1 Introduction

Many theoretical models exist for concurrent, infinite-state systems. Petri nets
[22], process rewrite systems [5], lossy channel systems (LCS) [6] and networks
of pushdown systems [1] are some of them. The power to express properties
of the original system in sufficient detail and existence of efficient algorithms
for analysis are often conflicting goals in these models. Reachability in LCS is
non-primitive recursive [25] and reachability for Petri nets is decidable but with
no known upper bound [20, 17].

More structure is sometimes imposed on the models to handle these con-
flicting goals. Communicating automata with buffers [4] is one such model. In
this paper we consider a small generalization where 1-safe Petri nets (which we
call components) communicate via buffers. Thus we have a system model which
allows both asynchronous and synchronous communication, since 1-safe Petri
nets can model the latter.

The diagram shown in Fig. 1 illustrates the kind of systems we are interested
in. The boxes labelled as line 1, line 2 etc. can be thought of as assembly lines

1

represented by 1-safe Petri nets, drawing raw materials from buffers ib1, ib2 etc.
Output of these assembly lines are deposited into buffers ob1, ob2 etc. Boxes
labelled master line 1 and master line 2 can be thought of as master assembly
lines that use output of earlier assembly lines as their input. They deposit their
output in buffers pr1 and pr2 respectively. We are concerned with verifying

ob1

ib1

line 1

ob2

ib2

line 2

obr

ibr

line r

master line 1

pr1

master line 2

pr2

Figure 1: Illustration of communicating automata with buffers

properties like ∃c : pr1 ≤ c in all reachable configurations (boundedness) or ob1+
ob2 ≥ 100 in some reachable configuration (coverability). For instance, the latter
property might show that the two buffers are dealing with enough throughput.
Karp and Miller examined these properties in the context of Petri nets [16] and
Lipton and Rackoff showed them to be ExpSpace-complete [19, 23].

As Esparza notes in his survey article [12], verification of a “logic” based on
such properties, for instance LTL or CTL extended with counting properties,
quickly becomes undecidable. Modalities of the form EF(M ≥ Mc) (where
M,Mc are markings) can be handled without getting into undecidability [27].
However, a “usual” definition of a logic based on these modalities can express
reachability, as in Howell, Rosier and Yen’s logic [15] and in Yen’s logic [27] (as
was recently shown by Atig and Habermehl [2]). So we are left with positive
Boolean combinations of formulae of the form EF(M ≥ Mc) [27] for which
modelchecking is ExpSpace-hard. Rosier and Yen analyzed boundedness [24]
using what we today call parameterized complexity [10] to show that the space
requirement is exponential in the number of unbounded places and polynomial
in the number of bounded places. If we give up counting properties, Habermehl
shows that the full linear time µ-calculus can be reduced to the problem of
repeated control state reachability [14] and is Pspace-complete in the size of the
formula and ExpSpace-complete in the size of the model.

An ExpSpace lower bound in the size of the model is not very encouraging

2

for potential verifiers. Our first contribution is the identification of a parameter
K, which we call benefit depth. A buffer p1 can benefit by another buffer p2 if
there is a sequence of transitions that decrease tokens in p2 and increase tokens
in p1. Benefit depth is the maximum number of buffers benefited by any one
buffer. It seems reasonable that, in a sparsely communicating system, benefit
depth can be low.

We show that boundedness and coverability in our models, when parame-
terized by benefit depth, are solvable in paraPspace [13]. That is, the space
requirement is of the form O(f(K)p(n)), where f is an exponential function of
benefit depth and p is some polynomial of the size of the model and the marking
to be covered. For constant benefit depth, boundedness and coverability can be
solved in Pspace. Thus, our results are refinements of Rosier and Yen’s [24],
improving them if benefit depth is less than the number of buffers (as happens
in sparsely communicating systems).

As our final contribution, we define a logic which can express counting prop-
erties such as coverability and show that it can be modelchecked on Petri nets
in paraPspace.

Related work. We did look at other parameters such as cycle rank [11] and
DAG-width [3, 21] which have been explored as a measure of “cycle complex-
ity”. These do not seem to work in the case of coverability problems since
the structure of cycles used in Lipton’s hardness proof has low cycle rank and
DAG-width.

2 Problem definitions

Let Z be the set of integers and N the set of natural numbers. A Petri net is a
4-tuple N = (P, T,Pre,Post) where P is a set of places, T is a set of transitions
and Pre and Post are the incidence functions: Pre : P × T → [0 . . .W] (arcs
going from places to transitions), Post : P × T → [0 . . .W] (arcs going from
transitions to places), where W ≥ 1.

Definition 1. Given a place p, the set of places Ben(p) ⊆ P and the set of
transitions Tben(p) ⊆ T benefited by p are those connected to p by a sequence of
arcs with weight ≥ 1. Formally they are the smallest sets satisfying:

1. p ∈ Ben(p).

2. If some p′ ∈ Ben(p) and there is a transition t with Pre(p′, t) ≥ 1, then
t ∈ Tben(p).

3. If some transition t ∈ Tben(p) and there is a place p′′ such that Post(p′′, t) ≥
1, then p′′ ∈ Ben(p).

Ind(p) = P \ Ben(p) and Tind(p) = T \ Tben(p) are the places and transitions
not benefiting from p.

3

We call a function M : P → Z a vector. For two vectors M1 and M2, we
say M1 covers M2 (written M1 ≥ M2) if for every place p, M1(p) ≥ M2(p).
M1 > M2 means that M1 covers M2 but they are not the same.

If the range of the vector is N, it is called a marking. At a marking M , a
place p is said to have M(p) tokens. A pair (N,M0) consisting of a Petri net N
and an initial marking M0 is called a system. We assume a net is presented as
two matrices for Pre and Post . In the rest of this paper, we will assume that
a Petri net N has m places, n transitions and that W is the maximum of the
range of Pre and Post . We define the size of the net to be 2mn logW bits. The
system has size 2mn logW + log |M0| bits.

A transition t may be taken as a step at the vector M yielding a new vector
M ′ given by the equation M ′(p) = M(p) − Pre(p, t) + Post(p, t) for all p ∈ P .
The transition t is said to be fired at M if, in addition, t is enabled at M , that is,
for all p ∈ P , M(p) ≥ Pre(p, t). Thus firing a transition leads from a marking to
another marking, while stepping is a more general notion leading from a vector
to a vector.

A finite transition sequence σ = t1t2 . . . tr is a walk from an initial vector M0

to a vector Mr if there exist intermediate vectors M1,M2, . . . ,Mr such that for
all i with 1 ≤ i ≤ r, we have a step from Mi−1 to Mi using the transition ti. We
write M0

σ−→Mr. σ is a firing sequence enabled at some initial marking M0 if the
transitions are enabled at the intermediate vectors, so that M1,M2, . . . ,Mr are
all markings. We write M0

σ==⇒ Mr and say that the marking Mr is reachable
from M0. R(N,M0) is the set of markings reachable from M0. A place is said to
be c-bounded, c ∈ N, in the system (N,M0), if for all its reachable markings M ,
M(p) is in {0, . . . , c}. The system is c-bounded if all its places are. A 1-bounded
system is commonly called a 1-Safe net.

Definition 2 (Reachability, coverability, boundedness). Given a system (N,M0)
and a marking M as input data, the reachability problem is to decide if the mark-
ing M is in R(N,M0); the coverability problem is to decide if there is an M ′ in
R(N,M0) such that M ′ covers M . Given a system (N,M0), the boundedness
problem is to decide if there is some c ∈ N such that the system is c-bounded.

Given a c-bounded system, the reachability and coverability problems are
known to be Pspace-complete [7]. For systems in general, which can be un-
bounded, Lipton showed that all three problems are ExpSpace-hard [19]. Rack-
off showed that boundedness and coverability are in ExpSpace[23]. Reachabil-
ity has been shown to be decidable [20, 17], obtaining an upper bound is a
famous open problem.

