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Abstract

We consider concurrent systems that can be modelled as 1-safe Petri
nets communicating through a fixed set of buffers (modelled as unbounded
places). We identify a parameter K, which we call “benefit depth”, formed
from the communication graph between the buffers. We show that for our
system model, the coverability and boundedness problems can be solved
in polynomial space assuming K to be a fixed parameter, that is, the
space requirement is f(K)p(n), where f is an exponential function and p
is a polynomial in the size of the input. We then obtain similar complex-
ity bounds for modelchecking a logic based on such counting properties.
This means that systems that have sparse communication patterns can
be analyzed more efficiently than using previously known algorithms for
general Petri nets.

1 Introduction

Many theoretical models exist for concurrent, infinite-state systems. Petri nets
[22], process rewrite systems [5], lossy channel systems (LCS) [6] and networks
of pushdown systems [1] are some of them. The power to express properties
of the original system in sufficient detail and existence of efficient algorithms
for analysis are often conflicting goals in these models. Reachability in LCS is
non-primitive recursive [25] and reachability for Petri nets is decidable but with
no known upper bound [20, 17].

More structure is sometimes imposed on the models to handle these con-
flicting goals. Communicating automata with buffers [4] is one such model. In
this paper we consider a small generalization where 1-safe Petri nets (which we
call components) communicate via buffers. Thus we have a system model which
allows both asynchronous and synchronous communication, since 1-safe Petri
nets can model the latter.

The diagram shown in Fig. 1 illustrates the kind of systems we are interested
in. The boxes labelled as line 1, line 2 etc. can be thought of as assembly lines



represented by 1-safe Petri nets, drawing raw materials from buffers ibq, iby etc.
Output of these assembly lines are deposited into buffers oby, obs etc. Boxes
labelled master line 1 and master line 2 can be thought of as master assembly
lines that use output of earlier assembly lines as their input. They deposit their
output in buffers pri; and pry respectively. We are concerned with verifying
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Figure 1: Illustration of communicating automata with buffers

properties like 3¢ : pry < ¢ in all reachable configurations (boundedness) or ob +
oby > 100 in some reachable configuration (coverability). For instance, the latter
property might show that the two buffers are dealing with enough throughput.
Karp and Miller examined these properties in the context of Petri nets [16] and
Lipton and Rackoff showed them to be EXPSPACE-complete [19, 23].

As Esparza notes in his survey article [12], verification of a “logic” based on
such properties, for instance LTL or CTL extended with counting properties,
quickly becomes undecidable. Modalities of the form EF(M > M,.) (where
M, M, are markings) can be handled without getting into undecidability [27].
However, a “usual” definition of a logic based on these modalities can express
reachability, as in Howell, Rosier and Yen’s logic [15] and in Yen’s logic [27] (as
was recently shown by Atig and Habermehl [2]). So we are left with positive
Boolean combinations of formulae of the form EF(M > M,.) [27] for which
modelchecking is EXPSPACE-hard. Rosier and Yen analyzed boundedness [24]
using what we today call parameterized complexity [10] to show that the space
requirement is exponential in the number of unbounded places and polynomial
in the number of bounded places. If we give up counting properties, Habermehl
shows that the full linear time p-calculus can be reduced to the problem of
repeated control state reachability [14] and is PSPACE-complete in the size of the
formula and EXPSPACE-complete in the size of the model.

An EXPSPACE lower bound in the size of the model is not very encouraging



for potential verifiers. Our first contribution is the identification of a parameter
K, which we call benefit depth. A buffer p; can benefit by another buffer py if
there is a sequence of transitions that decrease tokens in py and increase tokens
in p;. Benefit depth is the maximum number of buffers benefited by any one
buffer. It seems reasonable that, in a sparsely communicating system, benefit
depth can be low.

We show that boundedness and coverability in our models, when parame-
terized by benefit depth, are solvable in paraPSPACE [13]. That is, the space
requirement is of the form O(f(K)p(n)), where f is an exponential function of
benefit depth and p is some polynomial of the size of the model and the marking
to be covered. For constant benefit depth, boundedness and coverability can be
solved in PSPACE. Thus, our results are refinements of Rosier and Yen’s [24],
improving them if benefit depth is less than the number of buffers (as happens
in sparsely communicating systems).

As our final contribution, we define a logic which can express counting prop-
erties such as coverability and show that it can be modelchecked on Petri nets
in paraPSPACE.

Related work. We did look at other parameters such as cycle rank [11] and
DAG-width [3, 21] which have been explored as a measure of “cycle complex-
ity”. These do not seem to work in the case of coverability problems since
the structure of cycles used in Lipton’s hardness proof has low cycle rank and
DAG-width.

2 Problem definitions

Let Z be the set of integers and N the set of natural numbers. A Petri net is a
4-tuple N = (P, T, Pre, Post) where P is a set of places, T is a set of transitions
and Pre and Post are the incidence functions: Pre : P x T — [0...W] (arcs
going from places to transitions), Post : P x T — [0...W] (arcs going from
transitions to places), where W > 1.

Definition 1. Given a place p, the set of places Ben(p) € P and the set of
transitions Tpen(p) C T benefited by p are those connected to p by a sequence of
arcs with weight > 1. Formally they are the smallest sets satisfying:

1. p € Ben(p).

2. If some p’ € Ben(p) and there is a transition t with Pre(p’,t) > 1, then
te Tben (p)

3. If some transitiont € Tpen (p) and there is a place p” such that Post(p”,t) >
1, then p'" € Ben(p).

Ind(p) = P\ Ben(p) and Ting(p) = T \ Toen(p) are the places and transitions
not benefiting from p.



We call a function M : P — 7Z a vector. For two vectors M7 and M, we
say M; covers My (written My > My) if for every place p, My(p) > Ma(p).
My > M5 means that M; covers My but they are not the same.

If the range of the vector is N, it is called a marking. At a marking M, a
place p is said to have M (p) tokens. A pair (N, M) consisting of a Petri net N
and an initial marking M is called a system. We assume a net is presented as
two matrices for Pre and Post. In the rest of this paper, we will assume that
a Petri net N has m places, n transitions and that W is the maximum of the
range of Pre and Post. We define the size of the net to be 2mnlog W bits. The
system has size 2mnlog W + log | M| bits.

A transition ¢ may be taken as a step at the vector M yielding a new vector
M’ given by the equation M'(p) = M(p) — Pre(p,t) + Post(p,t) for all p € P.
The transition ¢ is said to be fired at M if, in addition, ¢ is enabled at M, that is,
forall p € P, M(p) > Pre(p,t). Thus firing a transition leads from a marking to
another marking, while stepping is a more general notion leading from a vector
to a vector.

