Assignment 2, Theory of Computation

1. Prove that the following languages over the given alphabet are not regular.
(a) {w e X* | |w| is a power of 2}, ¥ = {a}.
(b) {w | w is a string of balanced parenthesis}, ¥ = {(,)}.
(c¢) {0™10™ | n >0}, ¥ ={0,1}.
2. Let w be a string over ¥ = {a, b}. The function weight : {1,...,|w|} = N
is defined as follows:
0 if w(i)
number of times a occurs before i if w(i) =

a

weight (i) = {

w

Let weight(w) = lelweight(i). Design a minimal DFA to accept exactly
those strings w such that weight(w) is even. Prove that your DFA is
minimal.

3. Recall the following algorithm we discussed in class for DFA minimization.
Input is a DFA A = (@', %, 4, qo, F).

(a) After deleting all states that are not reachable from the initial state,
suppose @ = {q1,...,qn} are the remaining states.

(b) Write down a table of all unordered pairs {g;, ¢;} of states, initially
unmarked.

(c) For every pair {g¢;,q;}, mark {¢;,q;} if ¢; € F and ¢q; ¢ F or vice-
versa.

(d) Repeat until no more pairs can be marked: if there exists an un-
marked pair {g;,¢;} such that {d(g;,a),(g;,a)} is marked for some
a € ¥, then mark {¢;,q;}.

Assume that we have proved that the algorithm marks a pair {g;, ¢;} iff
there exists w € ¥* such that d(¢;, w) € F and 6(g;,w) ¢ F or vice-versa.

(a) Let = be the binary relation on @ such that ¢; = g; if the pair {g;, ¢;}
is not marked by the above algorithm. Prove that = is an equivalence
relation.

(b) Let us denote by @/ = the set of equivalence classes of @ induced
by =. Let us denote by [¢]= the equivalence class containing gq.
Consider the function ¢ : (Q/ =) x ¥ — P(Q/ =) defined as
8 (lg)=,0) = {[0(¢,0)l= | ¢ = q}. Prove that for every ¢ € Q
and o € X, §'([q]=,0) is a singleton set, thus concluding that A’ =
(Q/ =,%,9,[ql=,{lgrl= | ¢f € F}) is a DFA, whose language is
equal to L(A).



(¢c) For any string w € X*, prove that &' ([go]=, w) = [6(qo, w)]=.

(d) Let L be the language of the original DFA. Consider the Myhill-
Nerode relations =7, and =4/. Prove that =, refines =4/, thus con-
cluding that A’ is indeed the minimal DFA whose language is L.

4. We have seen two—way automata in class. Consider another extension of
automata where there are two reading heads instead of one.

Input tape [ [wi] e [wi[ ]

<~ 5> <~f>

Reading heads

Automaton with set of states @

As shown above, there is an input tape on which the input word is written,
along with left and right end markers. The first reading head is initially
reading the first letter and the second reading head is initially reading the
last letter. If the automaton A is in some state ¢, the first reading head
is reading the letter oy and the second reading head is reading the letter
09, then the transition function of A will make the automaton change its
state to ¢/, make the first reading head move one position to the left or
one position to the right, finally make the second reading head move one
position to the left or one position to the right. The transition function
is of the form § : Q@ x X x ¥ — @Q x {L, R} x {L, R}. The input string is
accepted if the automaton ever enters a designated accepted state g,. The
input string is rejected if the automaton even enters a designated rejected
state g, of if the automaton never stops. Are these two—head deterministic
automata more powerful than standard DFA? If yes, give an example of
a non-regular language accepted by a two—head deterministic automaton.
If no, prove that every language accepted by a two-head deterministic
automaton is regular.

5. For alanguage L C ¥*, let prefix(L) = {w € ¥* | w is a prefix of some string in L}
and suffix(L) = {w € ¥* | w is a suffix of some string in L}. Are the in-
dices of the equivalence relations = efiy(1) and =gumix(r) bounded by some
function of the index of =7 If yes, what are the bounds? If no, give
demonstrating examples.

6. We know that for every NFA, there exists a language equivalent DFA.
Subset construction that gives the equivalent DFA results in an exponen-
tial blowup in the number of states in the worst case. Prove that this
is unavoidable. Concretely, prove that there exists a family of languages
(Lyn)nen such that for every n, L, is the language of some NFA with O(n)
states and the minimal DFA for L, has Q(2") states.