2.1 A logic of properties

Inspired by Yen [27], we now formulate a logic of properties such that its model
checking can be reduced to coverability (κ) and boundedness (β) problems, but
is designed to avoid expressing reachability. In particular, a κ formula of the
form τ ≤ c, c ∈ N, is not provided and the κ and φ formulas are not closed

4

under negation.

τ ::= p, p ∈ P | τ1 + τ2 | cτ, c ∈ N
κ ::= τ ≥ c, c ∈ N | κ1 ∧ κ2 | κ1 ∨ κ2 | EFκ

β ::= {τ1, . . . , τr} < ω | ¬β | β1 ∨ β2

φ ::= β | κ | φ1 ∧ φ2 | φ1 ∨ φ2

The satisfaction of a formula φ by a system (N,M0) (denoted as N,M0 |= φ)
is defined below. The boolean operators work as usual. Note that every term
(of type τ) gives a function Lτ : P → N such that τ is syntactically equivalent
to
∑
p∈P Lτ (p)p.

• N,M0 |= τ ≥ c if
∑
p∈P Lτ (p)M0(p) ≥ c.

• N,M0 |= EFκ if ∃M ∈ R(N,M0) such that N,M |= κ.

• N,M0 |= {τ1, . . . τr} < ω if ∃c ∈ N : ∀M ∈ R(N,M0) ∃j ∈ {1, . . . , r} such
that

∑
p∈P Lτj (p)M(p) ≤ c.

We use {τ1, . . . , τr} = ω as an abbreviation for ¬({τ1, . . . , τr} < ω).
The formula {p1, . . . , pr} < ω says that the given set of places is bounded

according to Valk and Vidal-Naquet [26, Section 4.1]. On the other hand, {p1 +
· · ·+ pr} < ω says that the same set of places is uniformly bounded according to
the same authors [26].1

2.2 System model

Though our results work for any Petri net, we work with the model defined
below to emphasize the fact that our problem formulation strictly generalizes
reachability for 1-bounded systems. The model of concurrent systems we con-
sider in this paper consists of some 1-safe nets, called components, which can
add or remove tokens to/from a set of unbounded places that we refer to as
buffers.

Definition 3. A net communicating with buffers (we just use the word
“net” below) is a Petri net N = (C,B, T,Pre,Post) where the set of places
P = C∪B is partitioned into a set of buffers B and component places C = P \B,
such that all places in C remain 1-bounded (regardless of the number of tokens
in the buffers in an initial marking).

In the rest of the paper, we will assume that |C| = a, |B| = b and that a+b =
m, where m is the total number of places. In our model, the components do
not contribute to exponential space complexity. Our results can be generalized
to the case where the components are declared to be c-bounded (for a constant
c) rather than 1-bounded.

1We thank an anonymous FSTTCS referee for pointing out this subtlety. Following their
suggestion, we have slightly extended our logic beyond the submitted version to cover both
kinds of boundedness.

5

Definition 4. The benefit depth of a net is defined as K = max{|Ben(p) ∩
B| − 1 | p ∈ B}.

Benefit depth depends only on the communication pattern among buffers,
even though the communication link may involve some component places. It
can be computed efficiently (in NLogspace).

The communication graph of the system of Fig. 1 is shown in Fig. 2. Irre-
spective of the number of assembly lines, benefit depth is 3 since only obi, pr1

and pr2 can benefit by decreasing tokens from ibi. If there are interdependencies

ob1

ib1

ob2

ib2

obr

ibr

pr1 pr2

Figure 2: Communication graph of buffers of the system in Fig. 1

among the assembly lines, such as a byproduct of one being the raw material of
another (not shown in the figure), then benefit depth will increase. The more
such dependencies (i.e., more dense the communication graph among the buffers
is), the higher will be the benefit depth. Intuitively, the number of tokens in
a place in Ben(p) can be increased by decreasing some tokens in p through a
sequence of transitions in Tben(p). Only those transitions use the extra tokens
from p.

Our earlier definitions are modified to be well-behaved on the components.
A vector will now be given by a pair of functions C → {0, 1} and B → Z; it is a
marking if the second function has range N. Walks and firing sequences will now
be defined with these kinds of intermediate vectors and markings.

3 Benefit depth and coverability

Let Q ⊆ P be a subset of places. For this paper we will need the inbetween
notion (due to Rackoff) of σ being a Q-run where for the vectors Mi, 0 ≤ i < r,
Mi(p) ≥ Pre(p, ti+1) for every place p in Q. Thus a walk is a ∅-run and a firing
sequence is a P -run. For two vectors M1 and M2, we say M1 ≥Q M2 if for
every p ∈ Q,M1(p) ≥ M2(p) and M1(p) = M2(p) for every p ∈ C. A walk σ
from M1 is said to Q-cover a marking Mcov if it is a Q-run and the final vector
M2 obtained by walking σ at M1 satisfies M2 ≥Q Mcov. We say σ covers a
marking if σ P -covers it.

6

We will fix for this section Mcov as the marking to be covered. For the
purpose of complexity analysis, we will denote the maximum of the range of
Mcov by R.

Definition 5. A Q-covering run is a Q-run that Q-covers Mcov. Let Q0 ⊆ Q.
A Q-run from M0 to Mr is said to be c-bounded for Q0, c ∈ N, if for all
intermediate vectors Mi, 0 ≤ i < r, Mi(p) is in {0, . . . , c} for every place p in
Q0.

Definition 6. [23, Rackoff] Let C ⊆ Q ⊆ P . Define lencov(Q,M,Mcov) to be
the length of the shortest Q-covering run from the vector M . If there is no such
sequence, define lencov(Q,M,Mcov) to be 0. For 0 ≤ i ≤ b, `(i,Mcov) is defined
to be max{lencov(Q,M,Mcov) | M a vector, C ⊆ Q ⊆ P and |Q \ C| = i}.
In this section we abbreviate `(i,Mcov) to `(i). In section 5 we will abbreviate
`(b,M) to `′(M).

Definition 7. Let C ⊆ Q ⊆ P and p ∈ B be a buffer. Define covindp(Q,M,Mcov)
to be the length of the shortest Q-covering run in Tben(p)∗ from the vector M .
If there is no such sequence, define covindp(Q,M,Mcov) to be 0. Let `ı(i) =
max{covindp(Q,M,Mcov) |M a vector, p a buffer, |Q ∩Ben(p) ∩B| = i}.

Our strategy is to segregate covering sequences into two parts, the first made
of transitions in Tind(p) and the second one made of transitions in Tben(p). We
need the following technical lemma, which is a generalization of the exchange
lemma [8, Lemma 2.14] to Petri nets with weighted arcs.

Lemma 8. Let p be a place, transitions tben ∈ Tben(p) and tind ∈ Tind(p). Let
Q ⊆ P be some subset of places. If tbentind is a Q-run from some vector M ,
then so is tindtben.

Proof. We will first prove that tind is a Q-run from M . Suppose not. Now,
suppose p′ ∈ Q is one of the places that do not have sufficient tokens at M
to enable tind. Since tind ∈ Tind(p), we know from Definition 1 that for all
p′′ ∈ Ben(p), Pre(p′′, tind) = 0. Hence, p′ /∈ Ben(p), i.e., p′ ∈ Ind(p) ∩ Q.
Now, we have M tben−−→ M1

tind−−→ M2 for some vector M1, tind is a Q-run from
M1 but not from M since a place p′ ∈ Ind(p) ∩Q doesn’t have enough tokens
at M . Since p′ has enough tokens at M1, tben adds some tokens to p′, i.e.,
Post(p′, tben) ≥ 1. This contradicts the fact that tben ∈ Tben(p). Therefore, tind
is a Q-run from M . So, M tind−−→M3 for some vector M3.