A finite transition sequence o = t1ts . ..t, is a walk from an initial vector M
to a vector M, if there exist intermediate vectors My, Ms, ..., M, such that for
all 4 with 1 < ¢ < r, we have a step from M;_; to M; using the transition ¢;. We
write My = M,. o is a firing sequence enabled at some initial marking M if the
transitions are enabled at the intermediate vectors, so that My, Ms, ..., M, are
all markings. We write My == M, and say that the marking M, is reachable
from My. R(N, My) is the set of markings reachable from M. A place is said to
be c-bounded, ¢ € N, in the system (N, My), if for all its reachable markings M,
M(p)isin {0,...,c}. The system is c-bounded if all its places are. A 1-bounded
system is commonly called a 1-Safe net.

Definition 2 (Reachability, coverability, boundedness). Given a system (N, Mp)
and a marking M as input data, the reachability problem is to decide if the mark-
ing M is in R(N, My); the coverability problem is to decide if there is an M’ in
R(N, My) such that M’ covers M. Given a system (N, My), the boundedness
problem is to decide if there is some ¢ € N such that the system is c-bounded.

Given a c-bounded system, the reachability and coverability problems are
known to be PSPACE-complete [7]. For systems in general, which can be un-
bounded, Lipton showed that all three problems are EXPSPACE-hard [19]. Rack-
off showed that boundedness and coverability are in EXPSPACE[23]. Reachabil-
ity has been shown to be decidable [20, 17], obtaining an upper bound is a
famous open problem.

2.1 A logic of properties

Inspired by Yen [27], we now formulate a logic of properties such that its model
checking can be reduced to coverability (x) and boundedness (3) problems, but
is designed to avoid expressing reachability. In particular, a x formula of the
form 7 < ¢, ¢ € N, is not provided and the k and ¢ formulas are not closed



under negation.

Tu=p, pEP|T1+m]|cr, céN
kKu=T2>¢, cEN| K ARy | K1 VK| EFk
Buo=A{r,..., 7w} <w]| 6|1V S
pu=pB K| Pp1Ag2 | P1V o

The satisfaction of a formula ¢ by a system (N, M) (denoted as N, My = ¢)
is defined below. The boolean operators work as usual. Note that every term
(of type 7) gives a function L, : P — N such that 7 is syntactically equivalent

to ZPGP LT(p)p'
o NNMoET72>cif ) pL(p)Mo(p) > c
o N, M, = EFx it IM € R(N, Mp) such that N, M E .

e N My =A{m,...7v} <wif 3ee N: VM € R(N, M) 3j € {1,...,r} such
that > cp Ly, (p)M(p) < c.

We use {71,...,7+} = w as an abbreviation for ~({r,..., 7.} < w).

The formula {p1,...,p,} < w says that the given set of places is bounded
according to Valk and Vidal-Naquet [26, Section 4.1]. On the other hand, {p; +
-+ pr} < w says that the same set of places is uniformly bounded according to
the same authors [26].!

2.2 System model

Though our results work for any Petri net, we work with the model defined
below to emphasize the fact that our problem formulation strictly generalizes
reachability for 1-bounded systems. The model of concurrent systems we con-
sider in this paper consists of some 1-safe nets, called components, which can
add or remove tokens to/from a set of unbounded places that we refer to as
buffers.

Definition 3. A net communicating with buffers (we just use the word
“net” below) is a Petri net N = (C, B, T, Pre, Post) where the set of places
P = CUB is partitioned into a set of buffers B and component places C = P\ B,
such that all places in C' remain 1-bounded (regardless of the number of tokens
in the buffers in an initial marking).

In the rest of the paper, we will assume that |C| = a, |B| = b and that a+b =
m, where m is the total number of places. In our model, the components do
not contribute to exponential space complexity. Our results can be generalized
to the case where the components are declared to be ¢-bounded (for a constant
¢) rather than 1-bounded.

IWe thank an anonymous FSTTCS referee for pointing out this subtlety. Following their
suggestion, we have slightly extended our logic beyond the submitted version to cover both
kinds of boundedness.



Definition 4. The benefit depth of a net is defined as K = maz{|Ben(p) N
B|—-1|pe€e B}.

Benefit depth depends only on the communication pattern among buffers,
even though the communication link may involve some component places. It
can be computed efficiently (in NLOGSPACE).

The communication graph of the system of Fig. 1 is shown in Fig. 2. Irre-
spective of the number of assembly lines, benefit depth is 3 since only ob;, pry
and pro can benefit by decreasing tokens from ib;. If there are interdependencies

b1 1bo by

Figure 2: Communication graph of buffers of the system in Fig. 1

among the assembly lines, such as a byproduct of one being the raw material of
another (not shown in the figure), then benefit depth will increase. The more
such dependencies (i.e., more dense the communication graph among the buffers
is), the higher will be the benefit depth. Intuitively, the number of tokens in
a place in Ben(p) can be increased by decreasing some tokens in p through a
sequence of transitions in Tpe,(p). Only those transitions use the extra tokens
from p.

Our earlier definitions are modified to be well-behaved on the components.
A vector will now be given by a pair of functions C' — {0,1} and B — Z; it is a
marking if the second function has range N. Walks and firing sequences will now
be defined with these kinds of intermediate vectors and markings.

3 Benefit depth and coverability

Let @ C P be a subset of places. For this paper we will need the inbetween
notion (due to Rackoff) of o being a @-run where for the vectors M;,0 < i < r,
M;(p) > Pre(p,t;y1) for every place p in ). Thus a walk is a -run and a firing
sequence is a P-run. For two vectors M; and Mj, we say My >q M, if for
every p € Q, M1(p) > Ma(p) and M;(p) = Mx(p) for every p € C. A walk o
from M, is said to @Q-cover a marking M., if it is a Q-run and the final vector
My obtained by walking o at M, satisfies My >g Meo,. We say o covers a
marking if o P-covers it.



We will fix for this section M., as the marking to be covered. For the
purpose of complexity analysis, we will denote the maximum of the range of
Mo, by R.

Definition 5. A Q-covering run is a Q-run that Q-covers Mc,. Let Qy C Q.
A Q-run from My to M, is said to be c-bounded for @y, c € N, if for all
intermediate vectors M;,0 < i < r, M;(p) is in {0,...,c} for every place p in

Qo-

Definition 6. [23, Rackoff] Let C C Q C P. Define lencov(Q, M, M,o,) to be
the length of the shortest Q-covering run from the vector M. If there is no such
sequence, define lencov(Q, M, M.o,) to be 0. For 0 <1i <b, £(i, M.o,) is defined
to be maz{lencov(Q, M, Mco,) | M a vector, C C @ C P and |Q \ C| = i}.
In this section we abbreviate (i, Mcoy,) to £(2). In section 5 we will abbreviate
(b, M) to '(M).

Definition 7. Let C C Q C P and p € B be a buffer. Define covind?(Q, M, Mcoy)
to be the length of the shortest Q-covering run in Tye,(p)* from the vector M.
If there is no such sequence, define covind?(Q, M, Mc.,y) to be 0. Let (i) =
maz{covind?(Q, M, Mco,) | M a vector, p a buffer, |Q N Ben(p) N B| =i}.

Our strategy is to segregate covering sequences into two parts, the first made
of transitions in Tj,q(p) and the second one made of transitions in Tpe, (p). We
need the following technical lemma, which is a generalization of the exchange
lemma [8, Lemma 2.14] to Petri nets with weighted arcs.

Lemma 8. Let p be a place, transitions tpen, € Then(p) and ting € Tina(p). Let
Q C P be some subset of places. If tpenting is a Q-run from some vector M,
then so is tinatpen-

Proof. We will first prove that ¢;,4 is a @-run from M. Suppose not. Now,
suppose p' € Q is one of the places that do not have sufficient tokens at M
to enable t;nq. Since ting € Tina(p), we know from Definition 1 that for all
p” € Ben(p), Pre(p”,tina) = 0. Hence, p' ¢ Ben(p), i.e.,, p' € Ind(p) N Q.

Now, we have M Loen, M, Lind, M for some vector M, tinq is a @Q-run from
M but not from M since a place p’ € Ind(p) N Q doesn’t have enough tokens
at M. Since p’ has enough tokens at M, tpe, adds some tokens to p’, i.e.,
Post(p,tpen) > 1. This contradicts the fact that tpen, € Then(p). Therefore, tinqg

is a Q-run from M. So, M Lind, M3 for some vector M3.

Now, we will prove that tpe, is a @-run from Mj3. Suppose not. Let p’ € Q
be one of the places that do not have enough tokens at M3 to enable tpe,. Since
then 18 a Q-tun from M, t;,q must decrease the number of tokens in p’. Since
tind € Tina(p), we know from Definition 1 that ¢;,4 doesn’t decrease tokens in
any place that belongs to Ben(p). Hence, p’ ¢ Ben(p), i.e., p' € Ind(p) N Q.
Let ¢’ be the number of tokens in p’ at M and let ¢;,4 decrease the number of
tokens in p’ by ¢1. Now, if do = Pre(p’, tpen) is the number of tokens needed by
tben, then do > ¢ — q1. Now, if tpenting is run from M, number of tokens in p’
at the end will be ¢’ — da — q1 < 0 (Post(p’, tpen) = 0 since p’ € Ind(p)), which



contradicts the fact that tpenting is a Q-run from M. Therefore, p’ cannot be
in Ind(p) N @ and hence there is no such p’. This means that tpe, is a @Q-run
from M3 and hence t;,4tpen is @ Q-run from M. ]

Lemma 9. If K <i <b, then £(i +1) < (WH(K) + R)"T12% + £(i) + ((K).

Proof. Suppose that @;+1 = C U A where |A| =4+ 1 and that there is a Q;41-
covering run from some vector M. If this run is W/ (K) 4+ R-bounded for Q;1,
then there is a similar run where no two intermediate vectors are equal when
restricted to Q;4+1. The length of such a sequence is at most (W /i(K)+ R)™122.

Otherwise, there is a @Q;11-covering run from M that is not WAH(K) + R-
bounded for Q;11. Then there exist runs o; and o9 such that o109 is Q;41-
covering from M, o1 is W (K) + R-bounded for Q; ;1 and the final vector M’
obtained by walking o1 at M has more than W/1(K) + R tokens at some place
p € A. Let Q; = Qi11 \ {p}. As above, we can assume that length of oy is at
most (WA(K) + R)"122,

Now, o5 is a Q;-covering run from M’. By definition, there is a @Q;-covering
run o4 from M’ whose length is at most £(i). Since o} is a Q;-run from M’, we
can apply Lemma 8 repeatedly to rearrange o4 into another sequence 775 such
that 71 € Tina(p)*, T2 € Then(p)*, 1172 is a Q;-run from M’ and |ri7a| = ||
(see Fig. 3). This rearrangement of ¢4 could potentially cause places in C to
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Figure 3: Sequences and bounds used in the proof of Lemma 9
1 (resp. |) inside places indicates that tokens are non-decreasing (resp. non-
increasing).

get more than 1 token in an arbitrary Petri net. However, our assumption that
places in C' remain 1-bounded regardless of the number of tokens in the buffers
at the initial marking ensures that the rearrangement doesn’t disturb the 1-
boundedness of places in C. Let M" be the final vector obtained by walking



71 at M’. Now, 7o € Tpen(p)* and is a @Q;-covering run from M”. Hence, by
Definition 7, there is a Q;-covering run 74 from M" with 75 € Tpen(p)* and
|72] < &i(|Ben(p) N B| —1). Since || < £(i) and fi(|Ben(p) N B| — 1) < ((K),
|T175| < £(7) +(K). Since 11 € Tina(p)*, Definition 1 implies that no transition
in 7 decreases tokens from p. Since M"(p) > M'(p) > W(K) + R and each
transition in 74 removes at most W tokens from p, 17175 is a Q;41-covering
run from M whose length is at most (W/A(K) + R)12% + £(i) + A(K). O

The bound on £(i + 1) given by Rackoff in [23] is similar to the one in
Lemma 9 but uses £(¢) in place of f1(K). Since ¢1(K) can be much smaller than
£(7), the bound in Lemma 9 is better. This is the fact that enables us to restrict
exponential space complexity to K. The following lemma gives a recurrence
relation for length of covering sequences made of transitions in Tpen (p).

Lemma 10. (1(0) < 2% and ((i + 1) < (Wh(i) + R)™F122 + (i).

Proof. (Following [23].) We will first prove the bound on £1(0). Let Q = C U A
and AN Ben(p) = 0 for some buffer p. Suppose o € Tpen(p)* is a Q-covering run
from some vector M. If any two intermediate vectors reached by walking o at
M are equal when restricted to C, remove the subsequence between these two
intermediate vectors. Since the removed subsequence never added any tokens
to any place in A, such removals will never decrease tokens from places in A.
Therefore, after all such removals, the sequence that is left is still a Q)-covering
run from M. The length of this run is at most 2%.