Now, we will prove that tben is a Q-run from M3. Suppose not. Let p′ ∈ Q
be one of the places that do not have enough tokens at M3 to enable tben. Since
tben is a Q-run from M , tind must decrease the number of tokens in p′. Since
tind ∈ Tind(p), we know from Definition 1 that tind doesn’t decrease tokens in
any place that belongs to Ben(p). Hence, p′ /∈ Ben(p), i.e., p′ ∈ Ind(p) ∩ Q.
Let q′ be the number of tokens in p′ at M and let tind decrease the number of
tokens in p′ by q1. Now, if d2 = Pre(p′, tben) is the number of tokens needed by
tben, then d2 > q′ − q1. Now, if tbentind is run from M , number of tokens in p′

at the end will be q′ − d2 − q1 < 0 (Post(p′, tben) = 0 since p′ ∈ Ind(p)), which

7

contradicts the fact that tbentind is a Q-run from M . Therefore, p′ cannot be
in Ind(p) ∩ Q and hence there is no such p′. This means that tben is a Q-run
from M3 and hence tindtben is a Q-run from M .

Lemma 9. If K ≤ i < b, then `(i+ 1) ≤ (W`ı(K) +R)i+12a + `(i) + `ı(K).

Proof. Suppose that Qi+1 = C ∪A where |A| = i+ 1 and that there is a Qi+1-
covering run from some vector M . If this run is W`ı(K) +R-bounded for Qi+1,
then there is a similar run where no two intermediate vectors are equal when
restricted to Qi+1. The length of such a sequence is at most (W`ı(K)+R)i+12a.

Otherwise, there is a Qi+1-covering run from M that is not W`ı(K) + R-
bounded for Qi+1. Then there exist runs σ1 and σ2 such that σ1σ2 is Qi+1-
covering from M , σ1 is W`ı(K) +R-bounded for Qi+1 and the final vector M ′

obtained by walking σ1 at M has more than W`ı(K) +R tokens at some place
p ∈ A. Let Qi = Qi+1 \ {p}. As above, we can assume that length of σ1 is at
most (W`ı(K) +R)i+12a.

Now, σ2 is a Qi-covering run from M ′. By definition, there is a Qi-covering
run σ′2 from M ′ whose length is at most `(i). Since σ′2 is a Qi-run from M ′, we
can apply Lemma 8 repeatedly to rearrange σ′2 into another sequence τ1τ2 such
that τ1 ∈ Tind(p)∗, τ2 ∈ Tben(p)∗, τ1τ2 is a Qi-run from M ′ and |τ1τ2| = |σ′2|
(see Fig. 3). This rearrangement of σ′2 could potentially cause places in C to

p

M

C

A

Qi+1

M ′

σ1

↑
↑
↑

↑
↑
↑

M ′′

τ1

Tind(p)∗

↓
↓

↓
↓

τ ′2
Tben(p)∗

⊆ Ind(p)

⊆ Ben(p)

Qi

≤ `ı(k)

Figure 3: Sequences and bounds used in the proof of Lemma 9
↑ (resp. ↓) inside places indicates that tokens are non-decreasing (resp. non-
increasing).

get more than 1 token in an arbitrary Petri net. However, our assumption that
places in C remain 1-bounded regardless of the number of tokens in the buffers
at the initial marking ensures that the rearrangement doesn’t disturb the 1-
boundedness of places in C. Let M ′′ be the final vector obtained by walking

8

τ1 at M ′. Now, τ2 ∈ Tben(p)∗ and is a Qi-covering run from M ′′. Hence, by
Definition 7, there is a Qi-covering run τ ′2 from M ′′ with τ ′2 ∈ Tben(p)∗ and
|τ2| ≤ `ı(|Ben(p) ∩B| − 1). Since |τ1| ≤ `(i) and `ı(|Ben(p) ∩B| − 1) ≤ `ı(K),
|τ1τ ′2| ≤ `(i)+`ı(K). Since τ1 ∈ Tind(p)∗, Definition 1 implies that no transition
in τ1 decreases tokens from p. Since M ′′(p) ≥ M ′(p) ≥ W`ı(K) + R and each
transition in τ ′2 removes at most W tokens from p, σ1τ1τ

′
2 is a Qi+1-covering

run from M whose length is at most (W`ı(K) +R)i+12a + `(i) + `ı(K).

The bound on `(i + 1) given by Rackoff in [23] is similar to the one in
Lemma 9 but uses `(i) in place of `ı(K). Since `ı(K) can be much smaller than
`(i), the bound in Lemma 9 is better. This is the fact that enables us to restrict
exponential space complexity to K. The following lemma gives a recurrence
relation for length of covering sequences made of transitions in Tben(p).

Lemma 10. `ı(0) ≤ 2a and `ı(i+ 1) ≤ (W`ı(i) +R)i+12a + `ı(i).

Proof. (Following [23].) We will first prove the bound on `ı(0). Let Q = C ∪A
and A∩Ben(p) = ∅ for some buffer p. Suppose σ ∈ Tben(p)∗ is a Q-covering run
from some vector M . If any two intermediate vectors reached by walking σ at
M are equal when restricted to C, remove the subsequence between these two
intermediate vectors. Since the removed subsequence never added any tokens
to any place in A, such removals will never decrease tokens from places in A.
Therefore, after all such removals, the sequence that is left is still a Q-covering
run from M . The length of this run is at most 2a.

Next, we will prove the bound on `ı(i + 1). Suppose that Q = Qi+1 =
C ∪A∪A′ where |A′| = i+ 1, with A∩Ben(p) = ∅ for some buffer p. Suppose
that there is a Qi+1-covering run in Tben(p)∗ from some vector M .

Case 1 : There is a Qi+1-covering run from M that is W`ı(i)+R-bounded for
A′. Then, as above, there is a Qi+1-covering run σ from M that is W`ı(i) +R-
bounded for A′ such that no two intermediate vectors obtained from walking σ
at M are equal when restricted to Qi+1 \A. The length of such a run is at most
(W`ı(i) +R)i+12a.

Case 2 : Otherwise, there is a Qi+1-covering run from M that is not W`ı(i)+
R-bounded for A′. Then there exist sequences σ1 and σ2 such that σ1σ2 ∈
Tben(p)∗ is a Qi+1-covering run from M , σ1 is W`ı(i) + R-bounded for A′ and
the final vector M ′ obtained by walking σ1 at M has more than W`ı(i) + R
tokens at some place p′ ∈ A′. Let Qi = Qi+1 \{p′}. As in case 1, we can assume
that length of σ1 is at most (W`ı(i) +R)i+12a.

Now, σ2 ∈ Tben(p)∗ is a Qi-covering run from M ′. By definition, there is
a Qi-covering run σ′2 ∈ Tben(p)∗ from M ′ whose length is at most `ı(i). Since
M ′(p) ≥W`ı(i) +R and each transition in σ′2 removes at most W tokens from
p′, σ1σ

′
2 is a Qi+1-covering run from M whose length is at most (W`ı(i) +

R)i+12a + `ı(i).

It now only remains to solve the recurrence relations we have obtained and
use them in a nondeterministic algorithm that guesses covering sequences to get
our first main theorem.

9

Definition 11. Let W ′ = max{W, 2}, R′ = max{R, 2}. Define a growth func-
tion g : N→ N as g(0) = W ′R′2a and g(i+ 1) = (g(i))3(i+1)2a.

Lemma 12. `(K + j) ≤ (K + j)(W`ı(K) +R)K+j2a + j`ı(K) + `(K).

Proof. By induction on j. The base case j = 0 is clear since RHS of the
inequation is at least `(K).

`(K + j + 1) ≤ (W`ı(K) +R)K+j+12a + `(K + j) + `ı(K)

≤ (W`ı(K) +R)K+j+12a

+ (K + j)(W`ı(K) +R)K+j2a + j`ı(K)
+ `(K) + `ı(K)

≤ (K + j + 1)(W`ı(K) +R)K+j+12a + (j + 1)`ı(K)
+ `(K)

Lemma 13. `ı(i), `(i) ≤ g(i) ≤ (W ′R′)3ii!26ii!a and `(K+j) ≤ (K+j)(g(K))3(K+j)2a.

Proof. Bounds on `ı(i) and `(i) are by induction on i. For the base case i = 0, we
have `ı(0) ≤ 2a ≤ g(0) and `(0) ≤ 2a ≤ g(0) (this bound on `(0) can be obtained
by arguments similar to those used for the bound on `ı(0) in Lemma 10).

`ı(i+ 1) ≤ (W`ı(i) +R)i+12a + `ı(i)

≤ (Wg(i) +R)i+12a + g(i)

≤ (W ′R′)i+1(g(i))i+12a + g(i)

≤ (g(i))2(i+1)2a + g(i)

≤ (g(i))3(i+1)2a

= g(i+ 1)

For the bound on `(i), we will use Rackoff’s result from [23], which states that
`(i+ 1) ≤ (W`(i) +R)i+12a + `(i).

`(i+ 1) ≤ (W`(i) +R)i+12a + `(i)

≤ (Wg(i) +R)i+12a + g(i)

≤ (g(i))3(i+1)2a

= g(i+ 1)

Next, we will prove the bound on `(K + j).

`(K + j) ≤ (K + j)(Wg(K) +R)K+j2a + jg(K) + g(K)

≤ (K + j)(W ′R′)K+j(g(K))K+j2a + (j + 1)g(K)

≤ (K + j)(g(K))3(K+j)2a

10

Finally, the bound on g(i) is by induction i. For the base case i = 0, we have
g(0) = (W ′R′)2a = (W ′R′)300!2600!a.

g(i+ 1) = (g(i))3(i+1)2a

≤
(

(W ′R′)3ii!26ii!a
)3(i+1)

2a

≤ (W ′R′)3i+1(i+1)!2(6ii!3(i+1)+1)a

≤ (W ′R′)3i+1(i+1)!2(6ii!3(i+1)2)a

= (W ′R′)3i+1(i+1)!26i+1(i+1)!a

Theorem 14. Suppose a net under consideration has benefit depth K. There is
a non-deterministic algorithm that decides if there is a firing sequence covering
Mcov from M0 in space O(log |M0|+ log n+ (logW ′+ logR′)6K+2K!m3 logm).

Proof. Since there are b buffers in the net, `(b) gives an upper bound on the
length of the shortest P -covering run. Therefore, there exists a P -covering run
iff there is one of length at most `(b). From Lemma 13 we get

`(b) ≤ b(g(K))3b2a ≤ m(g(K))3m2a ≤ m
(

(W ′R′)3KK!26KK!a
)3m

2a ≤ m
(

(W ′R′)6K+1K!a
)3m

2a

Hence `(b) ≤ m(W ′R′)6K+2K!m2
. A nondeterministic algorithm can guess a

sequence of transitions of this length and verify that it is P -covering from M0.
The memory needed is dominated by a counter to count up to maximum `(b)
and the memory needed to store intermediate markings. The memory needed
for the counter is O((logW ′ + logR′)6K+2K!m2 logm) and to store markings
we need O(log |M0|+ log n+ (logW ′ + logR′)6K+2K!m3 logm).

Given a net, its benefit depthK can be computed in polynomial time. Hence,
the upper bound on the memory requirement in the above theorem is space con-
structible and the well known Savitch’s theorem can be applied to determinize
the above algorithm (see any standard text on complexity theory). The memory
required will still be polynomial in the size of the input net and this gives us
the paraPspace algorithm.

For later use in section 5, we name the exponent 6K+2K!m2 used in the
above proof expcov(1), and let expcov(i) = expcov(1)i.

4 Benefit depth and boundedness

In this section, we will tighten Rosier and Yen’s analysis [24] and prove that
the complexity of boundedness problem is paraPspace when parameterized by
benefit depth. As in coverability, we segregate transitions that reduce tokens
from a place and those that do not.

11

Definition 15. Let U ⊆ B be a subset of buffers, Q ⊆ P a subset of places
and M a vector. A Q-run σ from M is said to be U-self-covering if it can
be decomposed as σ1σ2 with M

σ1−→ M1
σ2−→ M2, M2 ≥ M1 and for all p ∈ U ,

M2(p) > M1(p). We call σ2 as the pumping portion of the self-covering
sequence.

It is well known that a place p is unbounded iff there is a firing sequence that
is U -self-covering from the initial marking2 for some U ⊆ P with p ∈ U . In the
rest of this section, we will fix a non-empty subset U of places and refer to U -
self-covering sequences as self-covering sequences. Let Tdep(p) = {t ∈ Tben(p) |
∀p′ ∈ Ind(p) : Pre(p′, t) = 0}.
Definition 16. Let C ⊆ Q ⊆ P and p ∈ B be a buffer. Let scovp(Q,M)
be the length of the shortest Q-run in Tben(p)∗ that is self-covering from the
vector M with the pumping portion of the sequence in Tdep(p)∗. If there is
no such sequence, define scovp(Q,M) to be 0. Let sı(i) = max{scovp(Q,M) |
M a vector, |Q ∩ Ben(p) ∩ B| = i}. Also, let scov(Q,M) be the length of the
shortest self-covering Q-run from the vector M and 0 if there is no such se-
quence. Let s(i) = max{scov(Q,M) |M a vector, |Q ∩B| = i}.
Lemma 17. For 0 ≤ i < b, s(i+ 1) ≤ (W 2sı(K))poly(m) + sı(K) + (Wsı(K) +
2)s(i) for poly(m) a polynomial in m with degree independent of W,m,K.

Proof. Suppose that Q = Qi+1 = C ∪ A with |A| = i + 1 and that there is a
self-covering Qi+1-run from some vector M . If this run is Wsı(K)-bounded for
Qi+1, the required result is a consequence of [24, Lemma 2.2].

Otherwise, let σ1σ2 be a self-covering Qi+1-run from M such that M σ1−→M ′

and M ′ is the first vector to contain more than Wsı(K) tokens in some place
p ∈ A. Let σ3 be the pumping portion of σ1σ2. Without loss of generality, we
can assume that length of σ1 is at most (Wsı(K))i+12a. Let Qi = Qi+1 \ {p}.
Now, σ2σ3 is a self-covering Qi-run from M ′. By definition, there is a self-
covering Qi-run σ′2 of length at most s(i). Let σ′2 = σ′3σ

′
4 where σ′4 is the

pumping portion of σ′2. By applying Lemma 8 repeatedly, rearrange σ′3 into
τ1τ2 and σ′4 into τ ′1τ

′
2 such that τ1, τ ′1 ∈ Tind(p)∗ and τ2, τ

′
2 ∈ Tben(p)∗. Let

M ′ τ1−→ M1
τ2−→ M2

τ ′
1−→ M3

τ ′
2−→ M4 (see Fig. 4). Since τ ′1τ

′
2 is the pumping

portion, M4 > M2.
We claim that M3 ≥M2. Suppose not. Let p′ be a place such that M3(p′) <

M2(p′). Since τ ′1 ∈ Tind(p)∗ and transitions in Tind(p) don’t decrease tokens
from Ben(p), p′ ∈ Ind(p). Since τ ′2 ∈ Tben(p)∗ and transitions in Tben(p) don’t
increase tokens in Ind(p), M4(p′) ≤ M3(p′). We now have M4(p′) ≤ M3(p′) <
M2(p′), which contradicts M4 > M2. Hence, M3 ≥M2.

Case 1 : M3 = M2. In this case τ1τ2τ ′2 is a self-covering Qi-run from M ′ with
τ ′2 as the pumping portion. In other words, τ2τ ′2 is a self-covering Qi-run from
M1. Also, for any p′ ∈ Ind(p) and any transition t occurring in τ ′2, Pre(p′, t) = 0
(otherwise, some other transition t′ in τ ′2 would have to satisfy Post(p′, t′) ≥ 1

2We thank an anonymous FSTTCS referee for pointing out a mistake here.