Next, we will prove the bound on #1(i + 1). Suppose that @ = Q.41 =
CUAU A’ where |A’'| =i+ 1, with AN Ben(p) = 0 for some buffer p. Suppose
that there is a Q;41-covering run in Ty, (p)* from some vector M.

Case 1: There is a Q;41-covering run from M that is W/1(i)+ R-bounded for
A’. Then, as above, there is a );1-covering run o from M that is Wi (i) + R-
bounded for A’ such that no two intermediate vectors obtained from walking o
at M are equal when restricted to Q;11 \ A. The length of such a run is at most
(Wh(i) + R)“12e.

Case 2: Otherwise, there is a ();41-covering run from M that is not Woi(i)+
R-bounded for A’. Then there exist sequences o; and oy such that oj09 €
Then(p)* is a Q;41-covering run from M, o1 is Wi(i) + R-bounded for A" and
the final vector M’ obtained by walking o1 at M has more than Wai(i) + R
tokens at some place p’ € A’. Let @Q; = Q;+1\{p'}. Asin case 1, we can assume
that length of o is at most (W#(i) + R)™H122.

Now, g3 € Tpen(p)* is a Q;-covering run from M’. By definition, there is
a Q;-covering run b € Tpen(p)* from M’ whose length is at most £1(i). Since
M'(p) > Wa(i) + R and each transition in o) removes at most W tokens from
p', o105 is a Qy1-covering run from M whose length is at most (Wh(i) +
R)™129 4 n1(3). O

It now only remains to solve the recurrence relations we have obtained and
use them in a nondeterministic algorithm that guesses covering sequences to get
our first main theorem.



Definition 11. Let W’ = max{W, 2}, R’ = max{R,2}. Define a growth func-

tion g: N — N as g(0) = W/R'2* and g(i + 1) = (g(i))30+1)2e,

Lemma 12. /(K +j) < (K + j)(Wh(K) + R)X+72¢ 4 jn(K) + ((K).

Proof. By induction on j. The base case j = 0 is clear since RHS of the

inequation is at least ¢(K).

(WH(K) 4+ R)XTI12¢ 4 (K + j) + ((K)

(WhH(K) 4 R)K+itlga

+ (K + j)(WH(K) + R)E+720 1 jin(K)

+/{(K) + 0(K)

< (K +j+1)(Wa(K) 4+ R)*H+12% + (j 4+ 1)((K)
+{(K)

UK +j+1) <
<

O
Lemma 13. 4(i), £(i) < g(i) < (W'R')* 25 and ((K+j) < (K+5)(g(K))*+i)2e,

Proof. Bounds on #1(3) and £(4) are by induction on ¢. For the base case i = 0, we
have £1(0) < 2% < g(0) and £(0) < 2% < g(0) (this bound on £(0) can be obtained
by arguments similar to those used for the bound on £1(0) in Lemma 10).

< (Wa(i) + R)12% 4 (i)

< (Wy(i) + R)™2" + g(i)

< (W’R'V+ (9(0))" "2 + g(i)

(z+l)2a +g( )

h(i+1)

For the bound on £(i), we will use Rackoff’s result from [23], which states that
i+ 1) < (WE(i) + R)12% + £(3).

0i+1)

Next, we will prove the bound on (K + j).

(K +5)(Wg(K) + R)* 72" + jg(K) + g(K)
(K +5)(W'R)SH (g(K))*F92% + (j + 1)g(K)
< (K +j)(g(K))PHEH)20

UK +j) <
<

10



Finally, the bound on g(i) is by induction i. For the base case i = 0, we have
9(0) = (W'R')2* = (W'R/)*0'20"0",

gli+1) = (g(i))* V2"
((W/R/)3ii!26iua)3(i+1) 9a
(W/R/)si“(z‘+1)!2(6%13(i+1)+1)a

IN

IA

(W/R/)si“(i+1)!2(6%13(i+1)2)a

IA

_ (W/R/)gi“(i+1)!26i+1(i+1)!a
O

Theorem 14. Suppose a net under consideration has benefit depth K. There is
a non-deterministic algorithm that decides if there is a firing sequence covering
Mo, from My in space O(log |My| +1logn + (log W' +1log R )65 +2 K!m? logm).

Proof. Since there are b buffers in the net, £(b) gives an upper bound on the
length of the shortest P-covering run. Therefore, there exists a P-covering run
iff there is one of length at most ¢(b). From Lemma 13 we get

. . P 3m 1 3m
E(b) < b(g(K))San < m(g(K))SmQa <m ((W/R/)SKKIQGKKIG,> 9a <m ((WIR/)6K+ K!a) 9a

Hence £(b) < m(W/R’)6K+2K!m2. A nondeterministic algorithm can guess a
sequence of transitions of this length and verify that it is P-covering from M.
The memory needed is dominated by a counter to count up to maximum £(b)
and the memory needed to store intermediate markings. The memory needed
for the counter is O((log W’ + log R')6X+2K!m?logm) and to store markings
we need O(log|Mo| + logn + (log W’ + log R")65+2K!m?3 logm). O O

Given a net, its benefit depth K can be computed in polynomial time. Hence,
the upper bound on the memory requirement in the above theorem is space con-
structible and the well known Savitch’s theorem can be applied to determinize
the above algorithm (see any standard text on complexity theory). The memory
required will still be polynomial in the size of the input net and this gives us
the paraPSPACE algorithm.

For later use in section 5, we name the exponent 65X+2K!m? used in the
above proof expcov(1), and let expcov(i) = expcov(1)°.

4 Benefit depth and boundedness

In this section, we will tighten Rosier and Yen’s analysis [24] and prove that
the complexity of boundedness problem is paraPSPACE when parameterized by
benefit depth. As in coverability, we segregate transitions that reduce tokens
from a place and those that do not.

11



Definition 15. Let U C B be a subset of buffers, @ C P a subset of places
and M a vector. A Q-run o from M is said to be U-self-covering if it can
be decomposed as o109 with M AT /RN Ms, My > My and for all p € U,
My(p) > Mi(p). We call oy as the pumping portion of the self-covering
sequence.

It is well known that a place p is unbounded iff there is a firing sequence that
is U-self-covering from the initial marking? for some U C P with p € U. In the
rest of this section, we will fix a non-empty subset U of places and refer to U-
self-covering sequences as self-covering sequences. Let Tyep(p) = {t € Then(p) |
Vp' € Ind(p) : Pre(p’,t) = 0}.