12

M

p

C

A

Qi+1

M ′

σ1

↑
↑
↑
↑
↑

M1

↑
↑
↑
↑
↑

τ1

Tind(p)∗

↓
↓

↓
↓

M2

↓
↓

↓
↓

τ2

Tben(p)∗

↑
↑
↑
↑
↑

M3

↑
↑
↑
↑
↑

τ ′1
Tind(p)∗

↓
↓

↓
↓

M4

↓
↓

↓
↓

τ ′2
Tben(p)∗

⊆ Ind(p)

⊆ Ind(p)

Ben(p)

Qi

Figure 4: Sequences and bounds used in the proof of Lemma 17

in order to maintain M4 > M3, which is not possible since τ ′2 ∈ Tben(p)∗). Since
τ2τ
′
2 is a self-covering Qi-run in Tben(p)∗ from M1 with pumping portion in

Tdep(p)∗, by Definition 16, we conclude that there is a self-covering Qi-run in
Tben(p)∗ from M1 whose length is at most sı(|Qi ∩Ben(p) ∩B|) ≤ sı(K).

Case 2 : M3 > M2. In this case, although τ ′1 strictly increases the number
of tokens in some unbounded buffers, it may not do so for all buffers in U . We
need to do some more work to achieve that. We partition the buffers into four
subsets Buben, B

c
ben, B

u
ind and Bcind. B

u
ben = (Ben(p) ∩ U) ∪ {p′ ∈ Ben(p) \ U |

M4(p′) > M2(p′)} are the buffers in Ben(p) that are pumped up by τ ′1τ
′
2 while

Bcben = Ben(p)\Buben are the buffers in Ben(p) that are not pumped up by τ ′1τ
′
2.

Buind = (Ind(p) ∩ U) ∪ {p′ ∈ Ind(p) \ U | M3(p′) > M2(p′)} are the buffers in
Ind(p) that are pumped up by τ ′1τ

′
2 while Bcind = Ind(p) \ Buind are the buffers

in Ind(p) that are not pumped up by τ ′1τ
′
2. Since τ ′2 ∈ Tben(p)∗ cannot increase

tokens in Ind(p), it follows that for all p′ ∈ Buind, M3(p′) > M2(p′). For the
same reason, for all p′ ∈ Bcind and t ∈ Tben(p), Pre(p′, t) = 0.

For all p′ ∈ Bcben, p′ is not pumped up by τ ′1τ
′
2 due to two possible reasons:

• Neither τ ′1 nor τ ′2 increase pumps up tokens in p′ or

• τ ′1 pumps up tokens in p′ but τ ′2 decreases the tokens so that after walking
τ ′1τ
′
2, number of tokens in p′ doesn’t change.

Accordingly, we will further partition Bcben into Bcben(in) = {p′ ∈ Bcben |
M3(p′) > M2(p′)} and Bpben(nin) = Bpben \ Bpben(in). For all p′ ∈ Bcben(nin),

13

M4(p′) = M3(p′). The increase in number of tokens in places in Buben can be
either due to τ ′1 or τ ′2 or both. So, we further partition Buben into Buben(ind) and
Buben(ben) = Buben \Buben(ind) such that for all p′ ∈ Buben(ind), M3(p′) > M2(p′).
The job of τ ′2 is to “pump up” number of tokens in Buben(ben) without decreasing
“too many” tokens in places in Buind ∪Buben(ind)∪Bpben(in). However, τ ′2 might
decrease a few tokens from places in Buind∪Buben(ind)∪Bpben(in). If we disregard
this action of τ ′2 on Buind ∪Buben(ind)∪Bpben(in), the only other effect of τ ′2 is to
ensure that for all p′ ∈ Buben(ben), M4(p′) > M3(p′) and for all p′ ∈ Bcben(nin),
M4(p′) = M3(p′). This effect can be achieved by another run τ ′′2 of length at
most sı(k) (in fact |τ2|+ |τ ′′2 | ≤ sı(k)). Since τ ′′2 may decrease tokens from places
in Buind ∪ Buben(ind) ∪ Bpben(in), we will compensate for it by firing τ ′1 Wsı(K)
times before τ ′′2 .

Now, let M2
τ

′Wsı(K)+1
1−−−−−−−→ M ′3

τ ′′
2−−→ M ′4. We claim that τ1τ2τ

′Wsı(K)+1
1 τ ′′2 is a

self-covering Qi-run from M ′, with τ
′Wsı(k)+1
1 τ ′′2 as the pumping portion. We

have to prove that it is a Qi-run from M ′, M ′4 ≥ M2 and that for all p′ ∈ U ,

M ′4(p′) > M2(p′). Since M ′ τ1−→ M1
τ2−→ M2

τ ′
1−→ M3, M3 ≥ M2 and τ1τ2τ

′
1

is a Qi-run from M ′, τ1τ2τ
′Wsı(K)+1
1 is also a Qi-run from M ′. We prove the

remaining properties for every place p′ by looking at which partition p′ is in.

1. p′ ∈ Buben(ind)∪Buind∪Bcben(in). Then, M ′3(p′) > M2(p′)+Wsı(K). Since
|τ ′′2 | ≤ sı(k), M ′4(p′) > M2(p′).

2. p′ ∈ Buben(ben). Then, M ′3(p′) = M2(p′) and M ′4(p′) > M ′3(p′) (since τ ′′2
pumps up tokens in places from Buben(ben)). Hence, M ′4(p′) > M2(p′).

3. p′ ∈ Bcben(nin) ∪Bcind. Then, M ′4(p′) = M ′3(p′) = M2(p′).

In both cases 1 and 2, σ′2 can be replaced by another self-covering Qi-run σ′′2
fromM ′ whose length is at most s(i)+sı(K)+(Wsı(K)+1)s(i) and that contains
at most sı(K) transition occurrences from Tben(p). Since M ′(p) ≥Wsı(K) and
only transitions in Tben(p) decrease tokens from p, σ1σ

′′
2 is a self-covering Qi+1-

run from M .

The following lemmas give recurrence relations for length of self-covering
sequences in Tben(p)∗. The proofs are similar to those of corresponding lemmas
in [24] with the additional fact that transitions in Tben(p) don’t increase tokens
in Ind(p). As before, W ′ = max{W, 2}.
Lemma 18. Let C ⊆ Q ⊆ P and p ∈ B a buffer. For c ∈ N, suppose there is
a self-covering Q-run in Tben(p)∗ from some vector M which is c-bounded for
Q ∩Ben(p) ∩B. If its pumping portion is in Tdep(p)∗, then a similar sequence
exists whose length is at most (W ′c2a)poly(K) for poly(K) some polynomial in
K whose degree is independent of W, c, a,K.

Proof. The proof of this lemma is very similar to the corresponding ones in
[23, 24]. Suppose σ = σ1σ2 is a run satisfying the properties given in the
lemma with σ2 being the pumping portion. Since σ1 is in Tben(p)∗, there are at

14

most k buffers that are in Q that increase their tokens while walking σ1 from
M . Hence, following an argument similar to the one in Lemma 10, we can
assume that length of σ1 is at most cK2a. Next, consider the pumping portion
σ2. Note that transitions in σ2 affect at most K buffers and a component
places. Hence, σ2 can be decomposed into a sequence σs and some Q-loops
(runs that start and end in vectors that are equal when restricted to Q), such
that length of σs is at most (cK2a + 1)2. Now, the fact that σs and the Q-loops
together form a pumping portion can be represented by a system of equations
Bx ≥ b, where the matrix B contains one row for every place and one column
for every Q-loop. Now, observe that component places are not affected by Q-
loops. Hence, rows corresponding to component places can be removed from B.
Of the remaining buffers, transitions in σ2 affect at most K. Hence, all rows
except the K corresponding to the above buffers can also be removed from B.
Thus, our system of equations has at most K rows. In addition, each entry in
the remaining B is of absolute value at most WcK2a. Hence, there are at most
(2(WcK2a) + 1)K columns in B. To find a shorter pumping portion, it suffices
to find a smaller solution to Bx ≥ b. We can use [24, Lemma 2.1] by letting
d1 = K and d = (W ′c2a)K

2
to conclude that there is a solution where each

Q-loop occurs at most (W ′c2a)K
k

times. By replacing these Q-loops back into
σs and combining with σ1, we get a self-covering Q-run from M whose length
is at most (W ′c2a)K

k

for some constant k.