Definition 16. Let C C Q C P and p € B be a buffer. Let scov?(Q, M)
be the length of the shortest Q-run in Then(p)* that is self-covering from the
vector M with the pumping portion of the sequence in Tuep(p)*. If there is
no such sequence, define scov?(Q, M) to be 0. Let s1(i) = max{scov?(Q, M) |
M a vector, |Q N Ben(p) N B| = i}. Also, let scov(Q, M) be the length of the
shortest self-covering Q-run from the vector M and O if there is no such se-
quence. Let s(i) = max{scov(Q, M) | M a vector, |Q N B| =i}.

Lemma 17. For 0 <i <b, s(i +1) < (W?2s1(K))P?¥™) 4 s1(K) + (Ws1(K) +
2)s(i) for poly(m) a polynomial in m with degree independent of W,m, K.

Proof. Suppose that Q@ = Q;41 = C U A with |A| = i+ 1 and that there is a
self-covering @;4+1-run from some vector M. If this run is Wsi(K)-bounded for
Qi+1, the required result is a consequence of [24, Lemma 2.2].

Otherwise, let o109 be a self-covering @;1-run from M such that M M
and M’ is the first vector to contain more than Wsi(K) tokens in some place
p € A. Let o3 be the pumping portion of o105. Without loss of generality, we
can assume that length of oy is at most (Ws1(K))*™12%. Let Q; = Q41 \ {p}.
Now, o903 is a self-covering Q;-run from M’. By definition, there is a self-
covering @;-run o4 of length at most s(i). Let o4 = o040} where o) is the
pumping portion of o5. By applying Lemma 8 repeatedly, rearrange o into
7172 and o) into 7{74 such that 7,7 € Tina(p)* and 72,75 € Tpen(p)*. Let

M 5 My 2 My, Z5 Ms 22 My (see Fig. 4). Since 7]74 is the pumping
portion, My > Ms.

We claim that M3 > M,. Suppose not. Let p’ be a place such that M3(p') <
Ms(p'). Since 71 € Tina(p)* and transitions in Tj,4(p) don’t decrease tokens
from Ben(p), p’ € Ind(p). Since 75 € Tpen(p)* and transitions in Tpen(p) don’t
increase tokens in Ind(p), My(p') < M3(p'). We now have My(p') < M3(p') <
My (p'), which contradicts My > Ms. Hence, M3 > M.

Case 1: M3 = Ms. In this case 717274 is a self-covering Q;-run from M’ with
74 as the pumping portion. In other words, 7575 is a self-covering @Q;-run from
M. Also, for any p’ € Ind(p) and any transition ¢ occurring in 74, Pre(p’,t) =0
(otherwise, some other transition ¢ in 74 would have to satisfy Post(p/,t') > 1

2We thank an anonymous FSTTCS referee for pointing out a mistake here.
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Figure 4: Sequences and bounds used in the proof of Lemma 17

in order to maintain My > M3, which is not possible since 75 € Tpen(p)*). Since
To7s is a self-covering Q;-run in Tpen(p)* from M; with pumping portion in
Taep(p)*, by Definition 16, we conclude that there is a self-covering Q;-run in
Then(p)* from M; whose length is at most s1(|Q; N Ben(p) N B]) < si(K).
Case 2: Ms > Ms. In this case, although 7] strictly increases the number
of tokens in some unbounded buffers, it may not do so for all buffers in U. We
need to do some more work to achieve that. We partition the buffers into four
subsets B}, , By.,, Bl and B, ,. B, = (Ben(p) NU)U{p" € Ben(p) \ U |
My(p') > My(p')} are the buffers in Ben(p) that are pumped up by 774 while
By, = Ben(p)\ B}, are the buffers in Ben(p) that are not pumped up by 7{75.
B = (Ind(p) NU)U{p" € Ind(p) \ U | M3(p') > Mz(p’)} are the buffers in
Ind(p) that are pumped up by 7{75 while Bf , = Ind(p) \ B}, are the buffers
in Ind(p) that are not pumped up by 7{74. Since 74 € Tpe,(p)* cannot increase
tokens in Ind(p), it follows that for all p’ € BY ,, M3(p') > Ma(p’). For the

ind?
same reason, for all p’ € Bf, , and t € Tpe, (p), Pre(p’,t) = 0.
For all p’ € Bf,,., p’ is not pumped up by 7175 due to two possible reasons:

e Neither 7{ nor 74 increase pumps up tokens in p’ or

e 7 pumps up tokens in p’ but 75 decreases the tokens so that after walking
7174, number of tokens in p’ doesn’t change.

Accordingly, we will further partition Bf,, into Bf,, (in) = {p’ € By, |

ben

Ms(p') > Ma(p')} and BY  (nin) = BY '\ B (in). For all p’ € Bf, (nin),

ben ben ben ben
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My(p') = Ms(p'). The increase in number of tokens in places in Bj., can be
either due to 7'1 or 75 or both. So, we further partltlon B into B}, (ind) and

By, (ben) = B, \Bben(znd) such that for all p’ € B}, (ind), M3(p") > Ma(p').
The job of 7'2 is to “pump up” number of tokens in Bj.  (ben) without decreasing
“too many” tokens in places in B ;U B, (ind) U B}, (in). However, 75 might
decrease a few tokens from places in BY, ,UB} (ind)UBY, (in). If we disregard
this action of 74 on Bfnd UBL, (ind) U By, (in), the only “other effect of 74 is to
ensure that for all p’ € By, (ben), My(p’) > M3(p') and for all p € By, (nin),
My(p') = M3(p'). This effect can be achicved by another run 74’ of length at
most si1(k) (in fact ||+ |75| < s1(k)). Since 74/ may decrease tokens from places
in BY ;U Bben(md) U By, (in), we will compensate for it by firing 71 Ws1(K)

times before 74

/Wm(K)Jrl // /W (K)+1
S1 .
Now, let My ———— M}, 2, Mj. We claim that 77T 74 is a

self-covering Q;-run from M’, with 7 'WSl(k)H 74 as the pumplng portlon We
have to prove that it is a @Q;-run from M, M4 > M> and that for all p’ € U,
M (p') > My(p'). Since M’ = My, =5 M, I Ms, Ms > Mo and T1ToT]
is a Q;-run from M’, 7'1’7'2T{WS]<K)+1 is also a @Q;-run from M’. We prove the
remaining properties for every place p’ by looking at which partition p’ is in.
1. p' € By, (ind)UB} ,UBs,, (in). Then, M5(p") > My (p')+Wsi1(K). Since

1N

75| < s1(k), My(p') > Ma(p').

2. p/ € B, (ben). Then, Mi(p') = Ma(p') and Mj(p') > Mi(p') (since 74/
pumps up tokens in places from B}, (ben)). Hence, M;(p') > Ma(p').

3. p € Bf,,(nin) U B¢,

ind*

Then, M;(p") = Mj(p') = Ma(p').

In both cases 1 and 2, ¢4 can be replaced by another self-covering @Q;-run o
from M’ whose length is at most s(i)+s1(K)+(Ws1(K)+1)s(i) and that contains
at most s1(K) transition occurrences from The, (p). Since M’ (p) > Wsi(K) and
only transitions in Tpe, (p) decrease tokens from p, o104 is a self-covering Q;41-
run from M. O

The following lemmas give recurrence relations for length of self-covering
sequences in Tpe, (p)*. The proofs are similar to those of corresponding lemmas
in [24] with the additional fact that transitions in Tpep(p) don’t increase tokens
in Ind(p). As before, W’ = max{W, 2}.

Lemma 18. Let C C Q C P and p € B a buffer. For ¢ € N, suppose there is
a self-covering Q-run in Tpen(p)* from some vector M which is c-bounded for
QN Ben(p) N B. If its pumping portion is in Taep(p)*, then a similar sequence
exists whose length is at most (W'c2%)P°W ) for poly(K) some polynomial in
K whose degree is independent of W, c,a, K.

Proof. The proof of this lemma is very similar to the corresponding ones in
[23, 24]. Suppose o = o102 is a run satisfying the properties given in the
lemma with o9 being the pumping portion. Since oy is in Tpen (p)*, there are at
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most k buffers that are in ) that increase their tokens while walking o1 from
M. Hence, following an argument similar to the one in Lemma 10, we can
assume that length of oy is at most ¢2%. Next, consider the pumping portion
o9. Note that transitions in oy affect at most K buffers and a component
places. Hence, o5 can be decomposed into a sequence o, and some (Q-loops
(runs that start and end in vectors that are equal when restricted to @), such
that length of o, is at most (2% 4+ 1)2. Now, the fact that o, and the Q-loops
together form a pumping portion can be represented by a system of equations
Bx > b, where the matrix B contains one row for every place and one column
for every Q-loop. Now, observe that component places are not affected by Q-
loops. Hence, rows corresponding to component places can be removed from B.
Of the remaining buffers, transitions in oy affect at most K. Hence, all rows
except the K corresponding to the above buffers can also be removed from B.
Thus, our system of equations has at most K rows. In addition, each entry in
the remaining B is of absolute value at most We 22, Hence, there are at most
(2(Wek2%) + 1)K columns in B. To find a shorter pumping portion, it suffices
to find a smaller solution to Bx > b. We can use [24, Lemma 2.1] by letting
dy = K and d = (W'e2")K” to conclude that there is a solution where each
Q-loop occurs at most (W'c2%)% " times. By replacing these Q-loops back into
0s and combining with o1, we get a self-covering @Q-run from M whose length
is at most (W'c2%)K * for some constant k. O

Lemma 19. 81(0) < (W’QG)POW(K) and Sl(l + 1) < (W/QSl(i)2a)pOly(K).

Proof. For s1(0), all buffers can go into negative values while walking a self-
covering sequence. Since component places are 1-bounded, we can put r = 1 in
Lemma 18 to get the result.

For s1(i + 1), suppose Q;+1 = @ C P such that Q;y; N Ben(p) N B = A’
and |A’| =i+ 1 for some buffer p. Suppose there is a self-covering @;41-run in
Then(p)* from some vector M with its pumping portion in Tyep(p)*.

Case 1: If the above sequence is Wsi(i)-bounded for A’, the required result
is a consequence of Lemma 18.

Case 2: Otherwise, let the above sequence be o109 with M 2L M’ and o
being the pumping portion of o102, where M’ is the first intermediate marking
with some place (say p’) in A’ having more than Ws1(%) tokens. We can assume
length of o1 to be at most (Ws1(7))iT12%. Let Q; = Qiy1 \ {p'}. Now, o903 is
a self-covering Q;-run in Tpe,(p)* from M'. o3 is the pumping portion of this
sequence and is in Tye,(p)*. Hence, by definition, there is a self-covering Q;-run
0% € Then(p)* from M’ with length at most si(i) whose pumping portion is in
Taep(p)*. Since M'(p') = Ws1(i), o107 is a self-covering Qi 41-run in Ty, from

M, whose length is at most (Ws1(i))"+129 4 s1(4) < (W'2s1(3)2%)Polv(K), O

Now we give upper bounds for these recurrence relations and use them in a
nondeterministic algorithm. A technical point is that the recurrence relation in
Lemma 17 for s(i) starts from ¢ = 1 (unlike that in Lemma 9). This avoids the
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calculation of an upper bound for s(u) using Lemma 20 below from containing
terms m in the exponent, which is not acceptable in paraPSPACE algorithms.

Lemma 20. For 0 <i < b, we have s1(i) < W2+ 1)poly (K ) ga(i+1)poly(K™T)
as also s(i) < 271 (4AWs1(K))* 1 (W2s1(K))Pe(m) 4 (4W s1(K))?s(0).

Proof. Bound on s1(%) is by induction on . For the base case i = 0, s1(0) <
(lea)poly(K)'

s1(i + 1) < (W'2s1(i)2%)Polv(F)
< W'2poly(K) gapoly(K) (W/2(i+1)pozy(Ki+1)2a(i+1)pozy(K1‘+1))pOl-’/(K)

< W/2(i+2)poly(K'i+2) 2a(i+2)poly(K'i+2)

Bound on s(%) is by induction on ¢. For the base case ¢ = 1, Lemma 17 implies
s(1) < (W2s1(K))Pew(m) 4 s1i(K) + (Wsi(K) + 2)s(0) < (W2s1(K))petv(m) 4
AW s1(K)s(0).

AW s1(K) (zi—l(4W51(k))i—1(WQSI(K))PWM) + (4W51(K))is(o))
< 21(4W s1(K)) (W2 s1(K))PPW ™ 4 (4Ws1(K))H1s(0)
0

Theorem 21. There is a nondeterministic algorithm that decides if a net is
bounded in space O(log|Mo| + log W' K mca + mlogn) where ¢ is some con-
stant.

Proof. Since there are b buffers in the net, s(b) gives an upper bound on the
length of the shortest self-covering sequence from the initial marking M,. By
Lemma 2.3 in [24], (Wn)“™ is an upper bound for s(0). Using Lemma 20, it
can be seen that W/daK " m pem ig ap upper bound for s(b) for some constants
c and d.