Lemma 19. sı(0) ≤ (W ′2a)poly(K) and sı(i+ 1) ≤ (W ′2sı(i)2a)poly(K).

Proof. For sı(0), all buffers can go into negative values while walking a self-
covering sequence. Since component places are 1-bounded, we can put r = 1 in
Lemma 18 to get the result.

For sı(i + 1), suppose Qi+1 = Q ⊆ P such that Qi+1 ∩ Ben(p) ∩ B = A′

and |A′| = i+ 1 for some buffer p. Suppose there is a self-covering Qi+1-run in
Tben(p)∗ from some vector M with its pumping portion in Tdep(p)∗.

Case 1 : If the above sequence is Wsı(i)-bounded for A′, the required result
is a consequence of Lemma 18.

Case 2 : Otherwise, let the above sequence be σ1σ2 with M
σ1−→ M ′ and σ3

being the pumping portion of σ1σ2, where M ′ is the first intermediate marking
with some place (say p′) in A′ having more than Wsı(i) tokens. We can assume
length of σ1 to be at most (Wsı(i))i+12a. Let Qi = Qi+1 \ {p′}. Now, σ2σ3 is
a self-covering Qi-run in Tben(p)∗ from M ′. σ3 is the pumping portion of this
sequence and is in Tdep(p)∗. Hence, by definition, there is a self-covering Qi-run
σ′2 ∈ Tben(p)∗ from M ′ with length at most sı(i) whose pumping portion is in
Tdep(p)∗. Since M ′(p′) ≥Wsı(i), σ1σ

′
2 is a self-covering Qi+1-run in T ∗ben(p) from

M , whose length is at most (Wsı(i))i+12a + sı(i) ≤ (W ′2sı(i)2a)poly(K).

Now we give upper bounds for these recurrence relations and use them in a
nondeterministic algorithm. A technical point is that the recurrence relation in
Lemma 17 for s(i) starts from i = 1 (unlike that in Lemma 9). This avoids the

15

calculation of an upper bound for s(u) using Lemma 20 below from containing
terms mK in the exponent, which is not acceptable in paraPspace algorithms.

Lemma 20. For 0 < i < b, we have sı(i) ≤ W ′2(i+1)poly(Ki+1)2a(i+1)poly(Ki+1),
as also s(i) ≤ 2i−1(4Wsı(K))i−1(W 2sı(K))poly(m) + (4Wsı(K))is(0).

Proof. Bound on sı(i) is by induction on i. For the base case i = 0, sı(0) ≤
(W ′2a)poly(K).

sı(i+ 1) ≤ (W ′2sı(i)2a)poly(K)

≤W ′2poly(K)2apoly(K)
(
W ′2(i+1)poly(Ki+1)2a(i+1)poly(Ki+1)

)poly(K)

≤W ′2(i+2)poly(Ki+2)2a(i+2)poly(Ki+2)

Bound on s(i) is by induction on i. For the base case i = 1, Lemma 17 implies
s(1) ≤ (W 2sı(K))poly(m) + sı(K) + (Wsı(K) + 2)s(0) ≤ (W 2sı(K))poly(m) +
4Wsı(K)s(0).

s(i+ 1) ≤ (W 2sı(K))poly(m) + sı(K) + (Wsı(K) + 2)s(i)

≤ (W 2sı(K))poly(m) + sı(K)(1 +Ws(i) + 2s(i))

≤ (W 2sı(K))poly(m) + 4Wsı(K)s(i)

≤ (W 2sı(K))poly(m)+

4Wsı(K)
(

2i−1(4Wsı(k))i−1(W 2sı(K))poly(m) + (4Wsı(K))is(0)
)

≤ 2i(4Wsı(K))i(W 2sı(K))poly(m) + (4Wsı(K))i+1s(0)

Theorem 21. There is a nondeterministic algorithm that decides if a net is
bounded in space O(log |M0|+ logW ′KcKmca+m log n) where c is some con-
stant.

Proof. Since there are b buffers in the net, s(b) gives an upper bound on the
length of the shortest self-covering sequence from the initial marking M0. By
Lemma 2.3 in [24], (Wn)cm is an upper bound for s(0). Using Lemma 20, it
can be seen that W ′daK

cKmcncm is an upper bound for s(b) for some constants
c and d.

A non-deterministic algorithm can guess a sequence of transitions of length
at most s(b) and verify that it is a self-covering P -run from M0. The memory
needed is dominated by a counter to count upto maximum of s(b) and store the
intermediate markings. The memory needed for the counter isO(logW ′KcKmca+
m log n) and memory needed for intermediate markings isO(log |M0|+logW ′KcKmca+
m log n).

16

5 The model checking algorithm

We now show that checking whether a given system (N,M0) satisfies a given
formula φ of the logic defined in sub-section 2.1 can be done in paraPspace
with benefit depth as the parameter. This requires a lot of technical work.
First of all, we simplify the kind of formulas that our algorithm has to handle
by nondeterministically choosing a disjunct from a disjunctive subformula. We
then end up with φ a sequence of conjuncts β1, . . . , βc, κ, where each βi is of
the form {τ1, · · · τr} < ω or {τ1, · · · τr} = ω and κ consists of conjunctions of
nested EF modalities over τ ≥ c formulas. If we can check such formulas in
paraPspace, Savitch’s theorem ensures that satisfiability of φ can be checked
in paraPspace.

For checking βi, we need the following lemma. Recall that every term τ gives
a function Lτ : P → N such that τ is syntactically equivalent to

∑
p∈P Lτ (p)p.

Lemma 22. N,M0 |= {τ1, . . . , τr} = ω iff there exists a U -self-covering se-
quence for some U ⊆ P such that for every j ∈ {1. . . . , r}, there is a pj ∈ U
with Lτj (pj) ≥ 1.

Proof. (⇐) If there is a U -self-covering sequence as stated, the pumping portion
of the sequence can be fired arbitrarily many times so that we have ∀c ∈ N
∃M ∈ R(N,M0) such that for all j ∈ {1, . . . , r} ∑p∈P Lτj (p)M(p) > c.

(⇒) Suppose N,M0 |= {τ1, . . . , τr} = ω. By semantics, we get ∀c ∈ N, ∃M ∈
R(N,M0) such that for all j ∈ {1, . . . , r}∑p∈P Lτj (p)M(p) > c. Hence, we can
conclude that for all c ∈ N, there are buffers pc1, p

c
2, . . . , p

c
r and M c ∈ R(N,M0)

such that M c(pcj) > c ∧ Lτj (pcj) ≥ 1 for all j ∈ {1, . . . , r}. For each c ∈ N, let
U c = {pc1, . . . , pcr}. Since the sequence U1, U2, . . . is infinite and there are only
finitely many subsets of B, at least one subset of B occurs infinitely often in this
sequence. Let U be this subset. We will now prove that there is a U -self-covering
sequence using some results about coverability trees [9, Section 4.6].