A non-deterministic algorithm can guess a sequence of transitions of length
at most s(b) and verify that it is a self-covering P-run from My. The memory
needed is dominated by a counter to count upto maximum of s(b) and store the
intermediate markings. The memory needed for the counter is O(log W’ KX mca+
mlogn) and memory needed for intermediate markings is O(log | My|+log W’ K “Km¢a+
mlogn). O
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5 The model checking algorithm

We now show that checking whether a given system (N, M) satisfies a given
formula ¢ of the logic defined in sub-section 2.1 can be done in paraPSPACE
with benefit depth as the parameter. This requires a lot of technical work.
First of all, we simplify the kind of formulas that our algorithm has to handle
by nondeterministically choosing a disjunct from a disjunctive subformula. We
then end up with ¢ a sequence of conjuncts (i,..., G, x, where each 3; is of
the form {7y, -7} < w or {m, - 7.} = w and &k consists of conjunctions of
nested EF modalities over 7 > ¢ formulas. If we can check such formulas in
paraPSPACE, Savitch’s theorem ensures that satisfiability of ¢ can be checked
in paraPSPACE.

For checking (3;, we need the following lemma. Recall that every term 7 gives

a function L. : P — N such that 7 is syntactically equivalent to ZpEP L. (p)p.

Lemma 22. N, My = {m,...,7} = w iff there exists a U-self-covering se-
quence for some U C P such that for every j € {1....,r}, there is ap; € U
with L, (p;) > 1.

Proof. (<) If there is a U-self-covering sequence as stated, the pumping portion
of the sequence can be fired arbitrarily many times so that we have Ve € N
M € R(N, Mo) such that for all j € {1,...,7} > cp L (p)M(p) > c.

(=) Suppose N, My = {r1,...,7.} = w. By semantics, we get Vc € N, IM €
R(N, My) such that for all j € {1,...,7} > p Lr;(p)M(p) > c. Hence, we can
conclude that for all ¢ € N, there are buffers p§,ps,...,pS and M° € R(N, Myp)
such that M¢(p§) > ¢ A L, (p§) > 1 for all j € {1,...,7}. For each ¢ € N, let
Ue = {p§,...,p¢}. Since the sequence U',U?,... is infinite and there are only
finitely many subsets of B, at least one subset of B occurs infinitely often in this
sequence. Let U be this subset. We will now prove that there is a U-self-covering
sequence using some results about coverability trees [9, Section 4.6].

Recall that in Karp-Miller tree, markings M : P — N are extended to w-
markings M : P — N U {w}, by mapping unbounded places to w. We first
claim that there is some reachable w-marking M in the coverability tree of
(N, My) such that for all p € U, M(p) = w. Suppose not. Then, for every
reachable w-marking M, there is some place p € U such that M(p) < w. Let c
be the maximum of such bounds. Then, by [9, Theorem 22], for every marking
M € R(N, My), there exists p € U such that M(p) < ¢, a contradiction. Hence,
there is a reachable w-marking M in the coverability tree of (IV, My) such that
for all p € U, M(p) = w. Now, the required U-self-covering sequence can be
constructed [9, Theorem 21]. O

Hence, checking of §; can be done in paraPSPACE by using results of section 4.
We now consider verifying the formulas x, which are of the form YAEF (k1) A
-+ ANEF(k,), with v having only conjunctions of 7 > ¢ formulas. We call 7y the
content of k and K1,..., K, as the children of x. Each of the children may
have their own content and children, thus generating a tree with nodes I';, with
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k at the root of this tree. We will represent nodes of this tree by sequences of
natural numbers, 0 being the root.

The maximum length of sequences in I' is one more than the nesting depth
of the EF modality in x and we denote it by D. Let [D] = {0,1,...,D — 1}.
If o« € T' is a tree node that represents the formula x(a) =y AEF (k1) A -+ A
EF(k,), content(a) = 7 denotes the content of the node a. Let ratio(r >
¢) = max{[c/L+(p)| | L+(p) # 0,p € P}. Defining max(h) = 0, we define the
maximum ratio at height ¢ in the tree by ratio(i) = max{ratio(r > ¢) | 7 >
¢ appears as a conjunct in content(a) for some a € I', |a| = i+ 1}. Recall from
Definition 6 that b is the number of buffers and ¢ (M) the length of the shortest
run covering M using all the buffers £(b, M).

Definition 23. Given a formula k and a system (N, My), the bound function
f:[D] x P — N is defined as follows. We use f(j) for the marking defined by

FG)P) = f(G,p)-
o f(D—1,p) =ratio(D —1),

e f(D —1i,p) = max{ratio(D —i),Wl'(f(D -1+ 1))+ f(D —i+ 1,p)},
1<i<D,

e f(0,p) = Mo(p).

A guess function h: T' x P — N is any function that satisfies h(a,p) < f(laf —
1,p) for alla € T and p € P. If h is a guess function, h(a) is the marking

defined by h(c)(p) = h(a, p).

If a given system satisfies the formula Kk = v A EF (k1) A -+ A EF(k,), then

there exist firing sequences g1, . . . , 0o, that are all enabled at the initial marking
My such that My =2 My; and My; satisfies x;. In general, if Kk generates a tree
with set of nodes T', then there is a set of sequences {0, | @ € T'\ {0}} and set
of markings {M,, | « € T'} such that M, AN M,; for all a,j € T'" and M,
satisfies content(a) for all a € T.
Lemma 24. There exist sequences {pq | « € T'\ {0}} and markings {M,, | « €
'} such that M, RN M, for all o, aj € T' with M, satisfying content(c) and
lta] < O(f(la] = 1)) iff there exist sequences {0, | @ € T'\ {0}} and markings
{M!, | a € T} (M} should be equal to My) such that M/, = M, for all
a,af € T with M, satisfying content(c).

Proof. (=) Since M, satisfies content(«), we can take M! = M, and 0, = pq-
(<) Consider the following guess function:

My(p) ifa=0
Mep)={ Ma(p) o #0and Mi(p) < f(la| = 1,p)
f(Ja] = 1,p) otherwise

By definition, h(a) < M/, and h(a) < f(|a| —1). Since o4 is a firing sequence
that covers M, ; from M, there exist sequences fio; that cover h(aj) starting
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from M! whose length is at most ¢'(h(cj)) (and hence at most ¢'(f(|aj| —1))).
We claim that there exist markings {M, | a € T'} such that M, ==& M,; for
all a,j € I' and that M, satisfies content(a) for all o € T

First, we claim that every p.; can be fired from M, and that every place p

will satisfy at least one of the following two conditions:
L. My;(p) > M;,;(p)
2. Maj(p) > f(laj| = 1,p)

We will prove this claim by induction on |«/.

Base case: |a| = 1. po; is a firing sequence of length at most ¢/(h(05)) that
covers h(0j) starting from My. The claim is clear by the definition of h(05).