Recall that in Karp-Miller tree, markings M : P → N are extended to ω-
markings M : P → N ∪ {ω}, by mapping unbounded places to ω. We first
claim that there is some reachable ω-marking M in the coverability tree of
(N,M0) such that for all p ∈ U , M(p) = ω. Suppose not. Then, for every
reachable ω-marking M , there is some place p ∈ U such that M(p) < ω. Let c
be the maximum of such bounds. Then, by [9, Theorem 22], for every marking
M ∈ R(N,M0), there exists p ∈ U such that M(p) ≤ c, a contradiction. Hence,
there is a reachable ω-marking M in the coverability tree of (N,M0) such that
for all p ∈ U , M(p) = ω. Now, the required U -self-covering sequence can be
constructed [9, Theorem 21].

Hence, checking of βi can be done in paraPspace by using results of section 4.
We now consider verifying the formulas κ, which are of the form γ∧EF(κ1)∧

· · · ∧EF(κr), with γ having only conjunctions of τ ≥ c formulas. We call γ the
content of κ and κ1, . . . , κr as the children of κ. Each of the children may
have their own content and children, thus generating a tree with nodes Γ, with

17

κ at the root of this tree. We will represent nodes of this tree by sequences of
natural numbers, 0 being the root.

The maximum length of sequences in Γ is one more than the nesting depth
of the EF modality in κ and we denote it by D. Let [D] = {0, 1, . . . , D − 1}.
If α ∈ Γ is a tree node that represents the formula κ(α) = γ ∧ EF(κ1) ∧ · · · ∧
EF(κr), content(α) = γ denotes the content of the node α. Let ratio(τ ≥
c) = max{dc/Lτ (p)e | Lτ (p) 6= 0, p ∈ P}. Defining max(∅) = 0, we define the
maximum ratio at height i in the tree by ratio(i) = max{ratio(τ ≥ c) | τ ≥
c appears as a conjunct in content(α) for some α ∈ Γ, |α| = i+ 1}. Recall from
Definition 6 that b is the number of buffers and `′(M) the length of the shortest
run covering M using all the buffers `(b,M).

Definition 23. Given a formula κ and a system (N,M0), the bound function
f : [D]× P → N is defined as follows. We use f(j) for the marking defined by
f(j)(p) = f(j, p).

• f(D − 1, p) = ratio(D − 1),

• f(D − i, p) = max{ratio(D − i),W`′(f(D − i + 1)) + f(D − i + 1, p)},
1 < i < D,

• f(0, p) = M0(p).

A guess function h : Γ× P → N is any function that satisfies h(α, p) ≤ f(|α| −
1, p) for all α ∈ Γ and p ∈ P . If h is a guess function, h(α) is the marking
defined by h(α)(p) = h(α, p).

If a given system satisfies the formula κ = γ ∧EF(κ1) ∧ · · · ∧EF(κr), then
there exist firing sequences σ01, . . . , σ0r that are all enabled at the initial marking
M0 such that M0

σ0i==⇒M0i and M0i satisfies κi. In general, if κ generates a tree
with set of nodes Γ, then there is a set of sequences {σα | α ∈ Γ \ {0}} and set
of markings {Mα | α ∈ Γ} such that Mα

σαj==⇒ Mαj for all α, αj ∈ Γ and Mα

satisfies content(α) for all α ∈ Γ.

Lemma 24. There exist sequences {µα | α ∈ Γ \ {0}} and markings {Mα | α ∈
Γ} such that Mα

µαj==⇒Mαj for all α, αj ∈ Γ with Mα satisfying content(α) and
|µα| ≤ `′(f(|α| − 1)) iff there exist sequences {σα | α ∈ Γ \ {0}} and markings
{M ′α | α ∈ Γ} (M ′0 should be equal to M0) such that M ′α

σαj==⇒ M ′αj for all
α, αj ∈ Γ with M ′α satisfying content(α).

Proof. (⇒) Since Mα satisfies content(α), we can take M ′α = Mα and σα = µα.
(⇐) Consider the following guess function:

h(α, p) =

 M0(p) if α = 0
M ′α(p) if α 6= 0 and M ′α(p) ≤ f(|α| − 1, p)
f(|α| − 1, p) otherwise

By definition, h(α) ≤M ′α and h(α) ≤ f(|α| − 1). Since σαj is a firing sequence
that covers M ′αj from M ′α, there exist sequences µαj that cover h(αj) starting

18

from M ′α whose length is at most `′(h(αj)) (and hence at most `′(f(|αj| − 1))).
We claim that there exist markings {Mα | α ∈ Γ} such that Mα

µαj==⇒ Mαj for
all α, αj ∈ Γ and that Mα satisfies content(α) for all α ∈ Γ.

First, we claim that every µαj can be fired from Mα and that every place p
will satisfy at least one of the following two conditions:

1. Mαj(p) ≥M ′αj(p)
2. Mαj(p) ≥ f(|αj| − 1, p)

We will prove this claim by induction on |α|.
Base case: |α| = 1. µ0j is a firing sequence of length at most `′(h(0j)) that

covers h(0j) starting from M0. The claim is clear by the definition of h(0j).
Induction step: We want to prove that µαj can be fired at Mα and that Mαj

satisfies the stated claims. We will prove these for an arbitrary place p. By
induction hypothesis, either Mα(p) ≥M ′α(p) or Mα(p) ≥ f(|α| − 1, p).

First, suppose that Mα(p) ≥ M ′α(p). Since µαj covers h(αj) starting from
M ′α, Mαj(p) ≥ h(αj)(p) and there are no intermediate markings between Mα

and Mαj where p receives negative number of tokens. Also, since Mαj(p) ≥
h(αj)(p), either Mαj(p) ≥M ′αj(p) or M(αj)(p) ≥ f(|αj| − 1, p).

Second, suppose that Mα(p) ≥ f(|α| − 1, p). |µαj | ≤ `′(h(αj)) and h(αj) ≤
f(|αj| − 1) by definition. Hence `′(h(αj)) ≤ `′(f(|αj| − 1)) and |µαj | ≤
`′(f(|αj| − 1)). By definition of f(|α| − 1, p), we get Mα(p) ≥ W`′(f(|αj| −
1)) + f(|αj| − 1, p). µαj will remove at most W`′(f(|αj| − 1)) tokens from p
and hence, at least f(|αj| − 1, p) tokens will be left in place p at marking Mαj .
Therefore, Mαj(p) ≥ f(|αj| − 1, p).

This completes the induction and hence the claim.
Now, we will prove that each Mα satisfies content(α). For each conjunct

τ ≥ c in content(α), we will prove that
∑
p∈P Lτ (p)Mα(p) ≥ c, where Lτ is the

positive linear combination represented by τ . If c = 0, then the required result
can be obtained by just observing that both Lτ (p) and Mα(p) are positive for all
p ∈ P . So suppose that c 6= 0. Let Qτ = {p ∈ P | Lτ (p) 6= 0}. We distinguish
between two cases:

1. For some p ∈ Qτ , Mα(p) ≥ f(|α| − 1, p). In this case, Mα(p) ≥ f(|α| −
1, p) ≥ c

Lτ (p) . Hence, Lτ (p)Mα(p) ≥ c.
2. For all p ∈ Qτ , Mα(p) < f(|α|−1, p). In this case, for all p ∈ Qτ , Mα(p) ≥
M ′α(p). Since M ′α satisfies content(α), we have

∑
p∈Qτ Lτ (p)M ′α(p) ≥ c.

Therefore,
∑
p∈Qτ Lτ (p)Mα(p) ≥ c.

To derive an upper bound for f(i) to use in a nondeterministic algorithm,
let R = max{ratio(τ ≥ c) | τ ≥ c is a subformula of κ}, R′ = max{R, 2} and
W ′ = max{W, 2}. Recall that D − 1 is the nesting depth of EF and note that
boundedness and coverability can be expressed with D ≤ 2.

Lemma 25. For i ≥ 2, f(D − i, p) ≤ (i+ 1)R′W`′(f(D − i+ 1)).

19

Proof. By induction on i.
Base case: i = 2

f(D − 2, p) ≤ max{R,W`′(f(D − 1)) + f(D − 1, p)}
≤ R+W`′(f(D − 1)) + f(D − 1, p)
≤ R+W`′(f(D − 1)) +R

≤ 2R+W`′(f(D − 1))
≤ 2R′W`′(f(D − 1))

Induction step:

f(D − i− 1, p) ≤ max{R,W`′(f(D − i)) + f(D − i, p)}
≤ R+W`′(f(D − i)) + (i+ 1)R′W`′(f(D − i+ 1))
≤ R′W`′(f(D − i)) + (i+ 1)R′W`′(f(D − i))
= (i+ 2)R′W`′(f(D − i))

Lemma 26. Recall from the end of section 3 that expcov(i) = (6K+2K!m2)i.
Then `′(f(D−1)) ≤ m(W ′R′)expcov(1) and `′(f(D−i)) ≤ m∏D

j=D−i
(
(D − j + 1)W ′2R′m

)expcov(i+j+1−D).

Proof. `′(f(D − 1)) ≤ m(W ′R′)expcov(1) is by Lemma 13. Next result is by
induction on i.

Base case: i = 2. Since f(D− 2, p) ≤ 2R′W`′(f(D− 1)) and `′(f(D− 2)) ≤
m(W ′R′)expcov(1) where r′ = max{f(D − 2, p) | p ∈ P}, we get

`′(f(D − 2)) ≤ m(W ′2R′W`′(f(D − 1)))q(1)

≤ m(2W ′2R′m(W ′R′)expcov(1))expcov(1)

≤ m(2W ′2R′m)expcov(1)(W ′R′)expcov(2)

Induction step: Since f(D − i− 1, p) ≤ (i+ 2)R′W ′`′(f(D − i)), we have

`′(f(D − i− 1)) ≤ m(W ′(i+ 2)R′W ′`′(f(D − i− 1)))expcov(1)

≤ m
(i+ 2)W ′2R′m

D∏
j=D−i

((D − j + 1)W ′2R′m)expcov(i+j+1−D)

expcov(1)

= m
(
(i+ 2)W ′2R′m

)expcov(1)
D∏

j=D−i

(
(D − j + 1)W ′2R′m

)expcov(i+1+j+1−D)

= m

D∏
j=D−i−1

(
(D − j + 1)W ′2R′m

)expcov(i+1+j+1−D)

20

Theorem 27. Given a net and a formula φ, if the benefit depth of the net is
treated as a parameter and the nesting depth D of EF modality in the formula
is treated as a constant, then there is a paraPspace algorithm that checks if the
net satisfies the given formula.

Proof. First reduce φ to the form γ ∧ κ by nondeterministically choosing dis-
juncts from subformulas of φ, as explained in the beginning of this section. Since
γ can be verified by using the boundedness algorithm, it remains to verify κ.
By Lemma 24, it is enough for a nondeterministic algorithm to guess sequences
σαj , αj ∈ Γ of lengths at most `′(f(|αj| − 1)) and verify that they satisfy the
formula. Using bounds given by Lemma 26 and an argument similar to the one
in the proof of Theorem 14, it can be shown that the space used is exponential
in K and polynomial in the size of the net and numeric constants in the formula.
This gives the paraPspace algorithm.

The space requirement of the above algorithm will have terms like m2D and
hence it will not be paraPspace if D is treated as a parameter instead of a
constant.

6 Conclusion

We considered nets communicating with buffers. These are infinite-state con-
current systems allowing 1-safe Petri net components communicating through
synchronization, which in turn communicate asynchronously through a fixed set
of buffers. We identified the parameter benefit depth that measures the maxi-
mum number of other buffers that any one buffer can influence. We showed that
based on this parameter, paraPspace algorithms can be obtained for the cover-
ability and boundedness problems. Note that this does not yield a paraPspace
algorithm for the reachability problem. Whether benefit depth can yield such
an algorithm is open; for work of this kind we refer to Kostin [18]. We then
extended the above technique to show that satisfiability of formulas of the logic
given in sub-section 2.1 can be checked in paraPspace if the nesting depth of
EF quantifiers in such formulas is treated as a constant.

Readers familiar with the repeated control state reachability problem in [14]
may infer that arguments similar to Lemma 17 can be employed for that problem
too. However, we do not get a paraPspace result in terms of benefit depth
for model checking linear time µ-calculus because Habermehl’s reduction of this
problem to repeated control state reachability constructs a bigger net, its benefit
depth might be greater than in the original one.

References

[1] M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of
acyclic networks of pushdown systems. In CONCUR, volume 5201 of LNCS,
pages 356–371, 2008.

21

[2] M. F. Atig and P. Habermehl. On Yen’s path logic for Petri nets. In RP
2009, volume 5797 of LNCS, pages 51–63, 2009.

[3] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. Dag-width and parity
games. In STACS’06, volume 3884 of LNCS, pages 524–536. Springer-
Verlag, 2006.

[4] D. Brand and P. Zafiropulo. On communicating finite-state machines.
JACM, 30(2):323–342, April 1983.

[5] D. Caucal. On the regular structure of prefix rewriting. TCS, 106:61–86,
1992.

[6] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are
easier to verify than perfect channels. Inf. Comput., 124(1):20–31, 1996.

[7] A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets.
Theoret. Comp. Sci., 147(1-2):117–136, 1995.

[8] J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1995.

[9] J. Desel and W. Reisig. Place transition Petri nets, volume 1491 of LNCS.
1998.

[10] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-
Verlag, 1999.

[11] L.C. Eggan. Transition graphs and star-height of regular events. Michigan
Math. J., 10(4):385–397, 1963.

[12] J. Esparza. Decidability and complexity of Petri net problems — An intro-
duction, volume 1491 of LNCS, pages 374–428. 1998.

[13] J. Flum and M. Grohe. Describing parameterized complexity classes. Inf.
Comput., 187(2):291–319, 2003.

[14] P. Habermehl. On the complexity of the linear-time µ-calculus for Petri-
nets. In ATPN ’97, volume 1248 of LNCS, pages 102–116, 1997.

[15] R. Howell, L.E. Rosier, and H.-C. Yen. A taxonomy of fairness and temporal
logic problems for petri nets. Theoret. Comp. Sci., 82(2):341–372, 1991.

[16] R.M. Karp and R.E. Miller. Parallel program schemata. JCSS, 3(2):147–
195, May 1969.

[17] S.R. Kosaraju. Decidability of reachability in vector addition systems. In
Proc. 14th STOC, pages 267–281. ACM, 1982.

[18] A.E. Kostin. Using transition invariants for reachability analysis of Petri
nets. In V. Kordic, editor, Petri net: theory and applications, pages 435–
458. I-Tech Edu. Pub., 2008.

22

[19] R. Lipton. The reachability problem requires exponential space. Yale uni-
versity, 1975.

[20] E.W. Mayr. An algorithm for the general Petri net reachability problem.
SIAM J. Comput., 13(3):441–460, 1984.

[21] J. Obdržálek. DAG-width – connectivity measure for directed graphs. In
SODA’06, pages 814–821. ACM-SIAM, 2006.

[22] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Inst. Instru-
mentelle Math., 1962.

[23] C. Rackoff. The covering and boundedness problems for vector addition
systems. Theoret. Comp. Sci., 6:223–231, 1978.

[24] L.E. Rosier and H.-C. Yen. A multiparameter analysis of the boundedness
problem for vector addition systems. J. Comput. Syst. Sci., 32(1):105–135,
1986.

[25] P. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive
complexity. Inf. Proc. Lett., 83(5):251–261, 2002.

[26] R. Valk and G. Vidal-Naquet. Petri nets and regular languages. JCSS,
23:299–325, 1981.

[27] H.-C. Yen. A unified approach for deciding the existence of certain petri
net paths. Inf. Comput., 96(1):119–137, 1992.

23