Induction step: We want to prove that p.; can be fired at M, and that M,;
satisfies the stated claims. We will prove these for an arbitrary place p. By
induction hypothesis, either M, (p) > M/, (p) or M, (p) > f(Ja| — 1,p).

First, suppose that M, (p) > M/, (p). Since pio; covers h(cy) starting from
M/, My;(p) > h(cyj)(p) and there are no intermediate markings between M,
and M,; where p receives negative number of tokens. Also, since My;(p) >
h(a)(p); either Ma;(p) > M2, (p) o M(aj)(p) > f(laj| — 1,p).

Second, suppose that M, (p) > f(|la| — 1,p). |paj] < € (h(aj)) and h(aj) <
f(lagj] — 1) by definition. Hence ¢'(h(cy)) < ¢ (f(laj| — 1)) and |pa;] <
0(f(lajl - 1)). By definition of f(la — 1,p), we get Mo(p) > WE(f(jaj| —
1)) + f(Je| — 1,p). paj will remove at most We'(f(Jaj| — 1)) tokens from p
and hence, at least f(|aj| — 1,p) tokens will be left in place p at marking M.
Therefore, My ;(p) > f(|aj| — 1,p).

This completes the induction and hence the claim.

Now, we will prove that each M, satisfies content(a)). For each conjunct
T > c in content(a), we will prove that > p L-(p)Ma(p) > ¢, where L; is the
positive linear combination represented by 7. If ¢ = 0, then the required result
can be obtained by just observing that both L. (p) and M, (p) are positive for all
p € P. So suppose that ¢ # 0. Let Q, = {p € P | L;(p) # 0}. We distinguish
between two cases:

1. For some p € Q,, My(p) > f(la| — 1,p). In this case, M,(p) > f(|a| —
1,p) =2 -7 Hence, L, (p)M,(p) > c.

2. Forallp € Q,, M,(p) < f(la|—1,p). In this case, for all p € Q,, M, (p) >
M, (p). Since M, satisfies content(a), we have > o L-(p)M,(p) > c.
Therefore, > L. (p)M,(p) > c.

pEQ- T
O O

To derive an upper bound for f(i) to use in a nondeterministic algorithm,
let R = max{ratio(t > ¢) | 7 > cis a subformula of x}, R’ = max{R,2} and
W' = max{W,2}. Recall that D — 1 is the nesting depth of EF and note that
boundedness and coverability can be expressed with D < 2.

Lemma 25. Fori>2, f(D —i,p) < i+ 1)RW(f(D—i+1)).
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Proof. By induction on 1.
Base case: i = 2

F(D =2,p) <max{R,W{(f(D—1))+ f(D—1,p)}
<R+W/U(f(D-1))+ f(D—1,p)
<R+W/U(f(D-1)+R
<2R+ WU (f(D-1))
<2R'WI(f(D—1))

Induction step:

f(D—i—1,p) <max{R,W(f(D—1))+ f(D—1i,p)}
< R+WU(f(D—4)+ i+ 1)RWI(f(D—i+1))
< RWU(f(D—14)+ (i + 1)RWE(f(D —1i))
=i+ 2)RW(f(D—1))

O

Lemma 26. Recall from the end of section 3 that expcov(i) = (65K T2K!m?).
Then f'(f(D*l)) < m(W/R/)ezpcov(l) and gl(f(Dfi)) < me:D—i ((D —j+ 1)W/2R/m)empcov(z+]+1fD)‘

Proof. ('(f(D — 1)) < m(W’'R’)**Peo(1) is by Lemma 13. Next result is by
induction on 3.

Base case: i = 2. Since f(D—2,p) <2R'W'(f(D—1)) and ¢'(f(D —2)) <
m(W'R')e*reov() where 1/ = max{f(D — 2,p) | p € P}, we get

C(f(D—2)) < m(W2R'WL (f(D —1)))*®
< m(QWIQR/m(W/R/)exPCOU(l))expcov(l)
< m(QW/ZR/m)ezpcov(l) (W/R/)expcov@)

Induction step: Since f(D —i—1,p) < (i + 2)R'W'V'(f(D — 1)), we have

C(f(D—i—1)) <m(W(i+2)RW'C(f(D—i—1)))rerd)
D expcov (1)
<m (( + 2 W2R'm H D—j+ 1 W2R'm )ea:pcov(i+j+1D))
j=D—1i
D . )
—m ((Z + 2)W/2R/ expcov(l) H _ ] 11 W,QR, )ezpcov(z+1+j+1fD)
j=D—i

D
m [ (D —j+ YW2Rm) et
j=D—i—1
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Theorem 27. Given a net and a formula ¢, if the benefit depth of the net is
treated as a parameter and the nesting depth D of EF modality in the formula
1s treated as a constant, then there is a paraPSPACE algorithm that checks if the
net satisfies the given formula.

Proof. First reduce ¢ to the form v A k by nondeterministically choosing dis-
juncts from subformulas of ¢, as explained in the beginning of this section. Since
~ can be verified by using the boundedness algorithm, it remains to verify k.
By Lemma 24, it is enough for a nondeterministic algorithm to guess sequences
Oaj, 0j € I of lengths at most ¢'(f(|aj| — 1)) and verify that they satisfy the
formula. Using bounds given by Lemma 26 and an argument similar to the one
in the proof of Theorem 14, it can be shown that the space used is exponential
in K and polynomial in the size of the net and numeric constants in the formula.
This gives the paraPSPACE algorithm. O O

The space requirement of the above algorithm will have terms like m?? and

hence it will not be paraPSPACE if D is treated as a parameter instead of a
constant.

6 Conclusion

We considered nets communicating with buffers. These are infinite-state con-
current systems allowing 1-safe Petri net components communicating through
synchronization, which in turn communicate asynchronously through a fixed set
of buffers. We identified the parameter benefit depth that measures the maxi-
mum number of other buffers that any one buffer can influence. We showed that
based on this parameter, paraPSPACE algorithms can be obtained for the cover-
ability and boundedness problems. Note that this does not yield a paraPSPACE
algorithm for the reachability problem. Whether benefit depth can yield such
an algorithm is open; for work of this kind we refer to Kostin [18]. We then
extended the above technique to show that satisfiability of formulas of the logic
given in sub-section 2.1 can be checked in paraPSPACE if the nesting depth of
EF quantifiers in such formulas is treated as a constant.

Readers familiar with the repeated control state reachability problem in [14]
may infer that arguments similar to Lemma 17 can be employed for that problem
too. However, we do not get a paraPSPACE result in terms of benefit depth
for model checking linear time p-calculus because Habermehl’s reduction of this
problem to repeated control state reachability constructs a bigger net, its benefit
depth might be greater than in the original one.
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